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Preface

Let’s start by clarifying: This book is NOT about assembly language programming. True, there is assembly
language sprinkled throughout the book, so you will in fact learn assembly language—but only as a means to
a different end, the latter being understanding of computer systems. Specifically, you will learn about high-
level hardware, the large differences between one machine and the next, and low-level software, meaning
operating systems and to some degree compilers.

I submit that if you pursue a career in the computer field, this may be one of the most important courses you
ever take. It will help you decide which computer to buy, whether for your yourself or for your employer; it
will help you understand what makes a computer fast, or not; it will help you to deal with emergencies.

Here is an example of the latter: A couple of years ago, a young family friend spent a summer studying
abroad, and of course took lots of pictures, which she stored on her laptop. Unfortunately, when she returned
home, her little sister dropped the laptop, and subsequently the laptop refused to boot up. A local electronics
store wanted $300 to fix it, but I told the family that I"d do it. Utilizing my knowledge of how a computer
boots up and how OS file structures work—which you will learn in this book—I was able to quickly rescue
most of the young lady’s photos.

The book features a chapter on multicore processors. These are of tremendous importance today, as it is hard
to buy a desktop or even a smart phone without one. Yet programming a multicore system, for all but the
so-called embarrassingly parallel applications, requires an intimate knowledge of the underlying hardware.

Many years ago there was an athlete, Bo Jackson, who played both professional baseball and football. A
clever TV commercial featuring him began with “Bo knows baseball. Bo knows football” but then conceded,
no, Bo doesn’t know hockey. Well, if you master the material in this book, YOU will know computers.

This work is licensed under a Creative Commons Attribution-No Derivative Works 3.0 United States Li-
cense. The details may be viewed at http://creativecommons.org/licenses/by-nd/3.0/
us /|, but in essence it states that you are free to use, copy and distribute the work, but you must attribute the
work to me and not “alter, transform, or build upon” it. If you are using the book, either in teaching a class
or for your own learning, I would appreciate your informing me. I retain copyright in all non-U.S. jurisdic-
tions, but permission to use these materials in teaching is still granted, provided the licensing information
here is displayed.

Xiii
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Chapter 1

Information Representation and Storage

1.1 Introduction

A computer can store many types of information. A high-level language (HLL) will typically have several
data types, such as the C/C++ language’s int, float, and char. Yet a computer can not directly store any
of these data types. Instead, a computer only stores Os and 1s. Thus the question arises as to how one can
represent the abstract data types of C/C++ or other HLLs in terms of Os and 1s. What, for example, does a
char variable look like when viewed from “under the hood”?

A related question is how we can use Os and 1s to represent our program itself, meaning the machine
language instructions that are generated when our C/C++ or other HLL program is compiled. In this chapter,
we will discuss how to represent various types of information in terms of Os and 1s. And, in addition to this
question of how items are stored, we will also begin to address the question of where they are stored, i.e.
where they are placed within the structure of a computer’s main memory.

1.2 Bits and Bytes

1.2.1 “Binary Digits”

The Os and 1s used to store information in a computer are called bits. The term comes from binary digit,
i.e. a digit in the base-2 form of a number (though once again, keep in mind that not all kinds of items that
a computer stores are numeric). The physical nature of bit storage, such as using a high voltage to represent
a 1 and a low voltage to represent a 0, is beyond the scope of this book, but the point is that every piece of
information must be expressed as a string of bits.



2 CHAPTER 1. INFORMATION REPRESENTATION AND STORAGE

For most computers, it is customary to label individual bits within a bit string from right to left, starting with
0. For example, in the bit string 1101, we say Bit0=1, Bit 1 =0, Bit2=1 and Bit 3 = 1.

If we happen to be using an n-bit string to represent a nonnegative integer, we say that Bit n-1, i.e. the
leftmost bit, is the most significant bit (MSB). To see why this terminology makes sense, think of the base-
10 case. Suppose the price of an item is $237. A mistake by a sales clerk in the digit 2 would be much
more serious than a mistake in the digit 7, i.e. the 2 is the most significant of the three digits in this price.
Similarly, in an n-bit string, Bit 0, the rightmost bit, is called the least significant bit (LSB).

A bit is said to be set if it is 1, and cleared if it is O.

A string of eight bits is usually called a byte. Bit strings of eight bits are important for two reasons. First,
in storing characters, we typically store each character as an 8-bit string. Second, computer storage cells are
typically composed of an integral number of bytes, i.e. an even multiple of eight bits, with 16 bits and 32
bits being the most commonly encountered cell sizes.

The whimsical pioneers of the computer world extended the pun, “byte” to the term nibble, meaning a 4-bit
string. So, each hex digit (see below) is called a nibble.

1.2.2 Hex Notation

We will need to define a “shorthand” notation to use for writing long bit strings. For example, imagine how
cumbersome it would be for us humans to keep reading and writing a string such as 1001110010101110.
So, let us agree to use hexadecimal notation, which consists of grouping a bit string into 4-bit substrings,
and then giving a single-character name to each substring.

For example, for the string 1001110010101110, the grouping would be
1001 1100 1010 1110

Next, we give a name to each 4-bit substring. To do this, we treat each 4-bit substring as if it were a base-2
number. For example, the leftmost substring above, 1001, is the base-2 representation for the number 9,
since

1-(2)4+0-(29)+0-(2") +1-(2°) =9,

so, for convenience we will call that substring “9.” The second substring, 1100, is the base-2 form for the
number 12, so we will call it “12.” However, we want to use a single-character name, so we will call it “c,”
because we will call 10 “a,” 11 “b,” 12 “c,” and so on, until 15, which we will call “f.”

In other words, we will refer to the string 1001110010101110 as 0x9cae. This is certainly much more
convenient, since it involves writing only 4 characters, instead of 16 Os and 1s. However, keep in mind that
we are doing this only as a quick shorthand form, for use by us humans. The computer is storing the string
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in its original form, 1001110010101110, not as 0x9cae.

We say 0x9cae is the hexadecimal, or “hex,” form of the the bit string 1001110010101110. Often we will
use the C-language notation, prepending “Ox” to signify hex, in this case 0x9cae.

Recall that we use bit strings to represent many different types of information, with some types being
numeric and others being nonnumeric. If we happen to be using a bit string as a nonnegative number, then
the hex form of that bit string has an additional meaning, namely the base-16 representation of that number.

For example, the above string 1001110010101110, if representing a nonnegative base-2 number, is equal to

1(21) 0(21) +0(21%) + 1213 + 1(2M) + 1(2'%) 4+ 0(2%) + 0(2%)

_|_
4+ 1(27) +0(2%) + 1(2%) + 0(2%) + 1(2%) + 1(2%) + 1(2") 4+ 0(2%) = 40, 110.

If the hex form of this bit string, 0x9cae, is treated as a base-16 number, its value is

9(16%) 4 12(162) 4 10(161) + 14(16°) = 40, 110,

verifying that indeed the hex form is the base-16 version of the number. That is in fact the origin of the term
“hexadecimal,” which means “pertaining to 16.” [But there is no relation of this name to the fact that in this
particular example our bit string is 16 bits long; we will use hexadecimal notation for strings of any length.]

The fact that the hex version of a number is also the base-16 representation of that number comes in handy
in converting a binary number to its base-10 form. We could do such conversion by expanding the powers
of 2 as above, but it is much faster to group the binary form into hex, and then expand the powers of 16, as
we did in the second equation.

The opposite conversion—from base-10 to binary—can be expedited in the same way, by first converting
from base-10 to base-16, and then degrouping the hex into binary form. The conversion of decimal to base-
16 is done by repeatedly dividing by 16 until we get a quotient less than 16; the hex digits then are obtained
as the remainders and the very last quotient. To make this concrete, let’s convert the decimal number 21602
to binary:

Divide 21602 by 16, yielding 1350, remainder 2.

Divide 1350 by 16, yielding 84, remainder 6.

Divide 84 by 16, yielding 5, remainder 4.

The hex form of 21602 is thus 5462.

The binary form is thus 0101 0100 0110 0010, i.e. 0101010001100010.

The main ingredient here is the repeated division by 16. By dividing by 16 again and again, we are building
up powers of 16. For example, in the line
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Divide 1350 by 16, yielding 84, remainder 6.

above, that is our second division by 16, so it is a cumulative division by 162. [Note that this is why we are
dividing by 16, not because the number has 16 bits.]

1.2.3 There Is No Such Thing As “Hex” Storage at the Machine Level!

Remember, hex is merely a convenient notation for us humans. It is wrong to say something like “The
machine stores the number in hex,” “The compiler converts the number to hex,” and so on. It is crucial that
you avoid this kind of thinking, as it will lead to major misunderstandings later on.

1.3 Main Memory Organization

During the time a program is executing, both the program’s data and the program itself, i.e. the machine
instructions, are stored in main memory. In this section, we will introduce main memory structure. (We will
usually refer to main memory as simply “memory.”)

1.3.1 Bytes, Words and Addresses

640 K ought to be enough for anybody—Bill Gates, 1981

1.3.1.1 The Basics

Memory (this means RAM/ROM) can be viewed as a long string of consecutive bytes. Each byte has an
identification number, called an address. Again, an address is just an “i.d. number,” like a Social Security
Number identifies a person, a license number identifies a car, and an account number identifies a bank
account. Byte addresses are consecutive integers, so that the memory consists of Byte 0, Byte 1, Byte 2, and
SO on.

On each machine, a certain number of consecutive bytes is called a word. The number of bytes or bits
(there are eight times as many bits as bytes, since a byte consists of eight bits) in a word in a given machine
is called the machine’s word size. This is usually defined in terms of the size of number which the CPU
addition circuitry can handle, which in recent years has typically been 32 bits. In other words, the CPU’s
adder inputs two 32-bit numbers, and outputs a 32-bit sum, so we say the word size is 32 bits.

Early members of the Intel CPU family had 16-bit words, while the later ones were extended to 32-bit and
then 64-bit size. In order to ensure that programs written for the early chips would run on the later ones,
Intel designed the later CPUs to be capable of running in several modes, one for each bit size.
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Note carefully that most machines do not allow overlapping words. That means, for example, that on a
32-bit machine, Bytes 0-3 will form a word and Bytes 4-7 will form a word, but Bytes 1-4 do NOT form a
word. If your program tries to access the “word” consisting of Bytes 1-4, it may cause an execution error.
On Linux systems, for instance, you may get the error message “bus error.”

However, an exception to this is Intel chips, which do not require alignment on word boundaries like this.
However, note that if your program uses unaligned words, each time you access such a word, the CPU must
get two words from memory, slowing things down.

Just as a bit string has its most significant and least significant bits, a word will have its most significant and
least significant bytes. To illustrate this, suppose word size is 32 bits and consider storage of the integer 25,
which is

00000000000000000000000000011001

in bit form and 0x00000019 as hex. Three bytes will each contain 0x00 and the fourth 0x19, with the 0x19
byte being the least significant and the first 0x00 byte being most significant.

Not only does each byte have an address, but also each word has one too. The address of a word will be the
address of its lowest-address byte. So for instance Bytes 4-7 comprise Word 4.

1.3.1.2 Most Examples Here Will Be for 32-bit Machines
As of this writing, September 2012, most desktop and laptop machines have 64-bit word size, while most
cell phone CPUs have 32-bit words.

Our examples in this book will mainly use a 32-bit, or even 16-bit, word size. This is purely for simplicity,
and the principles apply in the same manner to the 64-bit case.

1.3.1.3 Word Addresses
1.3.1.4 “Endian-ness”

Recall that the word size of a machine is the size of the largest bit string on which the hardware is capable
of performing addition. A question arises as to whether the lowest-address byte in a word is treated by the
hardware as the most or least significant byte.

The Intel family handles this in a little-endian manner, meaning that the least significant byte within a word
has the lowest address. For instance, consider the above example of the integer 25. Suppose it is stored
in Word 204, which on any 32-bit machine will consist of Bytes 204, 205, 206 and 207. On a 32-bit Intel
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machine (or any other 32-bit little-endian machine), Byte 204 will be the least significant byte, and thus in
this example will contain 0x19.

Note carefully that when we say that Byte 204 contains the least significant byte, what this really means is
that the arithmetic hardware in our machine will treat it as such. If for example we tell the hardware to add
the contents of Word 204 and the contents of Word 520, the hardware will start at Bytes 204 and 520, not
at Bytes 207 and 523. First Byte 204 will be added to Byte 520, recording the carry, if any. Then Byte 205
will be added to Byte 521, plus the carry if any from the preceding byte addition, and so on, through Bytes
207 and 523.

SPARC chips, on the other hand, assign the least significant byte to the highest address, a big-endian
scheme. This is the case for IBM mainframes too, as well as for the Java Virtual Machine.

Some chips, such as MIPS and PowerPC, even give the operating system a choice as to which rules the CPU
will follow; when the OS is booted, it establishes which “endian-ness” will be used. Later SPARC chips do
this, as well as the ARM chips used in many phones.

The endian-ness problem also arises on the Internet. If someone is running a Web browser on a little-endian
machine but the Web site’s server is big-endian, they won’t be able to communicate. Thus as a standard, the
Internet uses big-endian order. There is a Unix system call, htons(), which takes a byte string and does the
conversion, if necessary.

Here is a function that can be used to test the endian-ness of the machine on which it is run:

int Endian () // returns 1 if the machine is little-endian, else 0
{ int X;

char «PC;

X =1;

PC = (char x) &X;

return *PC;

As we will discuss in detail later, compilers usually choose to store int variables one per word, and char
variables one per byte. So, in this little program, X will occupy four bytes on a 32-bit machine, which we
assume here; PC will be used to point to one of those bytes.

Suppose for example that X is in memory word 4000, so &X is 4000. Then PC will be 4000 too. Word
4000 consists of bytes 4000, 4001, 4002 and 4003. Since X is 1, i.e. 000...00 1, one of those four bytes will

31 0s
contain 00000001, i.e. the value 1 and the others will contain 0. The 1 will be in byte 4000 if and only the
machine is little-endian. In the return line, PC is pointing to byte 4000, so the return value will be either
1 or 0, depending on whether the machine is little- or big-endian, just what we wanted.

Note that within a byte there is no endian-ness issue. Remember, the endian-ness issue is defined at the
word level, in terms of addresses of bytes within words; the question at hand is, “Which byte within a word
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is treated as most significant—the lowest-numbered-address byte, or the highest one?” This is because there
is no addressing of bits within a byte, thus no such issue at the byte level.

Note that a C compiler treats hex as base-16, and thus the endian-ness of the machine will be an issue. For
example, suppose we have the code

int Z = 0x12345678;

and &Z is 240.

As mentioned, compilers usually store an int variable in one word. So, Z will occupy Bytes 240, 241,
242 and 243. So far, all of this holds independent of whether the machine is big- or little-endian. But the
endian-ness will affect which bytes of Z are stored in those four addresses.

On a little-endian machine, the byte 0x78, for instance, will be stored in location 240, while on a big-endian
machine it would be in location 243.

Similarly, a call to printf() with %x format will report the highest-address byte first on a little-endian
machine, but on a big-endian machine the call would report the lowest-address byte first. The reason for
this is that the C standard was written with the assumption that one would want to use %x format only in
situations in which the programmer intends the quantity to be an integer. Thus the endian-ness will be a
factor. This is a very important point to remember if you are using a call to printf() with %x format to
determine the actual bit contents of a word which might not be intended as an integer.

There are some situations in which one can exploit the endian-ness of a machine. An example is given in

Section

1.3.1.5 Other Issues

As we saw above, the address of a word is defined to be the address of its lowest-numbered byte. This
presents a problem: How can we specify that we want to access, say, Byte 52 instead of Word 52?7 The
answer is that for machine instruction types which allow both byte and word access (some instructions do,
others do not), the instruction itself will indicate whether we want to access Byte x or Word x.

For example, we mentioned earlier that the Intel instruction 0xc7070100 in 16-bit mode puts the value 1
into a certain “cell” of memory. Since we now have the terms word and byte to work with, we can be more
specific than simply using the word cell: The instruction 0xc7070100 puts the value 1 into a certain word
of memory; by contrast, the instruction 0xc60701 puts the value 1 into a certain byte of memory. You will
see the details in later chapters, but for now you can see that differentiating between byte access and word
access is possible, and is indicated in the bit pattern of the instruction itself.

Note that the word size determines capacity, depending on what type of information we wish to store. For
example:
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(a) Suppose we are using an n-bit word to store a nonnegative integer. Then the range of numbers that
we can store will be 0 to 2" — 1, which for n = 16 will be 0 to 65,535, and for n = 32 will be O to
4,294,967,295.

(b) If we are storing a signed integer in an n-bit word, then the information presented in Section[I.4.1| will
show that the range will be —on=1 o 27=1 _ 1 which will be -32,768 to +32,767 for 16-bit words,
and -2,147,483,648 to +2,147,483,647 for 32-bit words.

(c) Suppose we wish to store characters. Recall that an ASCII character will take up seven bits, not eight.
But it is typical that the seven is “rounded off to eight, with 1 bit being left unused (or used for some
other purpose, such as a technique called parity, which is used to help detect errors). In that case,
machines with 16-bit words can store two characters per word, while 32-bit machines can store four
characters per word.

(d) Suppose we are storing machine instructions. Some machines use a fixed instruction length, equal to
the word size. These are the so-called RISC machines, to be discussed in Chapter ??. On the other
hand, most older machines have instructions are of variable lengths.

On earlier Intel machines, for instance, instructions were of lengths one to six bytes (and the range has
grown much further since then). Since the word size on those machines was 16 bits, i.e. two bytes, we
see that a memory word might contain two instructions in some cases, while in some other cases an
instruction would be spread out over several words. The instruction 0xc7070100 mentioned earlier,
for example, takes up four bytes (count them!), thus two words of memoryE]

It is helpful to make an analogy of memory cells (bytes or words) to bank accounts, as mentioned above.
Each individual bank account has an account number and a balance. Similarly, each memory has its address
and its contents.

As with anything else in a computer, an address is given in terms of Os and 1s, i.e. as a base-2 representation
of an unsigned integer. The number of bits in an address is called the address size. Among earlier Intel
machines, the address size grew from 20 bits on the models based on the 8086 CPU, to 24 bits on the 80286
model, and then to 32 bits for the 80386, 80486 and Pentium. The current trend is to 64 bits.

The address size is crucial, since it puts an upper bound on how many memory bytes our system can have. If
the address size is n, then addresses will range from O to 2™ — 1, so we can have at most 2" bytes of memory
in our system. It is similar to the case of automobile license plates. If for example, license plates in a certain
state consist of three letters and three digits, then there will be only 263102 = 17,560, 000 possible plates.
That would mean we could have only 17,560,000 cars and trucks in the state.

With 32-bit addresses, GCC limits us to arrays of about 500 million long. With 64-bit addresses, our
possibilities are huge. (Note, though, that you must use the command line option -mcmodel=medium when
running GCC.)

'Intel machinese today are still of the CISC type.
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Keep in mind that an address is considered as unsigned integer. For example, suppose our address size is, to
keep the example simple, four bits. Then the address 1111 is considered to be +15, not -1.

IMPORTANT NOTATION:

We will use the notation c( ) to mean “contents of,” e.g. c¢(0x2b410) means the contents of memory
word 0x2b410. Keep this in mind, as we will use it throughout the course

Today it is customary to design machines with address size equal to word size. To see why this makes sense,
consider this code:

int X, *P;

P = &X;

The variable P is a pointer and thus contains an address. But P is a variable in its own right, and thus will
be stored in some word. For example, we may have &X and P equal to 200 and 344, respectively. Then we
will have ¢(344) = 200, i.e. an address will be stored in a word. So it makes sense to have address size equal
to word size.

1.4 Representing Information as Bit Strings

We may now address the questions raised at the beginning of the chapter. How can the various abstract data
types used in HLLs, and also the computer’s machine instructions, be represented using strings of Os and

ls

1.4.1 Representing Integer Data

Representing nonnegative integer values is straightforward: We just use the base-2 representation, such
as 010 for the number +2. For example, the C/C++ language data type unsigned int (also called simply
unsigned) interprets bit strings using this representation.

But what about integers which can be either positive or negative, i.e. which are signed? For example, what
about the data type int in C?

Suppose for simplicity that we will be using 3-bit strings to store integer variables. [Note: We will assume
this size for bit strings in the next few paragraphs.] Since each bit can take on either of two values, O or 1,
there are 23 = 8 possible 3-bit strings. So, we can represent eight different integer values. In other words,
we could, for example, represent any integer from -4 to +3, or -2 to +5, or whatever. Most systems opt for

The word string here does not refer to a character string. It simply means a group of bits.
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a range in which about half the representable numbers are positive and about half are negative. The range
-2 to +5, for example, has many more representable positive numbers than negative numbers. This might be
useful in some applications, but since most computers are designed as general-purpose machines, they use
integer representation schemes which are as symmetric around 0 as possible. The two major systems below
use ranges of -3 to +3 and -4 to +3.

But this still leaves open the question as to which bit strings represent which numbers. The two major
systems, signed-magnitude and 2s complement, answer this question in different ways. Both systems
store the nonnegative numbers in the same way, by storing the base-2 form of the number: 000 represents
0, 001 represents +1, 010 represents +2, and 011 represents +3. However, the two systems differ in the way
they store the negative numbers, in the following way.

The signed-magnitude system stores a 3-bit negative number first as a 1 bit, followed by the base-2 rep-
resentation of the magnitude, i.e. absolute value, of that number. For example, consider how the number
-3 would be stored. The magnitude of this number is 3, whose base-2 representation is 11. So, the 3-bit,
signed-magnitude representation of -3 is 1 followed by 11, i.e. 111. The number -2 would be stored as 1
followed by 10, i.e. 110, and so on. The reader should verify that the resulting range of numbers repre-
sentable in three bits under this system would then be -3 to +3. The reader should also note that the number
0 actually has rwo representations, 000 and 100. The latter could be considered “-0,” which of course has
no meaning, and 000 and 100 should be considered to be identical. Note too that we see that 100, which in
an unsigned system would represent +4, does not do so here; indeed, +4 is not representable at all, since our
range is -3 to +3.

The 2s complement system handles the negative numbers differently. To explain how, first think of strings
of three decimal digits, instead of three bits. For concreteness, think of a 3-digit odometer or trip meter in
an automobile. Think about how we could store positive and negative numbers on this trip meter, if we had
the desire to do so. Since there are 10 choices for each digit (0,1,...,9), and there are three digits, there are
103 = 1000 possible patterns. So, we would be able to store numbers which are approximately in the range
-500 to +500.

Suppose we can wind the odometer forward or backward with some manual control. Let us initially set the
odometer to 000, i.e. set all three digits to 0. If we were to wind forward from 000 once, we would get 001;
if we were to wind forward from 000 twice, we would get 002; and so on. So we would use the odometer
pattern 000 to represent 0, 001 to represent +1, 002 to represent +2, ..., and 499 to represent +499. If we
were to wind backward from 000 once, we would get 999; if we were to wind backward twice, we would
get 998; and so on. So we would use the odometer pattern 999 to represent -1, use 998 to represent -2, ...,
and use 500 to represent -500 (since the odometer would read 500 if we were to wind backward 500 times).
This would give us a range -500 to +499 of representable numbers.

Getting back to strings of three binary digits instead of three decimal digits, we apply the same principle. If
we wind backward once from 000, we get 111, so we use 111 to represent -1. If we wind backward twice
from 000, we get 110, so 110 will be used to represent -2. Similarly, 101 will mean -3, and 100 will mean
-4. If we wind backward one more time, we get 011, which we already reserved to represent +3, so -4 will
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be our most negative representable number. So, under the 2s complement system, 3-bit strings can represent
any integer in the range -4 to +3.

This may at first seem to the reader like a strange system, but it has a very powerful advantage: We can
do addition of two numbers without worrying about their signs; whether the two addends are both positive,
both negative or of mixed signs, we will do addition in the same manner. For example, look at the base-10
case above, and suppose we wish to add +23 and -6. These have the “trip meter” representations 023 and
994. Adding 023 and 994 yields 1017, but since we are working with 3-digit quantities, the leading 1 in
1017 is lost, and we get 017. 017 is the “trip meter” representation of +17, so our answer is +17—exactly as
it should be, since we wanted to add +23 and -6. The reason this works is that we have first wound forward
23 times (to 023) but then wound backward 6 times (the 994), for a net winding forward 17 times.

The importance of this is that in building a computer, the hardware to do addition is greatly simplified. The
same hardware will work for all cases of signs of addends. For this reason, most modern computers are
designed to use the 2s-complement system.

For instance, consider the example above, in which we want to find the representation of -29 in an 8-bit
string. We first find the representation of +29, which is 00011101 [note that we remembered to include the
three leading Os, as specified in (a) above]. Applying Step (b) to this, we get 11100010. Adding 1, we get
11100011. So, the 8-bit 2s complement representation of -29 is 11100011. We would get this same string if
we wound back from 000000 29 times, but the method here is much quicker.

This transformation is idempotent, meaning that it is its own inverse: If you take the 2s complement rep-
resentation of a negative number -x and apply Steps (b) and (c) above, you will get +x. The reader should
verify this in the example in the last paragraph: Apply Steps (b) and (c) to the bit string 11100011 repre-
senting -29, and verify that the resulting bit string does represent +29. In this way, one can find the base-10
representation of a negative number for which you have the 2s complement form.

By the way, the n-bit representation of a negative integer -X is equal to the base-2 representation of 2" — .
You can see this by noting first that the base-2 representation of 2™ is 1 000...00. That means that the n-bit

n 0s
2s complement “representation” of 2"*—it is out of range for n bits, but we can talk about its truncation to n

bits—is 000...00. Since the 2s complement representation of -x is the result of winding backwards x times

n Os
from 000...00, that is the result of winding backwards x times from 2", which is 2" — x.
——

n 0s

For example, consider 4-bit 2s complement storage. Winding backward 3 times from 0000, we get 1101 for
the representation of -3. But taken as an unsigned number, 1101 is 13, which sure enough is 2% — 3.

Although we have used the “winding backward” concept as our informal definition of 2s complement repre-
sentation of negative integers, it should be noted that in actual computation—both by us humans and by the
hardware—it is inconvenient to find representations this way. For example, suppose we are working with
8-bit strings, which allow numbers in the range -128 to +127. Suppose we wish to find the representation of
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-29. We could wind backward from 00000000 29 times, but this would be very tedious.

Fortunately, a “shortcut” method exists: To find the n-bit 2s complement representation of a negative number
-X, do the following.

(a) Find the n-bit base-2 representation of +x, making sure to include any leading Os.
(b) In the result of (a), replace Os by 1s and 1s by Os. (This is called the 1s complement of x.)

(c) Add 1 to the result of (b), ignoring any carry coming out of the Most Significant Bit.

Here’s why the shortcut works: Say we have a number x whose 2s complement form we know, and we want
to find the 2s complement form for -x. Let x* be the 1s complement of x, i.e. the result of interchanging 1s
and Os in x. Then x+x’ is equal to 111...11, so x+x’ = -1. That means that -x = x’+1, which is exactly the

n ls
shortcut above.

Here very important properties of 2s-complement storage:

(i) The range of integers which is supported by the n-bit, 2s complement representation is —2"! to
2n1— 1.

(ii) The values —2"~! and 2"~! — 1 are represented by 10000...000 and 01111...111, respectively.

(iii) All nonnegative numbers have a 0 in Bit n-1, and all negative numbers have a 1 in that bit position.

The reader should verify these properties with a couple of example in the case of 4-bit strings.

By the way, due to the slight asymmetry in the range in (i) above, you can see that we can not use the
“shortcut” method if we need to find the 2s complement representation of the number —2" — 1; Step (a) of
that method would be impossible, since the number 2" — 1 is not representable. Instead, we just use (ii).

Now consider the C/C++ statement

Sum = X + Y;

The value of Sum might become negative, even if both the values X and Y are positive. Here is why, say
for 16-bit word size: With X = 28,502 and Y = 12,344, the resulting value of Sum will be -24,690. Most
machines have special bits which can be used to detect such situations, so that we do not use misleading
information.

Again, most modern machines use the 2s complement system for storing signed integers. We will assume
this system from this point on, except where stated otherwise.
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1.4.2 Representing Real Number Data

The main idea here is to use scientific notation, familiar from physics or chemistry, say 3.2 x 10~ for the
number 0.00032. In this example, 3.2 is called the mantissa and -4 is called the exponent.

The same idea is used to store real numbers, i.e. numbers which are not necessarily integers (also called
floating-point numbers), in a computer. The representation is essentially of the form

m x 2" (1.1)

with m and n being stored as individual bit strings.

14.2.1 “Toy” Example

Say for example we were to store real numbers as 16-bit strings, we might devote 10 bits, say Bits 15-6, to
the mantissa m, and 6 bits, say Bits 5-0, to the exponent n. Then the number 1.25 might be represented as

5 x 272 (1.2)

that is, with m = 5 and n = -2. As a 10-bit 2s complement number, 5 is represented by the bit string
0000000101, while as a 6-bit 2s complement number, -2 is represented by 111110. Thus we would store the
number 1.25 as the 16-bit string 0000000101 111110 i.e.

0000000101111110 = 0x017e

Note the design tradeoff here: The more bits I devote to the exponent, the wider the range of numbers I can
store. But the more bits I devote to the mantissa, the less roundoff error I will have during computations.
Once I have decided on the string size for my machine, in this example 16 bits, the question of partitioning
these bits into mantissa and exponent sections then becomes one of balancing accuracy and range.

1.4.2.2 IEEE Standard

The floating-point representation commonly used on today’s machines is a standard of the Institute of Elec-
trical and Electronic Engineers (IEEE). The 32-bit case, which we will study here, follows the same basic
principles as with our simple example above, but it has a couple of refinements to the simplest mantissa/-
exponent format. It consists of a Sign Bit, an 8-bit Exponent Field, and 23-bit Mantissa Field. These fields
will now be explained. Keep in mind that there will be a distinction made between the terms mantissa and
Mantissa Field, and between exponent and Exponent Field.
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Recall that in base-10, digits to the right of the decimal point are associated with negative powers of 10. For
example, 4.38 means

4(10%) + 3(1071) + 8(1072) (1.3)

It is the same principle in base-2, of course, with the base-2 number 1.101 meaning

129 +127hH +027 ) +1(27%) (1.4)

that is, 1.625 in base-10.

Under the IEEE format, the mantissa must be in the form £1.x, where ‘x’ is some bit string. In other words,
the absolute value of the mantissa must be a number between 1 and 2. The number 1.625 is 1.101 in base-2,
as seen above, so it already has this form. Thus we would take the exponent to be 0, that is, we would
represent 1.625 as

1.101 x 2° (1.5)

What about the number 0.375? In base-2 this number is 0.011, so we could write 0.375 as

0.011 x 2° (1.6)

but again, the IEEE format insists on a mantissa of the form +1.z So, we would write 0.375 instead as

1.1 x 272 (1.7)

which of course is equivalent, but the point is that it fits IEEE’s convention.

Now since that convention requires that the leading bit of the mantissa be 1, there is no point in storing it!
Thus the Mantissa Field only contains the bits to the right of that leading 1, so that the mantissa consists of
+1.x, where ‘x’ means the bits stored in the Mantissa field. The sign of the mantissa is given by the Sign
Bit, O for positive, 1 for negativeE] The circuitry in the machine will be set up so that it restores the leading
“1.” at the time a computation is done, but meanwhile we save one bit per ﬂoatf_f]

3 Again, keep in mind the distinction between the mantissa and the Mantissa field. Here the mantissa is +1.z while the Mantissa
field is just x.
“This doesn’t actually make storage shorter; it simply gives us an extra bit position to use otherwise, thus increasing accuracy.
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Note that the Mantissa Field, being 23 bits long, represents the fractional portion of the number to 23
“decimal places,” i.e. 23 binary digits. So for our example of 1.625, which is 1.101 base 2, we have to write
1.101 as 1.10100000000000000000000F] So the Mantissa Field here would be 10100000000000000000000.

The Exponent Field actually does not directly contain the exponent; instead, it stores the exponent plus
a bias of 127. The Exponent Field itself is considered as an 8-bit unsigned number, and thus has values
ranging from 0 to 255. However, the values 0 and 255 are reserved for “special” quantities: O means
that the floating-point number is 0, and 255 means that it is in a sense “infinity,” the result of dividing by
0, for example. Thus the Exponent Field has a range of 1 to 254, which after accounting for the bias term
mentioned above means that the exponent is a number in the range -126 to +127 (1-127) = -126 and 254-127
=+127).

Note that the floating-point number is being stored is (except for the sign) equal to

(14 M/223) x 2(F~127) (1.8)

where M is the Mantissa and E is the Exponent. Make sure you agree with this.

With all this in mind, let us find the representation for the example number 1.625 mentioned above. We found
that the mantissa is 1.101 and the exponent is 0, and as noted earlier, the Mantissa Field is 10100000000000000000000.
The Exponent Field is O + 127 = 127, or in bit form, 01111111.

The Sign Bit is 0, since 1.625 is a positive number.

So, how are the three fields then stored altogether in one 32-bit string? Well, 32 bits fill four bytes, say at
addresses n, n+1, n+2 and n+3. The format for storing the three fields is then as follows:

Byte n: least significant eight bits of the Mantissa Field

Byte n+1: middle eight bits of the Mantissa Field

Byte n+2: least significant bit of the Exponent Field, and most significant seven bits of the Mantissa
Field

Byte n+3: Sign Bit, and most significant seven bits of the Exponent Field

Suppose for example, we have a variable, say T, of type float in C, which the compiler has decided to store
beginning at Byte 0x304a0. If the current value of T is 1.625, the bit pattern will be

Byte 0x304a0: 0x00; Byte 0x304al: 0x00; Byte 0x304a2: 0xd0O; Byte (
0x304a3: 0x3f

3Note that trailing Os do not change things in the fractional part of a number. In base 10, for instance, the number 1.570000 is
the same as the number 1.57.



16 CHAPTER 1. INFORMATION REPRESENTATION AND STORAGE

The reader should also verify that if the four bytes’ contents are Oxel 0x7a 0x60 0x42, then the number
being represented is 56.12.

Note carefully: The storage we’ve been discussing here is NOT base-10. It’s not even base-2, though certain
components within the format are base-2. It’s a different kind of representation, not “base-based.”

1.4.3 Representing Character Data

This is merely a matter of choosing which bit patterns will represent which characters. The two most
famous systems are the American Standard Code for Information Interchange (ASCII) and the Extended
Binary Coded Decimal Information Code (EBCDIC). ASCII stores each character as the base-2 form of a
number between 0 and 127. For example, ‘A’ is stored as 6519 (01000001 = 0x41), ‘%’ as 3719 (00100101
= 0x25), and so on.

A complete list of standard ASCII codes may be obtained by typing

man ascii

on most Linux systems. Note that even keys such as Carriage Return, Line Feed, and so on, are considered
characters, and have ASCII codes.

Since ASCII codes are taken from numbers in the range 0 to 27 — 1 = 127, each code consists of seven
bits. The EBCDIC system consists of eight bits, and thus can code 256 different characters, as opposed to
ASCII’s 128. In either system, a character can be stored in one byte. The vast majority of machines today
use the ASCII system.

What about characters in languages other than English? Codings exist for them too. Consider for example
Chinese. Given that there are tens of thousands of characters, far more than 256, two bytes are used for
each Chinese character. Since documents will often contain both Chinese and English text, there needs to
be a way to distinguish the two. Big5 and Guobiao, two of the most widely-used coding systems used for
Chinese, work as follows. The first of the two bytes in a Chinese character will have its most significant bit
set to 1. This distinguishes it from ASCII (English) characters, whose most significant bits are Os, which
allows software to deal with documents with mixed English and Chinese.

Such software will inspect the high bit of a byte in the file. If that bit is 0, then the byte will be interpreted
as an ASCII character; if it is 1, then that byte and the one following it will be interpreted as a Chinese
character[]

Though in the Chinese case the character will consist of two bytes whether we use the Big5 or Guobiao systems, with the first
bit being 1 in either cased, the remaining 15 bits will be the different under the Guobiao encoding than under the Big5 one. There
is also the Unicode system, which covers over 100 languages/scripts.
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1.4.4 Representing Machine Instructions

Each computer type has a set of binary codes used to specify various operations done by the computer’s
Central Processing Unit (CPU). For example, in the Intel CPU chip family, the code 0xc7070100, i.e.

11000111000001110000000100000000,

means to put the value 1 into a certain cell of the computer’s memory. The circuitry in the computer is
designed to recognize such patterns and act accordingly. You will learn how to generate these patterns in
later chapters, but for now, the thing to keep in mind is that a computer’s machine instructions consist of
patterns of Os and 1s.

Note that an instruction can get into the computer in one of two ways:
(a) We write a program in machine language (or assembly language, which we will see is essentially the
same), directly producing instructions such as the one above.
(b) We write a program in a high-level language (HLL) such as C, and the compiler translates that program

into instructions like the one above.

[By the way, the reader should keep in mind that the compilers themselves are programs. Thus they consist
of machine language instructions, though of course these instructions might have themselves been generated
from an HLL source too0.]

1.4.5 What Type of Information is Stored Here?

A natural question to ask at this point would be how the computer “knows” what kind of information is
being stored in a given bit string. For example, suppose we have the 16-bit string 0111010000101011, i.e.
in hex form 0x742b, on a machine using an Intel CPU chip in 16-bit mode. Then

(a) if this string is being used by the programmer to store a signed integer, then its value will be 29,739;

(b) if this string is being by the programmer used to store characters, then its contents will be the charac-
ters ‘t” and ‘+’;

(c) if this string is being used by the programmer to store a machine instruction, then the instruction says
to “jump” (like a goto in C) forward 43 bytes.

So, in this context the question raised above is,
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How does the computer “know” which of the above three kinds (or other kinds) of information
is being stored in the bit string 0x742b? Is it 29,7397 Is it ‘t’ and ‘+’? Or is it a jump-ahead-43-
bytes machine instruction?

The answer is, “The computer does not know!” As far as the computer is concerned, this is just a string of 16
0Os and 1s, with no special meaning. So, the responsibility rests with the person who writes the program—he
or she must remember what kind of information he or she stored in that bit string. If the programmer makes
a mistake, the computer will not notice, and will carry out the programmer’s instruction, no matter how
ridiculous it is. For example, suppose the programmer had stored characters in each of two bit strings, but
forgets this and mistakenly thinks that he/she had stored integers in those strings. If the programmer tells
the computer to multiply those two “numbers,” the computer will dutifully obey!

The discussion in the last paragraph refers to the case in which we program in machine language directly.
What about the case in which we program in an HLL, say C, in which the compiler is producing this machine
language from our HLL source? In this case, during the time the compiler is translating the HLL source to
machine language, the compiler must “remember” the type of each variable, and react accordingly. In other
words, the responsibility for handling various data types properly is now in the hands of the compiler, rather
than directly in the hands of the programmer—but still not in the hands of the hardware, which as indicated
above, remains ignorant of type.

1.5 Examples of the Theme, “There Are No Types at the Hardware Level”

In the previous sections we mentioned several times that the hardware is ignorant of data type. We found
that it is the software which enforces data types (or not), rather than the hardware. This is such an important
point that in this section we present a number of examples with this theme. Another theme will be the issue
of the roles of hardware and software, and in the latter case, the roles of your own software versus the OS
and compiler.

1.5.1 Example

As an example, suppose in a C program X and Y are both declared of type char, and the program includes
the statement

Of course, that statement is nonnsense. But the hardware knows nothing about type, so the hardware
wouldn’t care if the compiler were to generate an add machine instruction from this statement. Thus the
only gatekeeper, if any, would be the compiler. The compiler could either (a) just ignore the oddity, and
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generate the add instruction, or (b) refuse to generate the instruction, and issue an error message. In fact the
compiler will do (a), but the main point here is that the compiler is the only possible gatekeeper here; the
hardware doesn’t care.

So, the compiler won’t prevent us from doing the above statement, and will produce machine code from it.
However, the compiler will produce different machine code depending on whether the variables are of type
int or char. On an Intel-based machine, for example, there are twcﬂ forms of the addition instruction, one
named addl which operates on 32-bit quantities and another named addb which works on 8-bit quantities.
The compiler will store int variables in 32-bit cells but will store char variables in 8-bit cells So, the
compiler will react to the C code

by generating an addl instruction if X and Y are both of type int or generating an addb instruction, if they
are of type char.

The point here, again, is that it is the software which is controlling this, not the hardware. The hardware
will obey whichever machine instructions you give it, even if they are nonsense.

1.5.2 Example

So, the machine doesn’t know whether we humans intend the bit string we have stored in a 4-byte memory
cell to be interpreted as an integer or as a 4-element character string or whatever. To the machine, it is just a
bit string, 32 bits long.

The place the notion of types arises is at the compiler/language level, not the machine level. The C/C++
language has its notion of types, e.g. int and char, and the compiler produces machine code accordinglyﬂ
But that machine code itself does not recognize type. Again, the machine cannot tell whether the contents
of a given word are being thought of by the programmer as an integer or as a 4-character string or whatever
else.

For example, consider this code:

int Y; // local variable

strncpy (&Y, "abcd", 4) ;

"More than two, actually.

8Details below.

For example, as we saw above, the compiler will generate word-accessing machine instructions for ints and byte-accessing
machine instructions for chars.
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At first, you may believe that this code would not even compile successfully, let alone run correctly. After
all, the first argument to strncpy() is supposed to be of type char *, yet we have the argument as type int
*. But the C compiler, say GCC, will indeed compile this code without error and the machine code will
indeed run correctly, placing “abcd” into Y. The machine won’t know about our argument type mismatch.

If we run the same code through a C++ compiler, say g++, then the compiler will give us an error message,
since C++ is strongly typed. We will then be forced to use a cast:

strncpy ( (char ) &Y, "abcd",4);

1.5.3 Example

When we say that the hardware doesn’t know types, that includes array types. Consider the following
program:

main ()

{ int X[5],Y[20],I;

X[0] = 12;

scanf ("%d",&I); // read in I = 20

Y[I] = 15;

printf("X[0] = %d\n",X[0]); // prints out 15!

There appears to be a glaring problem with Y here. We assign 15 to Y[20], even though to us humans there
is no such thing as Y[20]; the last element of Y is Y[19]. Yet the program will indeed run without any error
message, and 15 will be printed out.

To understand why, keep in mind that at the machine level there is really no such thing as an array. Y is just
a name for the first word of the 20 words we humans think of as comprising one package here. When we
write the C/C++ expression Y[I], the compiler merely translates that to machine code which accesses “the
location I ints after Y.”

This should make sense to you since another way to write Y[I] is Y+I. So, there is nothing syntactically
wrong with the expression Y[20]. Now, where is “Y[20]”? C/C++ rules require that local variables be stored
in reverse order i.e. Y first and then X. So, X[0] will follow immediately after Y[19]. Thus “Y[20]” is
really X[0], and thus X[0] will become equal to 15!

Note that the compiler could be designed to generate machine code which checks for the condition Y > 19.
But the official C/C++ standards do not require this, and it is not usually done. In any case, the point is again

19Tt may give a warning message, though.
"Details below.
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that it is the software which might do this, not the hardware. Indeed, the hardware doesn’t even know that
we have variables X and Y, that Y is an array, etc.

1.5.4 Example

As another example, consider the C/C++ library function printf(), which is used to write the values of
program variables to the screen. Consider the C code

int W;

W = -32697;
printf ("$d %u %c\n",W,W,W);

again on a machine using an Intel CPU chip in 16-bit mode. We are printing the bit string in W to the screen
three times, but are telling printf(), “We want this bit string to first be interpreted as a decimal signed integer
(%d); then as a decimal unsigned integer (%u); then as an ASCII character (%c). Here is the output that
would appear on the screen:

-32697 32839 G

The bit string in W is 0x8047. Interpreted as a 16-bit 2s complement number, this string represents the
number -32,697. Interpreted as an unsigned number, this string represents 32,839. If the least significant 8
bits of this string are interpreted as an ASCII character (which is the convention for %c), they represent the
character ‘G’.

But remember, the key point is that the hardware is ignorant; it has no idea as to what type of data we
intended to be stored in W’s memory location. The interpretation of data types was solely in the software.
As far as the hardware is concerned, the contents of a memory location is just a bit string, nothing mor