
PC Assembly Language

Paul A. Carter

January 15, 2002

Copyright c© 2001 by Paul Carter

This may be reproduced and distributed in its entirety (including this au-
thorship, copyright and permission notice), provided that no charge is made
for the document itself, without the author’s consent. This includes “fair
use” excerpts like reviews and advertising, and derivative works like trans-
lations.

Note that this restriction is not intended to prohibit charging for the service
of printing or copying the document.

Instructors are encouraged to use this document as a class resource; however,
the author would appreciate being notified in this case.

Contents

Preface iii

1 Introduction 1
1.1 Number Systems . 1

1.1.1 Decimal . 1
1.1.2 Binary . 1
1.1.3 Hexadecimal . 2

1.2 Computer Organization . 4
1.2.1 Memory . 4
1.2.2 The CPU . 4
1.2.3 The 80x86 family of CPUs 5
1.2.4 8086 16-bit Registers 6
1.2.5 80386 32-bit registers 7
1.2.6 Real Mode . 7
1.2.7 16-bit Protected Mode 8
1.2.8 32-bit Protected Mode 9
1.2.9 Interrupts . 9

1.3 Assembly Language . 10
1.3.1 Machine language . 10
1.3.2 Assembly language . 10
1.3.3 Instruction operands 11
1.3.4 Basic instructions . 11
1.3.5 Directives . 12
1.3.6 Input and Output . 15
1.3.7 Debugging . 16

1.4 Creating a Program . 17
1.4.1 First program . 17
1.4.2 Compiler dependencies 20
1.4.3 Assembling the code 21
1.4.4 Compiling the C code 21
1.4.5 Linking the object files 22
1.4.6 Understanding an assembly listing file 22

i

ii CONTENTS

1.5 Skeleton File . 24

2 Basic Assembly Language 25
2.1 Working with Integers . 25

2.1.1 Integer representation 25
2.1.2 Sign extension . 28
2.1.3 Two’s complement arithmetic 31
2.1.4 Example program . 33
2.1.5 Extended precision arithmetic 34

2.2 Control Structures . 35
2.2.1 Comparisons . 36
2.2.2 Branch instructions 36
2.2.3 The loop instructions 39

2.3 Translating Standard Control Structures 40
2.3.1 If statements . 40
2.3.2 While loops . 41
2.3.3 Do while loops . 41

2.4 Example: Finding Prime Numbers 41

3 Bit Operations 45
3.1 Shift Operations . 45

3.1.1 Logical shifts . 45
3.1.2 Use of shifts . 46
3.1.3 Arithmetic shifts . 46
3.1.4 Rotate shifts . 47
3.1.5 Simple application . 47

3.2 Boolean Bitwise Operations 48
3.2.1 The AND operation 48
3.2.2 The OR operation . 48
3.2.3 The XOR operation 49
3.2.4 The NOT operation 49
3.2.5 The TEST instruction 49
3.2.6 Uses of boolean operations 50

3.3 Manipulating bits in C . 51
3.3.1 The bitwise operators of C 51
3.3.2 Using bitwise operators in C 52

3.4 Counting Bits . 53
3.4.1 Method one . 53
3.4.2 Method two . 54
3.4.3 Method Three . 55

CONTENTS iii

4 Subprograms 59
4.1 Indirect Addressing . 59
4.2 Simple Subprogram Example 60
4.3 The Stack . 62
4.4 The CALL and RET Instructions 63
4.5 Calling Conventions . 64

4.5.1 Passing parameters on the stack 64
4.5.2 Local variables on the stack 69

4.6 Multi-Module Programs . 71
4.7 Interfacing Assembly with C 74

4.7.1 Saving registers . 75
4.7.2 Labels of functions . 76
4.7.3 Passing parameters . 76
4.7.4 Calculating addresses of local variables 76
4.7.5 Returning values . 77
4.7.6 Other calling conventions 77
4.7.7 Examples . 79
4.7.8 Calling C functions from assembly 82

4.8 Reentrant and Recursive Subprograms 83
4.8.1 Recursive subprograms 83
4.8.2 Review of C variable storage types 85

5 Arrays 89
5.1 Introduction . 89

5.1.1 Defining arrays . 89
5.1.2 Accessing elements of arrays 90
5.1.3 More advanced indirect addressing 92
5.1.4 Example . 93

5.2 Array/String Instructions . 97
5.2.1 Reading and writing memory 97
5.2.2 The REP instruction prefix 98
5.2.3 Comparison string instructions 99
5.2.4 The REPx instruction prefixes 100
5.2.5 Example . 100

6 Floating Point 107
6.1 Floating Point Representation 107

6.1.1 Non-integral binary numbers 107
6.1.2 IEEE floating point representation 109

6.2 Floating Point Arithmetic . 112
6.2.1 Addition . 112
6.2.2 Subtraction . 113
6.2.3 Multiplication and division 113

iv CONTENTS

6.2.4 Ramifications for programming 114
6.3 The Numeric Coprocessor . 114

6.3.1 Hardware . 114
6.3.2 Instructions . 115
6.3.3 Examples . 120
6.3.4 Quadratic formula . 120
6.3.5 Reading array from file 123
6.3.6 Finding primes . 125

7 Structures and C++ 133
7.1 Structures . 133

7.1.1 Introduction . 133
7.1.2 Memory alignment . 135
7.1.3 Using structures in assembly 135

7.2 Assembly and C++ . 136
7.2.1 Overloading and Name Mangling 136
7.2.2 References . 140
7.2.3 Inline functions . 140
7.2.4 Classes . 143
7.2.5 Inheritance and Polymorphism 149
7.2.6 Other C++ features 157

A 80x86 Instructions 159
A.1 Non-floating Point Instructions 159
A.2 Floating Point Instructions 165

Preface

Purpose

The purpose of this book is to give the reader a better understanding of
how computers really work at a lower level than in programming languages
like Pascal. By gaining a deeper understanding of how computers work, the
reader can often be much more productive developing software in higher level
languages such as C and C++. Learning to program in assembly language
is an excellent way to achieve this goal. Other PC assembly language books
still teach how to program the 8086 processor that the original PC used
in 1980! This book instead discusses how to program the 80386 and later
processors in protected mode (the mode that Windows runs in). There are
several reasons to do this:

1. It is easier to program in protected mode than in the 8086 real mode
that other books use.

2. All modern PC operating systems run in protected mode.

3. There is free software available that runs in this mode.

The lack of textbooks for protected mode PC assembly programming is the
main reason that the author wrote this book.

As alluded to above, this text makes use of Free/Open Source software:
namely, the NASM assembler and the DJGPP C/C++ compiler. Both of
these are available to download off the Internet. The text also discusses how
to use NASM assembly code under the Linux operating system and with
Borland’s and Microsoft’s C/C++ compilers under Windows.

Be aware that this text does not attempt to cover every aspect of assem-
bly programming. The author has tried to cover the most important topics
that all programmers should be acquainted with.

v

vi PREFACE

Acknowledgements

The author would like to thank the many programmers around the world
that have contributed to the Free/Open Source movement. All the programs
and even this book itself were produced using free software. Specifically, the
author would like to thank John S. Fine, Simon Tatham, Julian Hall and
others for developing the NASM assembler that all the examples in this book
are based on; DJ Delorie for developing the DJGPP C/C++ compiler used;
Donald Knuth and others for developing the TEX and LATEX 2ε typesetting
languages that were used to produce the book; Richard Stallman (founder of
the Free Software Foundation), Linus Torvalds (creator of the Linux kernel)
and others who produced the underlying software the author used to produce
this work.

Thanks to the following people for corrections:

• John S. Fine

• Marcelo Henrique Pinto de Almeida

• Sam Hopkins

• Nick D’Imperio

• Jeremiah Lawrence

Resources on the Internet

Author’s page http://www.drpaulcarter.com/
NASM http://nasm.2y.net/
DJGPP http://www.delorie.com/djgpp
USENET comp.lang.asm.x86

Feedback

The author welcomes any feedback on this work.

E-mail: pacman128@hotmail.com
WWW: http://www.drpaulcarter.com/

Chapter 1

Introduction

1.1 Number Systems

Memory in a computer consists of numbers. Computer memory does
not store these numbers in decimal (base 10). Because it greatly simplifies
the hardware, computers store all information in a binary (base 2) format.
First let’s review the decimal system.

1.1.1 Decimal

Base 10 numbers are composed of 10 possible digits (0-9). Each digit of
a number has a power of 10 associated with it based on its position in the
number. For example:

234 = 2× 102 + 3× 101 + 4× 100

1.1.2 Binary

Base 2 numbers are composed of 2 possible digits (0 and 1). Each digit
of a number has a power of 2 associated with it based on its position in the
number. (A single binary digit is called a bit.) For example:

110012 = 1× 24 + 1× 23 + 0× 22 + 0× 21 + 1× 20

= 16 + 8 + 1
= 25

This shows how binary may be converted to decimal. Table 1.1 shows
how the first few binary numbers are converted.

Figure 1.1 shows how individual binary digits (i.e., bits) are added.
Here’s an example:

1

2 CHAPTER 1. INTRODUCTION

Decimal Binary Decimal Binary
0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

Table 1.1: Decimal 0 to 15 in Binary

No previous carry Previous carry
0 0 1 1 0 0 1 1

+0 +1 +0 +1 +0 +1 +0 +1
0 1 1 0 1 0 0 1

c c c c

Figure 1.1: Binary addition (c stands for carry)

110112

+100012

1011002

Consider the following binary division:

11012 ÷ 102 = 1102 r 1

This shows that dividing by two in binary shifts all the bits to the right
by one position and moves the original rightmost bit into the remainder.
(Analogously, dividing by ten in decimal shifts all the decimal digits to the
right by one and moves the original rightmost digit into the remainder.)
This fact can be used to convert a decimal number to its equivalent binary
representation as Figure 1.2 shows. This method finds the rightmost digit
first, this digit is called the least significant bit (lsb). The leftmost digit is
called the most significant bit (msb). The basic unit of memory consists of
8 bits and is called a byte.

1.1.3 Hexadecimal

Hexadecimal numbers use base 16. Hexadecimal (or hex for short) can
be used as a shorthand for binary numbers. Hex has 16 possible digits. This

1.1. NUMBER SYSTEMS 3

Decimal Binary
25÷ 2 = 12 r 1 11001÷ 10 = 1100 r 1
12÷ 2 = 6 r 0 1100÷ 10 = 110 r 0
6÷ 2 = 3 r 0 110÷ 10 = 11 r 0
3÷ 2 = 1 r 1 11÷ 10 = 1 r 1
1÷ 2 = 0 r 1 1÷ 10 = 0 r 1

Figure 1.2: Decimal conversion

589÷ 16 = 36 r 13
36÷ 16 = 2 r 4
2÷ 16 = 0 r 2

Figure 1.3:

creates a problem since there are no symbols to use for these extra digits
after 9. By convention, letters are used for these extra digits. The 16 hex
digits are 0-9 then A, B, C, D, E and F. The digit A is equivalent to 10
in decimal, B is 11, etc. Each digit is a hex number has a power of 16
associated with it. Example:

2BD16 = 2× 162 + 11× 161 + 13× 160

= 512 + 176 + 13
= 701

To convert from decimal to hex, use the same idea that was used for binary
conversion except divide by 16. See Figure 1.3 for an example.

Thus, 589 = 24D16. The reason that hex is useful is that there is a
very simple way to convert between hex and binary. Binary numbers get
large and cumbersome quickly. Hex provides a much more compact way to
represent binary.

To convert a hex number to binary, simply convert each hex digit to a
4-bit binary number. For example, 24D16 is converted to 0010 0100 11012.
Note that the leading zero’s of the 4-bits are important! Converting from

4 CHAPTER 1. INTRODUCTION

word 2 bytes
double word 4 bytes
quad word 8 bytes
paragraph 16 bytes

Table 1.2: Units of Memory

binary to hex is just as easy. Just do the reverse conversion. Convert each
4-bit segments of the binary to hex. Remember to start from the right end,
not the left end of the binary number. Example:

110 0000 0101 1010 0111 11102

6 0 5 A 7 E16

A 4-bit number is called a nibble. Thus each hex digit corresponds to
a nibble. Two nibbles make a byte and so a byte can be represented by a
2-digit hex number. A byte’s value ranges from 0 to 11111111 in binary, 0
to FF in hex and 0 to 255 in decimal.

1.2 Computer Organization

1.2.1 Memory

The basic unit of memory is a byte. A computer with 32 Meg of RAM
can hold roughly 32 million bytes of information. Each byte in memory is
labeled by an unique number know as its address as Figure 1.4 shows.

Address 0 1 2 3 4 5 6 7
Memory 2A 45 B8 20 8F CD 12 2E

Figure 1.4: Memory Addresses

All data in memory is numeric. Characters are stored by using a char-
acter code. The PC uses the most common character code known as ASCII
(American Standard Code for Information Interchange). Often memory is
used in larger chunks than single bytes. Names have been given to these
larger sections of memory as Table 1.2 shows.

1.2.2 The CPU

The Central Processing Unit (CPU) is the hardware that directs the
execution of instructions. The instructions that CPU’s perform are generally

1.2. COMPUTER ORGANIZATION 5

very simple. Instructions may require the data they act on to be in special
storage locations in the CPU itself called registers. The CPU can access data
in registers much faster than data in RAM memory. However, the number
of registers in a CPU is limited, so the programmer must take care to keep
only currently used data in registers.

The instructions a type of CPU executes make up the CPU’s machine
language. Machine programs have a much more basic structure than higher-
level languages. Machine language instructions are encoded as raw numbers,
not in friendly text formats. A CPU must be able to decode an instruction’s
purpose very quickly to run efficiently. Machine language is designed with
this goal in mind, not to be easily deciphered by humans. Programs written
in other languages must be converted to the native machine language of
the CPU to run on the computer. A compiler is a program that translates
programs written in a programming language into the machine language of
a particular computer architecture. In general, every type of CPU has its
own unique machine language. This is one reason why programs written for
a Mac can not run on an IBM-type PC.

1.2.3 The 80x86 family of CPUs

IBM-type PC’s contain a CPU from Intel’s 80x86 family (or a clone of
one). The CPU’s in this family all have some common features including a
base machine language. However, the more recent members greatly enhance
the features.

8088,8086: These CPU’s from the programming standpoint are identical.
They were the CPU’s used in the earliest PC’s. They provide several
16-bit registers: AX, BX, CX, DX, SI, DI, BP, SP, CS, DS, SS, ES, IP,
FLAGS. They only support up to one megabyte of memory and only
operate in real mode. In this mode, a program may access any memory
address, even the memory of other programs! This makes debugging
and security very difficult! Also, program memory has to be divided
into segments. Each segment can not be larger than 64K.

80286: This CPU was used in AT class PC’s. It adds some new instructions
to the base machine language of the 8088/86. However, it’s main new
feature is 16-bit protected mode. In this mode, it can access up to 16
megabytes and protect programs from accessing each other’s memory.
However, programs are still divided into segments that could not be
bigger than 64K.

80386: This CPU greatly enhanced the 80286. First, it extends many of
the registers to hold 32-bits (EAX, EBX, ECX, EDX, ESI, EDI, EBP,
ESP, EIP) and adds two new 16-bit registers FS and GS. It also adds

6 CHAPTER 1. INTRODUCTION

AX
AH AL

Figure 1.5: The AX register

a new 32-bit protected mode. In this mode, it can access up to 4
gigabytes. Programs are again divided into segments, but now each
segment can also be up to 4 gigabytes in size!

80486/Pentium/Pentium Pro: These members of the 80x86 family add
very few new features. They mainly speed up the execution of the
instructions.

Pentium MMX: This processor adds the MMX (MultiMedia eXentions)
instructions to the Pentium. These instructions can speed up common
graphics operations.

Pentium II: This is the Pentium Pro processor with the MMX instructions
added. (The Pentium III is essentially just a faster Pentium II.)

1.2.4 8086 16-bit Registers

The original 8086 CPU provided four 16-bit general purpose registers:
AX, BX, CX and DX. Each of these registers could be decomposed into
two 8-bit registers. For example, the AX register could be decomposed into
the AH and AL registers as Figure 1.5 shows. The AH register contains
the upper (or high) 8 bits of AX and AL contains the lower 8 bits of AX.
Often AH and AL are used as independent one byte registers; however, it is
important to realize that they are not independent of AX. Changing AX’s
value will change AH and AL and vis versa. The general purpose registers
are used in many of the data movement and arithmetic instructions.

There are two 16-bit index registers: SI and DI. They are often used
as pointers, but can be used for many of the same purposes as the general
registers. However, they can not be decomposed into 8-bit registers.

The 16-bit BP and SP registers are used to point to data in the machine
language stack. These will be discussed later.

The 16-bit CS, DS, SS and ES registers are segment registers. They
denote what memory is used for different parts of a program. CS stands
for Code Segment, DS for Data Segment, SS for Stack Segment and ES for
Extra Segment. ES is used as a temporary segment register. The details of
these registers are in Sections 1.2.6 and 1.2.7.

The Instruction Pointer (IP) register is used with the CS register to
keep track of the address of the next instruction to be executed by the

1.2. COMPUTER ORGANIZATION 7

CPU. Normally, as an instruction is executed, IP is advanced to point to
the next instruction in memory.

The FLAGS register stores important information about the results of a
previous instruction. This results are stored as individual bits in the register.
For example, the Z bit is 1 if the result of the previous instruction was zero
or 0 if not zero. Not all instructions modify the bits in FLAGS, consult the
table in the appendix to see how individual instructions affect the FLAGS
register.

1.2.5 80386 32-bit registers

The 80386 and later processors have extended registers. For example,
the 16-bit AX register is extended to be 32-bits. To be backward compatible,
AX still refers to the 16-bit register and EAX is used to refer to the extended
32-bit register. AX is the lower 16-bits of EAX just as AL is the lower 8-
bits of AX (and EAX). There is no way to access the upper 16-bits of EAX
directly.

The segment registers are still 16-bit in the 80386. There are also two
new segment registers: FS and GS. Their names do not stand for anything.
They are extra temporary segment registers (like ES).

1.2.6 Real Mode

In real mode, memory is limited to only one megabyte (220 bytes). Valid So where did the infa-
mous DOS 640K limit
come from? The BIOS
required some of the 1M
for it’s code and for hard-
ware devices like the video
screen.

address range from (in hex) 00000 to FFFFF. These addresses require a
20-bit number. Obviously, a 20-bit number will not fit into any of the
8086’s 16-bit registers. Intel solved this problem, by using two 16-bit values
determine an address. The first 16-bit value is called the selector. Selector
values must be stored in segment registers. The second 16-bit value is called
the offset. The physical address referenced by a 32-bit selector:offset pair is
computed by the formula

16 ∗ selector + offset

Multiplying by 16 in hex is easy, just add a 0 to the right of the number.
For example, the physical addresses referenced by 047C:0048 is given by:

047C0
+0048
04808

In effect, the selector value is a paragraph number (see Table 1.2).
Real segmented addresses have disadvantages:

8 CHAPTER 1. INTRODUCTION

• A single selector value can only reference 64K of memory (the upper
limit of the 16-bit offset). What if a program has more than 64K of
code? A single value in CS can not be used for the entire execution
of the program. The program must be split up into sections (called
segments) less than 64K in size. When execution moves from one seg-
ment to another, the value of CS must be changed. Similar problems
occur with large amounts of data and the DS register. This can be
very awkward!

• Each byte in memory does not have a unique segmented address. The
physical address 04808 can be referenced by 047C:0048, 047D:0038,
047E:0028 or 047B:0058. This can complicate the comparison of seg-
mented addresses.

1.2.7 16-bit Protected Mode

In the 80286’s 16-bit protected mode, selector values are interpreted
completely differently than in real mode. In real mode, a selector value
is a paragraph number of physical memory. In protected mode, a selector
value is an index into a descriptor table. In both modes, programs are
divided into segments. In real mode, these segments are at fixed positions
in physical memory and the selector value denotes the paragraph number
of the beginning of the segment. In protected mode, the segments are not
at fixed positions in physical memory. In fact, they do not have to be in
memory at all!

Protected mode uses a technique called virtual memory. The basic idea
of a virtual memory system is to only keep the data and code in memory that
programs are currently using. Other data and code are stored temporarily
on disk until they are needed again. In 16-bit protected mode, segments are
moved between memory and disk as needed. When a segment is returned
to memory from disk, it is very likely that it will be put into a different area
of memory that it was in before being moved to disk. All of this is done
transparently by the operating system. The program does not have to be
written differently for virtual memory to work.

In protected mode, each segment is assigned an entry in a descriptor
table. This entry has all the information that the system needs to know
about the segment. This information includes: is it currently in memory;
if in memory, where is it; access permissions (e.g., read-only). The index
of the entry of the segment is the selector value that is stored in segment
registers.

One big disadvantage of 16-bit protected mode is that offsets are stillOne well-known PC
columnist called the 286
CPU “brain dead.”

16-bit quantities. As a consequence of this, segment sizes are still limited to
at most 64K. This makes the use of large arrays problematic!

1.2. COMPUTER ORGANIZATION 9

1.2.8 32-bit Protected Mode

The 80386 introduced 32-bit protected mode. There are two major dif-
ferences between 386 32-bit and 286 16-bit protected modes:

1. Offsets are expanded to be 32-bits. This allows an offset to range up
to 4 billion. Thus, segments can have sizes up to 4 gigabytes.

2. Segments can be divided into smaller 4K-sized units called pages. The
virtual memory system works with pages now instead of segments.
This means that only parts of segment may be in memory at any one
time. In 286 16-bit mode, either the entire segment is in memory or
none of it is. This is not practical with the larger segments that 32-bit
mode allows.

In Windows 3.x, standard mode referred to 286 16-bit protected mode
and enhanced mode referred to 32-bit mode. Windows 9X, Windows NT,
OS/2 and Linux all run in paged 32-bit protected mode.

1.2.9 Interrupts

Sometimes the ordinary flow of a program must be interrupted to process
events that require prompt response. The hardware of a computer provides
a mechanism called interrupts to handle these events. For example, when
a mouse is moved, the mouse hardware interrupts the current program to
handle the mouse movement (to move the mouse cursor, etc.) Interrupts
cause control to be passed to an interrupt handler. Interrupt handlers are
routines that process the interrupt. Each type of interrupt is assigned an
integer number. At the beginning of physical memory, a table of inter-
rupt vectors resides that contain the segmented addresses of the interrupt
handlers. The number of interrupt is essentially an index into this table.

External interrupts are raised from outside the CPU. (The mouse is an
example of this type.) Many I/O devices raise interrupts (e.g., keyboard,
timer, disk drives, CD-ROM and sound cards). Internal interrupts are raised
from within the CPU, either from an error or the interrupt instruction. Error
interrupts are also called traps. Interrupts generated from the interrupt
instruction are called software interrupts. DOS uses these types of interrupts
to implement its API (Application Programming Interface). More modern
operating systems (such as Windows and UNIX) use a C based interface. 1

Many interrupt handlers return control back to the interrupted program
when they finish. They restore all the registers to the same values they had
before the interrupt occurred. Thus, the interrupted program does runs as
if nothing happened (except that it lost some CPU cycles). Traps generally
do not return. Often they abort the program.

1However, they may use a lower level interface at the kernel level.

10 CHAPTER 1. INTRODUCTION

1.3 Assembly Language

1.3.1 Machine language

Every type of CPU understands its own machine language. Instructions
in machine language are numbers stored as bytes in memory. Each instruc-
tion has its own unique numeric code called its operation code or opcode
for short. The 80x86 processor’s instructions vary in size. The opcode is
always at the beginning of the instruction. Many instructions also include
data (e.g., constants or addresses) used by the instruction.

Machine language is very difficult to program in directly. Deciphering
the meanings of the numerical-coded instructions is tedious for humans.
For example, the instruction that says to add the EAX and EBX registers
together and store the result back into EAX is encoded by the following hex
codes:

03 C3

This is hardly obvious. Fortunately, a program called an assembler can do
this tedious work for the programmer.

1.3.2 Assembly language

An assembly language program is stored as text (just as a higher level
language program). Each assembly instruction represents exactly one ma-
chine instruction. For example, the addition instruction described above
would be represented in assembly language as:

add eax, ebx

Here the meaning of the instruction is much clearer than in machine code.
The word add is a mnemonic for the addition instruction. The general form
of an assembly instruction is:

mnemonic operand(s)

An assembler is a program that reads a text file with assembly instruc-
tions and converts the assembly into machine code. Compilers are programs
that do similar conversions for high-level programming languages. An assem-
bler is much simpler than a compiler. Every assembly language statementIt took several years for

computer scientists to fig-
ure out how to even write
a compiler!

directly represents a single machine instruction. High-level language state-
ments are much more complex and may require many machine instructions.

Another important difference between assembly and high-level languages
is that since every different type of CPU has its own machine language, it
also has its own assembly language. Porting assembly programs between

1.3. ASSEMBLY LANGUAGE 11

different computer architectures is much more difficult than in a high-level
language.

This book’s examples uses the Netwide Assembler or NASM for short. It
is freely available off the Internet (URL: http://www.web-sites.co.uk/nasm/).
More common assemblers are Microsoft’s Assembler (MASM) or Borland’s
Assembler (TASM). There are some differences in the assembly syntax for
MASM/TASM and NASM.

1.3.3 Instruction operands

Machine code instructions have varying number and type of operands;
however, in general, each instruction itself will have a fixed number of oper-
ands (0 to 3). Operands can have the following types:

register: These operands refer directly to the contents of the CPU’s regis-
ters.

memory: These refer to data in memory. The address of the data may be
a constant hardcoded into the instruction or may be computed using
values of registers. Address are always offsets from the beginning of a
segment.

immediate: These are fixed values that are listed in the instruction itself.
They are stored in the instruction itself (in the code segment), not in
the data segment.

implied: There operands are not explicitly shown. For example, the in-
crement instruction adds one to a register or memory. The one is
implied.

1.3.4 Basic instructions

The most basic instruction is the MOV instruction. It moves data from one
location to another (like the assignment operator in a high-level language).
It takes two operands:

mov dest, src

The data specified by src is copied to dest . One restriction is that both
operands may not be memory operands. This points out another quirk of
assembly. There are often somewhat arbitrary rules about how the various
instructions are used. The operands must also be the same size. The value
of AX can not be stored into BL.

Here is an example (semicolons start a comment):

12 CHAPTER 1. INTRODUCTION

mov eax, 3 ; store 3 into EAX register (3 is immediate operand)
mov bx, ax ; store the value of AX into the BX register

The ADD instruction is used to add integers.

add eax, 4 ; eax = eax + 4
add al, ah ; al = al + ah

The SUB instruction subtracts integers.

sub bx, 10 ; bx = bx - 10
sub ebx, edi ; ebx = ebx - edi

The INC and DEC instructions increment or decrement values by one.
Since the one is an implicit operand, the machine code for INC and DEC is
smaller than for the equivalent ADD and SUB instructions.

inc ecx ; ecx++
dec dl ; dl--

1.3.5 Directives

A directive is an artifact of the assembler not the CPU. They are gen-
erally used to either instruct the assembler to do something or inform the
assembler of something. They are not translated into machine code. Com-
mon uses of directives are:

• define constants

• define memory to store data into

• group memory into segments

• conditionally include source code

• include other files

NASM code passes through a preprocessor just like C. It has many of
the same preprocessor commands as C. However, NASM’s preprocessor di-
rectives start with a % instead of a # as in C.

The equ directive

The equ directive can be used to define a symbol. Symbols are named
constants that can be used in the assembly program. The format is:

symbol equ value

Symbol values can not be redefined later.

1.3. ASSEMBLY LANGUAGE 13

Unit Letter
byte B
word W

double word D
quad word Q
ten bytes T

Table 1.3: Letters for RESX and DX Directives

The %define directive

This directive is similar to C’s #define directive. It is most commonly
used to define constant macros just as in C.

%define SIZE 100
mov eax, SIZE

The above code defines a macro named SIZE and uses in a MOV instruction.
Macros are more flexible that symbols in two ways. Macros can be redefined
and can be more than simple constant numbers.

Data directives

Data directives are used in data segments to define room for memory.
There are two ways memory can be reserved. The first way only defines
room for data; the second way defines room and an initial value. The first
method uses one of the RESX directives. The X is replaced with a letter that
determines the size of the object (or objects) that will be stored. Table 1.3
shows the possible values.

The second method (that defines an initial value, too) uses one of the
DX directives. The X letters are the same as the RESX directives.

It is very common to mark memory locations with labels. Labels allow
one to easily refer to memory locations in code. Below are several examples:

L1 db 0 ; byte labeled L1 with initial value 0
L2 dw 1000 ; word labeled L2 with initial value 1000
L3 db 110101b ; byte initialized to binary 110101 (53 in decimal)
L4 db 12h ; byte initialized to hex 12 (18 in decimal)
L5 db 17o ; byte initialized to octal 17 (15 in decimal)
L6 dd 1A92h ; double word initialized to hex 1A92
L7 resb 1 ; 1 uninitialized byte
L8 db "A" ; byte initialized to ASCII code for A (65)

Double quotes and single quotes are treated the same. Consecutive data
definitions are stored sequentially in memory. That is, the word L2 is stored
immediately after L1 in memory. Sequences of memory may also be defined.

14 CHAPTER 1. INTRODUCTION

L9 db 0, 1, 2, 3 ; defines 4 bytes
L10 db "w", "o", "r", ’d’, 0 ; defines a C string = "word"
L11 db ’word’, 0 ; same as L10

For large sequences, NASM’s TIMES directive is often useful. This direc-
tive repeats its operand a specified number of times. For example,

L12 times 100 db 0 ; equivalent to 100 (db 0)’s
L13 resw 100 ; reserves room for 100 words

Remember that labels can be used to refer to data in code. There are
two ways that a label can be used. If a plain label is used, it is interpreted
as the address (or offset) of the data. If the label is placed inside square
brackets ([]), it is interpreted as the data at the address. In other words,
one should think of a label as a pointer to the data and the square brackets
dereferences the pointer just as the asterisk does in C. (MASM/TASM follow
a different convention.) In 32-bit mode, addresses are 32-bit. Here is some
example code:

1 mov al, [L1] ; copy byte at L1 into AL
2 mov eax, L1 ; EAX = address of byte at L1
3 mov [L1], ah ; copy AH into byte at L1
4 mov eax, [L6] ; copy double word at L6 into EAX
5 add eax, [L6] ; EAX = EAX + double word at L6
6 add [L6], eax ; double word at L6 += EAX
7 mov al, [L6] ; copy first byte of double word at L6 into AL

Line 7 of the examples shows an important property of NASM. The assem-
bler does not keep track of the type of data that a label refers to. It is up to
the programmer to make sure that he (or she) uses a label correctly. Later
it will be common to store addresses of data in registers and use the register
like a pointer variable in C. Again, no checking is made that a pointer is
used correctly. In this way, assembly is much more error prone than even C.

Consider the following instruction:

mov [L6], 1 ; store a 1 at L6

This statement produces an operation size not specified error. Why?
Because the assembler does not know whether to store the 1 as a byte, word
or double word. To fix this, add a size specifier:

mov dword [L6], 1 ; store a 1 at L6

This tells the assembler to store an 1 at the double word that starts at L6.
Other size specifiers are: BYTE, WORD, QWORD and TWORD.

1.3. ASSEMBLY LANGUAGE 15

print int prints out to the screen the value of the integer stored
in EAX

print char prints out to the screen the value of the character
with the ASCII value stored in AL

print string prints out to the screen the contents of the string at
the address stored in EAX. The string must be a C-
type string (i.e., nul terminated).

print nl prints out to the screen a new line character.
read int reads an integer from the keyboard and stores it into

the EAX register.
read char reads a single character from the keyboard and stores

its ASCII code into the EAX register.

Table 1.4: Assembly I/O Routines

1.3.6 Input and Output

Input and output are very system dependent activities. It involves in-
terfacing with the system’s hardware. High level languages, like C, provide
standard libraries of routines that provide a simple, uniform programming
interface for I/O. Assembly languages provide no standard libraries. They
must either directly access hardware (which is a privileged operation in pro-
tected mode) or use whatever low level routines that the operating system
provides.

It is very common for assembly routines to be interfaced with C. One
advantage of this is that the assembly code can use the standard C library
I/O routines. However, one must know the rules for passing information
between routines that C uses. These rules are too complicated to cover
here. (They are covered later!) To simplify I/O, the author has developed
his own routines that hide the complex C rules and provide a much more
simple interface. Table 1.4 describes the routines provided. All of the rou-
tines preserve the value of all registers, except for the read routines. These
routines do modify the value of the EAX register. To use these routines, one
must include a file with information that the assembler needs to use them.
To include a file in NASM, use the %include preprocessor directive. The
following line includes the file needed by the author’s I/O routines:

%include "asm_io.inc"

To use one of the print routines, one loads EAX with the correct value
and uses a CALL instruction to invoke it. The CALL instruction is equivalent
to a function call in a high level language. It jumps execution to another
section of code, but returns back to its origin after the routine is over.

16 CHAPTER 1. INTRODUCTION

The example program below shows several examples of calls to these I/O
routines.

1.3.7 Debugging

The author’s library also contains some useful routines for debugging
programs. These debugging routines display information about the state of
the computer without modifying the state. These routines are really macros
that preserve the current state of the CPU and then make a subroutine call.
The macros are defined in the asm io.inc file discussed above. Macros
are used like ordinary instructions. Operands of macros are separated by
commas.

There are four debugging routines named dump regs, dump mem, dump stack
and dump math; they display the values of registers, memory, stack and the
math coprocessor, respectively.

dump regs This macro prints out the values of the registers (in hexadec-
imal) of the computer to stdout (i.e., the screen). It takes a single
integer argument that is printed out as well. This can be used to
distinguish the output of different dump regs commands.

dump mem This macro prints out the values of a region of memory (in
hexadecimal) and also as ASCII characters. It takes three comma
delimited arguments. The first is an integer that is used to label
the output (just as dump regs argument). The second argument is
the address to display. (This can be a label.) The last argument is
the number of 16-byte paragraphs to display after the address. The
memory displayed will start on the first paragraph boundary before
the requested address.

dump stack This macro prints out the values on the CPU stack. (The
stack will be covered in Chapter 4.) The stack is organized as double
words and this routine displays them this way. It takes three comma
delimited arguments. The first is an integer label (like dump regs).
The second is the number of double words to display below the address
that the EBP register holds and the third argument is the number of
double words to display above the address in EBP.

dump math This macro prints out the values of the registers of the math
coprocessor. It takes a single integer argument that is used to label
the output just as the argument of dump regs does.

1.4. CREATING A PROGRAM 17

1 int main()
2 {
3 int ret status ;
4 ret status = asm main();
5 return ret status ;
6 }

Figure 1.6: driver.c code

1.4 Creating a Program

Today, it is unusual to create a stand alone program written completely
in assembly language. Assembly is usually used to key certain critical rou-
tines. Why? It is much easier to program in a higher level language than in
assembly. Also, using assembly makes a program very hard to port to other
platforms. In fact, it is rare to use assembly at all.

So, why should anyone learn assembly at all?

1. Sometimes code written in assembly can be faster and smaller than
compiler generated code.

2. Assembly allows access to direct hardware features of the system that
might be difficult or impossible to use from a higher level language.

3. Learning to program in assembly helps one gain a deeper understand-
ing of how computers work.

4. Learning to program in assembly helps one understand better how
compilers and high level languages like C work.

These last two points demonstrate that learning assembly can be useful
even if one never programs in it later. In fact, the author rarely programs
in assembly, but he uses the ideas he learned from it everyday.

1.4.1 First program

The early programs in this text will all start from the simple C driver
program in Figure 1.6. It simply calls another function named asm main.
This is really a routine that will be written in assembly. There are several
advantages in using the C driver routine. First, this lets the C system set
up the program to run correctly in protected mode. All the segments and
their corresponding segment registers will be initialized by C. The assembly
code need not worry about any of this. Secondly, the C library will also be
available to be used by the assembly code. The author’s I/O routines take

18 CHAPTER 1. INTRODUCTION

advantage of this. They use C’s I/O functions (printf, etc.). The following
shows a simple assembly program.

first.asm
1 ; file: first.asm
2 ; First assembly program. This program asks for two integers as
3 ; input and prints out their sum.
4 ;
5 ; To create executable using djgpp:
6 ; nasm -f coff first.asm
7 ; gcc -o first first.o driver.c asm_io.o
8

9 %include "asm_io.inc"
10 ;
11 ; initialized data is put in the .data segment
12 ;
13 segment .data
14 ;
15 ; These labels refer to strings used for output
16 ;
17 prompt1 db "Enter a number: ", 0 ; don’t forget nul terminator
18 prompt2 db "Enter another number: ", 0
19 outmsg1 db "You entered ", 0
20 outmsg2 db " and ", 0
21 outmsg3 db ", the sum of these is ", 0
22

23 ;
24 ; uninitialized data is put in the .bss segment
25 ;
26 segment .bss
27 ;
28 ; These labels refer to double words used to store the inputs
29 ;
30 input1 resd 1
31 input2 resd 1
32

33 ;
34 ; code is put in the .text segment
35 ;
36 segment .text
37 global _asm_main
38 _asm_main:
39 enter 0,0 ; setup routine

1.4. CREATING A PROGRAM 19

40 pusha
41

42 mov eax, prompt1 ; print out prompt
43 call print_string
44

45 call read_int ; read integer
46 mov [input1], eax ; store into input1
47

48 mov eax, prompt2 ; print out prompt
49 call print_string
50

51 call read_int ; read integer
52 mov [input2], eax ; store into input2
53

54 mov eax, [input1] ; eax = dword at input1
55 add eax, [input2] ; eax += dword at input2
56 mov ebx, eax ; ebx = eax
57

58 dump_regs 1 ; print out register values
59 dump_mem 2, outmsg1, 1 ; print out memory
60 ;
61 ; next print out result message as series of steps
62 ;
63 mov eax, outmsg1
64 call print_string ; print out first message
65 mov eax, [input1]
66 call print_int ; print out input1
67 mov eax, outmsg2
68 call print_string ; print out second message
69 mov eax, [input2]
70 call print_int ; print out input2
71 mov eax, outmsg3
72 call print_string ; print out third message
73 mov eax, ebx
74 call print_int ; print out sum (ebx)
75 call print_nl ; print new-line
76

77 popa
78 mov eax, 0 ; return back to C
79 leave
80 ret first.asm

20 CHAPTER 1. INTRODUCTION

Line 13 of the program defines a section of the program that specifies
memory to be stored in the data segment (whose name is .data). Only
initialized data should be defined in this segment. On lines 17 to 21, several
strings are declared. They will be printed with the C library and so must
be terminated with a nul character (ASCII code 0). Remember that is a
big difference between 0 and ’0’.

Uninitialized data should be declared in the bss segment (named .bss
on line 26). This segment gets its name from an early UNIX-based assem-
bler operator that meant “block started by symbol.” There is also a stack
segment too. It will be discussed later.

The code segment is named .text historically. It is where instructions
are placed. Note that the code label for the main routine (line 38) has an
underscore prefix. This is part of the C calling convention. This conven-
tion specifies the rules C uses when compiling code. It is very important
to know this convention when interfacing C and assembly. Later the en-
tire convention will be presented; however, for now, one only needs to know
that all C symbols (i.e., functions and global variables) have a underscore
prefix appended to them by the C compiler. (This rule is specifically for
DOS/Windows, the Linux C compiler does not prepend anything to C sym-
bol names.)

The global directive on line 37 tells the assembler to make the asm main
label global. Unlike in C, labels have internal scope by default. This means
that only code in the same module can use the label. The global directive
gives the specified label (or labels) external scope. This type of label can be
accessed by any module in the program. The asm io module declares the
print int, et.al. labels to be global. This is why one can use them in the
first.asm module.

1.4.2 Compiler dependencies

The assembly code above is specific to the free GNU2-based DJGPP
C/C++ compiler.3 This compiler can be freely downloaded from the Inter-
net. It requires a 386-based PC or better and runs under DOS, Windows
95/98 or NT. This compiler uses object files in the COFF (Common Object
File Format) format. To assembly to this format use the -f coff switch
with nasm (as shown in the comments of the above code). The extension of
the resulting object file will be o.

The Linux C compiler is a GNU compiler also. To convert the code
above to run under Linux, simply remove the underscore prefixes in lines 38
and 39. Linux uses the ELF (Executable and Linkable Format) format for

2GNU is a project of the Free Software Foundation (http://www.fsf.org)
3http://www.delorie.com/djgpp

1.4. CREATING A PROGRAM 21

object files. Use the -f elf switch for Linux. It also produces an object
with an o extension.

Borland C/C++ is another popular compiler. It uses the Microsoft
OMF format for object files. Use the -f obj switch for Borland compilers.
The extension of the object file will be obj. The OMF format uses differ-
ent segment directives than the other object formats. The data segment
(line 13) must be changed to:

segment DATA public align=4 class=DATA use32

The bss segment (line 26) must be changed to:

segment BSS public align=4 class=BSS use32

The text segment (line 36) must be changed to:

segment TEXT public align=1 class=CODE use32

In addition a new line should be added before line 36:

group DGROUP BSS DATA

The Microsoft C/C++ can use either the OMF format or the Win32
format for object files. (If given a OMF format, it converts the information
to Win32 format internally.) Win32 format allows segments to be defined
just as for DJGPP and Linux. Use the -f win32 switch to output in this
mode. The extension of the object file will be obj.

1.4.3 Assembling the code

The first step is to assembly the code. From the command line, type:

nasm -f object-format first.asm

where object-format is either coff , elf , obj or win32 depending on what C
compiler will be used. (Remember that the source file must be changed for
both Linux and Borland as well.)

1.4.4 Compiling the C code

Compile the driver.c file using a C compiler. For DJGPP, use:

gcc -c driver.c

The -c switch means to just compile, do not attempt to link yet. This same
switch works on Linux, Borland and Microsoft compilers as well.

22 CHAPTER 1. INTRODUCTION

1.4.5 Linking the object files

Linking is the process of combining the machine code and data in object
files and library files together to create an executable file. As will be shown
below, this process is complicated.

C code requires the standard C library and special startup code to run.
It is much easiler to let the C compiler call the linker with the correct
parameters, than to try to call the linker directly. For example, to link the
code for the first program using DJGPP, use:

gcc -o first driver.o first.o asm io.o

This creates an executable called first.exe (or just first under Linux).
With Borland, one would use:

bcc32 first.obj driver.obj asm io.obj

Borland uses the name of the first file listed to determine the executable
name. So in the above case, the program would be named first.exe.

It is possible to combine the compiling and linking step. For example,

gcc -o first driver.c first.o asm io.o

Now gcc will compile driver.c and then link.

1.4.6 Understanding an assembly listing file

The -l listing-file switch can be used to tell nasm to create a listing
file of a given name. This file shows how the code was assembled. Here is
how lines 17 and 18 (in the data segment) appear in the listing file. (The
line numbers are in the listing file; however notice that the line numbers in
the source file may not be the same as the line numbers in the listing file.)

48 00000000 456E7465722061206E- prompt1 db "Enter a number: ", 0
49 00000009 756D6265723A2000
50 00000011 456E74657220616E6F- prompt2 db "Enter another number: ", 0
51 0000001A 74686572206E756D62-
52 00000023 65723A2000

The first column in each line is the line number and the second is the offset
(in hex) of the data in the segment. The third column shows the raw hex
values that will be stored. In this case the hex data correspond to ASCII
codes. Finally, the text from the source file is displayed on the line. The
offsets listed in the second column are very likely not the true offsets that
the data will be placed at in the complete program. Each module may define
its own labels in the data segment (and the other segments, too). In the link

1.4. CREATING A PROGRAM 23

step (see section 1.4.5), all these data segment label definitions are combined
to form one data segment. The new final offsets are then computed by the
linker.

Here is a small section (lines 54 to 56 of the source file) of the text
segment in the listing file:

94 0000002C A1[00000000] mov eax, [input1]
95 00000031 0305[04000000] add eax, [input2]
96 00000037 89C3 mov ebx, eax

The third column shows the machine code generated by the assembly. Often
the complete code for an instruction can not be computed yet. For example,
in line 94 the offset (or address) of input1 is not known until the code is
linked. The assembler can compute the op-code for the mov instruction
(which from the listing is A1), but it writes the offset in square brackets
because the exact value can not be computed yet. In this case, a temporary
offset of 0 is used because input1 is at the beginning of the part of the bss
segment defined in this file. Remember this does not mean that it will be
at the beginning of the final bss segment of the program. When the code
is linked, the linker will insert the correct offset into the position. Other
instructions, like line 96, do not reference any labels. Here the assembler
can compute the complete machine code.

If one looks closely at line 95, something seems very strange about the
offset in the square brackets of the machine code. The input2 label is
at offset 4 (as defined in this file); however, the offset that appears is not
00000004, but 04000000. Why? Different processors store multibyte integers
in different orders in memory. There are two popular methods of storing
integers: big endian and little endian. Big endian is the method that seems
the most natural. The biggest (i.e., most significant) byte is stored first, then
the next biggest, etc. For example, the dword 00000004 would be stored as
the four bytes 00 00 00 04. IBM mainframes, most RISC processors and
Motorola processors all use this big endian method. However, Intel-based
processors use the little endian method! Here the least significant byte
is stored first. So, 00000004 is stored in memory as 04 00 00 00. This
format is hardwired into the CPU and can not be changed (actually, Intel
is working on a new 64-bit processor for which the format can be specified.)
Normally, the programmer does not need to worry about which format is
used. However, there are circumstances where it is important.

1. When binary data is transfered between different computers (either
from files or through a network).

2. When binary data is written out to memory as a multibyte integer
and then read back as individual bytes or vis versa.

24 CHAPTER 1. INTRODUCTION

skel.asm
1 %include "asm_io.inc"
2 segment .data
3 ;
4 ; initialized data is put in the data segment here
5 ;
6

7 segment .bss
8 ;
9 ; uninitialized data is put in the bss segment

10 ;
11

12 segment .text
13 global _asm_main
14 _asm_main:
15 enter 0,0 ; setup routine
16 pusha
17

18 ;
19 ; code is put in the text segment. Do not modify the code before
20 ; or after this comment.
21 ;
22

23 popa
24 mov eax, 0 ; return back to C
25 leave
26 ret skel.asm

Figure 1.7: Skeleton Program

1.5 Skeleton File

Figure 1.7 a skeleton file that can be used as a starting point for writing
assembly programs.

Chapter 2

Basic Assembly Language

2.1 Working with Integers

2.1.1 Integer representation

Integers come in two flavors: unsigned and signed. Unsigned integers
(which are non-negative) are represented in a very straightforward binary
manner. The number 200 as an one byte unsigned integer would be repre-
sented as by 11001000 (or C8 in hex).

Signed integers (which may be positive or negative) are represented in a
more complicated ways. For example, consider −56. +56 as a byte would be
represented by 00111000. On paper, one could represent −56 as −111000,
but how would this be represented in a byte in the computer’s memory. How
would the minus sign be stored?

There are three general techniques that have been used to represent
signed integers in computer memory. All of these methods use the most
significant bit of the integer as a sign bit. This bit is 0 if the number is
positive and 1 if negative.

Signed magnitude

The first method is the simplest and is called signed magnitude. It rep-
resents the integer as two parts. The first part is the sign bit and the second
is the magnitude of the integer. So 56 would be represented as the byte
00111000 (the sign bit is underlined) and −56 would be 10111000. The
largest byte value would be 01111111 or +127 and the smallest byte value
would be 11111111 or −127. To negate a value, the sign bit is reversed.
This method is straightforward, but it does have its drawbacks. First, there
are two possible values of zero, +0 (00000000) and −0 (10000000). Since
zero is neither positive nor negative, both of these representations should act
the same. This complicates the logic of arithmetic for the CPU. Secondly,

25

26 CHAPTER 2. BASIC ASSEMBLY LANGUAGE

general arithmetic is also complicated. If 10 is added to −56, this must be
recast as 10 subtracted by 56. Again, this complicates the logic of the CPU.

One’s complement

The second method is known as one’s complement representation. The
one’s complement of a number is found by reversing each bit in the number.
(Another way to look at it is that the new bit value is 1− oldbitvalue.) For
example, the one’s complement of 00111000 (+56) is 11000111. In one’s com-
plement notation, computing the one’s complement is equivalent to nega-
tion. Thus, 11000111 is the representation for −56. Note that the sign bit
was automatically changed by one’s complement and that as one would ex-
pect taking the one’s complement twice yields the original number. As for
the first method, there are two representations of zero: 00000000 (+0) and
11111111 (−0). Arithmetic with one’s complement numbers is complicated.

There is a handy trick to finding the one’s complement of a number in
hexadecimal without converting it to binary. The trick is to subtract the hex
digit from F (or 15 in decimal). This method assumes that the number of
bits in the number is a multiple of 4. Here is an example: +56 is represented
by 38 in hex. To find the one’s complement, subtract each digit from F to
get C7 in hex. This agrees with the result above.

Two’s complement

The first two methods described were used on early computers. Modern
computers use a third method called two’s complement representation. The
two’s complement of a number is found by the following two steps:

1. Find the one’s complement of the number

2. Add one to the result of step 1

Here’s an example using 00111000 (56). First the one’s complement is com-
puted: 11000111. Then one is added:

11000111
+ 1

11001000

In two complement’s notation, computing the two’s complement is equiv-
alent to negating a number. Thus, 11001000 is the two’s complement rep-
resentation of −56. Two negations should reproduce the original number.
Surprising two’s complement does meet this requirement. Take the two’s

2.1. WORKING WITH INTEGERS 27

Number Hex Representation
0 00
1 01

127 7F
-128 80
-127 81
-2 FE
-1 FF

Table 2.1: Two’s Complement Representation

complement of 11001000 by adding one to the one’s complement.

00110111
+ 1

00111000

When performing the addition in the two’s complement operation, the
addition of the leftmost bit may produce a carry. This carry is not used.
Remember that all data on the computer is of some fixed size (in terms of
number of bits). Adding two bytes always produces a byte as a result (just
as adding two words produces a word, etc.) This property is important for
two’s complement notation. For example, consider zero as a one byte two’s
complement number (00000000). Computing its two complement produces
the sum:

11111111
+ 1
c 00000000

where c represents a carry. (Later it will be shown how to detect this carry,
but it is not stored in the result.) Thus, in two’s complement notation there
is only one zero. This makes two’s complement arithmetic simpler that the
previous methods.

Using two’s complement notation, a signed byte can be used to represent
the numbers −128 to +127. Table 2.1 shows some selected values. If 16
bits are used, the signed numbers −32, 768 to +32, 767 can be represented.
+32, 767 is represented by 7FFF, −32, 768 by 8000, -128 as FF80 and -1 as
FFFF. 32 bit two’s complement numbers range from −2 billion to +2 billion
approximately.

The CPU has no idea what a particular byte (or word or double word) is
supposed to represent. Assembly does not have the idea of types that a high
level language has. How data is interpreted depends on what instruction is
used on the data. Whether the hex value FF is considered to represent a
signed −1 or a unsigned +255 depends on the programmer. The C language

28 CHAPTER 2. BASIC ASSEMBLY LANGUAGE

defines signed and unsigned integer types. This allows a C compiler to
determine the correct instructions to use with the data.

2.1.2 Sign extension

In assembly, all data has a specified size. It is not uncommon to need
to change the size of data to use it with other data. Decreasing size is the
easiest.

Decreasing size of data

To decrease the size of data, simply remove the more significant bits of
the data. Here’s a trivial example:

mov ax, 0034h ; ax = 52 (stored in 16 bits)
mov cl, al ; cl = lower 8-bits of ax

Of course, if the number can not be represented correctly in the smaller
size, decreasing the size does not work. For example, if AX were 0134h (or
308 in decimal) then the above code would still set CL to 34h. This method
works with both signed and unsigned numbers. Consider signed numbers,
if AX was FFFFh (−1 as a word), then CL would be FFh (−1 as a byte).
However, note that this is not correct if the value in AX was unsigned!

The rule for unsigned numbers is that all the bits being removed must
be 0 for the conversion to be correct. The rule for signed numbers is that
the bits being removed must be either all 1’s or all 0’s. In addition, the first
bit not being removed must have the same value as the removed bits. This
bit will be the new sign bit of the smaller value. It is important that it be
same as the original sign bit!

Increasing size of data

Increasing the size of data is more complicated than decreasing. Consider
the hex byte FF. If it is extended to a word, what value should the word
have? It depends on how FF is interpreted. If FF is a unsigned byte (255
in decimal), then the word should be 00FF; however, if it is a signed byte
(−1 in decimal), then the word should be FFFF.

In general, to extend an unsigned number, one makes all the new bits
of the expanded number 0. Thus, FF becomes 00FF. However, to extend
a signed number, one must extend the sign bit. This means that the new
bits become copies of the sign bit. Since the sign bit of FF is 1, the new
bits must also be all ones, to produce FFFF. If the signed number 5A (90
in decimal) was extended, the result would be 005A.

2.1. WORKING WITH INTEGERS 29

There are several instructions that the 80386 provides for extension of
numbers. Remember that the computer does not know whether a number is
signed or unsigned. It is up to the programmer to use the correct instruction.

For unsigned numbers, one can simply put zeros in the upper bits using
a MOV instruction. For example, to extend the byte in AL to an unsigned
word in AX:

mov ah, 0 ; zero out upper 8-bits

However, it is not possible to use a MOV instruction to convert the unsigned
word in AX to an unsigned double word in EAX. Why not? There is no way
to specify the upper 16 bits of EAX in a MOV. The 80386 solves this problem
by providing a new instruction MOVZX. This instruction has two operands.
The destination (first operand) must be a 16 or 32 bit register. The source
(second operand) may be an 8 or 16 bit register or a byte or word of memory.
The other restriction is that the destination must be larger than than the
source. (Most instructions require the source and destination to be the same
size.) Here are some examples:

movzx eax, ax ; extends ax into eax
movzx eax, al ; extends al into eax
movzx ax, al ; extends al into ax
movzx ebx, ax ; extends ax into ebx

For signed numbers, there is no easy way to use the MOV instruction for
any case. The 8086 provided several instructions to extend signed numbers.
The CBW (Convert Byte to Word) instruction sign extends the AL register
into AX. The operands are implicit. The CWD (Convert Word to Double
word) instruction sign extends AX into DX:AX. The notation DX:AX means
to think of the DX and AX registers as one 32 bit register with the upper
16 bits in DX and the lower bits in AX. (Remember that the 8086 did not
have any 32 bit registers!) The 80386 added several new instructions. The
CWDE (Convert Word to Double word Extended) instruction sign extends
AX into EAX. The CDQ (Convert Double word to Quad word) instruction
sign extends EAX into EDX:EAX (64 bits!). Finally, the MOVSX instruction
works like MOVZX except it uses the rules for signed numbers.

Application to C programming

Extending of unsigned and signed integers also occurs in C. Variables in ANSI C does not define
whether the char type is
signed or not, it is up to
each individual compiler to
decide this. That is why
the type is explicitly de-
fined in Figure 2.1.

C may be declared as either signed or unsigned (int is signed). Consider
the code in Figure 2.1. In line 3, the variable a is extended using the rules
for unsigned values (using MOVZX), but in line 4, the signed rules are used
for b (using MOVSX).

30 CHAPTER 2. BASIC ASSEMBLY LANGUAGE

1 unsigned char uchar = 0xFF;
2 signed char schar = 0xFF;
3 int a = (int) uchar ; /∗ a = 255 (0x000000FF) ∗/
4 int b = (int) schar ; /∗ a = −1 (0xFFFFFFFF) ∗/

Figure 2.1:

char ch;
while((ch = fgetc(fp)) != EOF) {

/∗ do something with ch ∗/
}

Figure 2.2:

There is a common C programming bug that directly relates to this
subject. Consider the code in Figure 2.2. The prototype of fgetc()is:

int fgetc(FILE *);

One might question why does the function return back an int since it reads
characters? The reason is that it normally does return back an char (ex-
tended to an int value using zero extension). However, there is one value
that it may return that is not a character, EOF. This is a macro that is
usually defined as −1. Thus, fgetc() either returns back a char extended
to an int value (which looks like 000000xx in hex) or EOF (which looks like
FFFFFFFF in hex).

The basic problem with the program in Figure 2.2 is that fgetc() re-
turns an int, but this value is stored in a char. C will truncate the higher
order bits to fit the int value into the char. The only problem is that the
numbers (in hex) 000000FF and FFFFFFFF both will be truncated to the
byte FF. Thus, the while loop can not distinguish between reading the byte
FF from the file and end of file.

Exactly what the code does in this case, depends on whether char is
signed or unsigned. Why? Because in line 2, ch is compared with EOF.
Since EOF is an int value1, ch will be extended to an int so that two values
being compared are of the same size2. As Figure 2.1 showed, where the
variable is signed or unsigned is very important.

If char is unsigned, FF is extended to be 000000FF. This is compared to
EOF (FFFFFFFF) and found to be not equal. Thus, the loop never ends!

1It is a common misconception that files have an EOF character at their end. This is
not true!

2The reason for this requirement will be shown later.

2.1. WORKING WITH INTEGERS 31

If char is signed, FF is extended to FFFFFFFF. This does compare as
equal and the loop ends. However, since the byte FF may have been read
from the file, the loop could be ending prematurely.

The solution to this problem is to define the ch variable as an int, not a
char. When this is done, no truncating or extension is done in line 2. Inside
the loop, it is safe to truncate the value since ch must actually be a simple
byte there.

2.1.3 Two’s complement arithmetic

As was seen earlier, the add instruction performs addition and the sub
instruction performs subtraction. Two of the bits in the FLAGS register that
these instructions set are the overflow and carry flag. The overflow flag is
set if the true result of the operation is too big to fit into the destination
for signed arithmetic. The carry flag is set if there is a carry in the msb
of an addition or a borrow in the msb of a subtraction. Thus, it can be
used to detect overflow for unsigned arithmetic. The uses of the carry flag
for signed arithmetic will be seen shortly. One of the great advantages of
2’s complement is that the rules for addition and subtraction are exactly the
same as for unsigned integers. Thus, add and sub may be used on signed or
unsigned integers.

002C 44
+ FFFF + (−1)

002B 43

There is a carry generated, but it is not part of the answer.
There are two different multiply and divide instructions. First, to mul-

tiply use either the MUL or IMUL instruction. The mul instruction is used
to multiply unsigned numbers and imul is used to multiply signed integers.
Why are two different instructions needed? The rules for multiplication are
different for unsigned and 2’s complement signed numbers. How so? Con-
sider the multiplication of the byte FF with itself yielding a word result.
Using unsigned multiplication this is 255 times 255 or 65025 (or FE01 in
hex). Using signed multiplication this is −1 times −1 or 1 (or 0001 in hex).

There are several forms of the multiplication instructions. The oldest
form looks like:

mul source

The source is either a register or a memory reference. It can not be an
immediate value. Exactly what multiplication is performed depends on the
size of the source operand. If the operand is byte sized, it is multiplied by
the byte in the AL register and the result is stored in the 16 bits of AX. If
the source is 16-bit, it is multiplied by the word in AX and the 32-bit result

32 CHAPTER 2. BASIC ASSEMBLY LANGUAGE

dest source1 source2 Action
reg/mem8 AX = AL*source1
reg/mem16 DX:AX = AX*source1
reg/mem32 EDX:EAX = EAX*source1

reg16 reg/mem16 dest *= source1
reg32 reg/mem32 dest *= source1
reg16 immed8 dest *= immed8
reg32 immed8 dest *= immed8
reg16 immed16 dest *= immed16
reg32 immed32 dest *= immed32
reg16 reg/mem16 immed8 dest = source1*source2
reg32 reg/mem32 immed8 dest = source1*source2
reg16 reg/mem16 immed16 dest = source1*source2
reg32 reg/mem32 immed32 dest = source1*source2

Table 2.2: imul Instructions

is stored in DX:AX. If the source is 32-bit, it is multiplied by EAX and the
64-bit result is stored into EDX:EAX.

The imul instruction has the same formats as mul, but also adds some
other instruction formats. There are two and three operand formats:

imul dest, source1
imul dest, source1, source2

Table 2.2 shows the possible combinations.
The two division operators are DIV and IDIV. They perform unsigned

and signed integer division respectively. The general format is:

div source

If the source is 8-bit, then AX is divided by the operand. The quotient is
stored in AL and the remainder in AH. If the source is 16-bit, then DX:AX
is divided by the operand. The quotient is stored into AX and remainder
into DX. If the source is 32-bit, then EDX:EAX is divided by the operand
and the quotient is stored into EAX and the remainder into EDX. The IDIV
instruction works the same way. There are no special IDIV instructions like
the special IMUL ones. If the quotient is too big to fit into its register or the
divisor is zero, the program is interrupted and terminates. A very common
error is to forget to initialize DX or EDX before division.

The NEG instruction negates it’s single operand by computing its two’s
complement. It’s operand may be any 8-bit, 16-bit, or 32-bit register or
memory location.

2.1. WORKING WITH INTEGERS 33

2.1.4 Example program

math.asm
1 %include "asm_io.inc"
2 segment .data ; Output strings
3 prompt db "Enter a number: ", 0
4 square_msg db "Square of input is ", 0
5 cube_msg db "Cube of input is ", 0
6 cube25_msg db "Cube of input times 25 is ", 0
7 quot_msg db "Quotient of cube/100 is ", 0
8 rem_msg db "Remainder of cube/100 is ", 0
9 neg_msg db "The negation of the remainder is ", 0

10

11 segment .bss
12 input resd 1
13

14 segment .text
15 global _asm_main
16 _asm_main:
17 enter 0,0 ; setup routine
18 pusha
19

20 mov eax, prompt
21 call print_string
22

23 call read_int
24 mov [input], eax
25

26 imul eax ; edx:eax = eax * eax
27 mov ebx, eax ; save answer in ebx
28 mov eax, square_msg
29 call print_string
30 mov eax, ebx
31 call print_int
32 call print_nl
33

34 mov ebx, eax
35 imul ebx, [input] ; ebx *= [input]
36 mov eax, cube_msg
37 call print_string
38 mov eax, ebx
39 call print_int
40 call print_nl

34 CHAPTER 2. BASIC ASSEMBLY LANGUAGE

41

42 imul ecx, ebx, 25 ; ecx = ebx*25
43 mov eax, cube25_msg
44 call print_string
45 mov eax, ecx
46 call print_int
47 call print_nl
48

49 mov eax, ebx
50 cdq ; initialize edx by sign extension
51 mov ecx, 100 ; can’t divide by immediate value
52 idiv ecx ; edx:eax / ecx
53 mov ecx, eax ; save quotient into ecx
54 mov eax, quot_msg
55 call print_string
56 mov eax, ecx
57 call print_int
58 call print_nl
59 mov eax, rem_msg
60 call print_string
61 mov eax, edx
62 call print_int
63 call print_nl
64

65 neg edx ; negate the remainder
66 mov eax, neg_msg
67 call print_string
68 mov eax, edx
69 call print_int
70 call print_nl
71

72 popa
73 mov eax, 0 ; return back to C
74 leave
75 ret math.asm

2.1.5 Extended precision arithmetic

Assembly language also provides instructions that allow one to perform
addition and subtraction of numbers larger than double words. These in-
structions use the carry flag. As stated above, both the ADD and SUB instruc-
tions modify the carry flag if a carry or borrow are generated, respectively.

2.2. CONTROL STRUCTURES 35

This information stored in the carry flag can be used to add or subtract
large numbers by breaking up the operation into smaller double word (or
smaller) pieces.

The ADC and SBB instructions use this information in the carry flag. The
ADC instruction performs the following operation:

operand1 = operand1 + carry flag + operand2

The SBB instruction performs:

operand1 = operand1 - carry flag - operand2

How are these used? Consider the sum of 64-bit integers in EDX:EAX and
EBX:ECX. The following code would store the sum in EDX:EAX:

1 add eax, ecx ; add lower 32-bits
2 adc edx, ebx ; add upper 32-bits and carry from previous sum

Subtraction is very similar. The following code subtracts EBX:ECX from
EDX:EAX:

1 sub eax, ecx ; subtract lower 32-bits
2 sbb edx, ebx ; subtract upper 32-bits and borrow

For really large numbers, a loop could be used (see Section 2.2). For a
sum loop, it would be convenient to use ADC instruction for every iteration
(instead of all but the first iteration). This can be done by using the CLC
(CLear Carry) instruction right before the loop starts to initialize the carry
flag to 0. If the carry flag is 0, there is no difference between the ADD and
ADC instructions. The same idea can be used for subtraction, too.

2.2 Control Structures

High level languages provide high level control structures (e.g., the if
and while statements) that control the thread of execution. Assembly lan-
guage does not provide such complex control structures. It instead uses the
infamous goto and used inappropriately can result in spaghetti code! How-
ever, it is possible to write structured assembly language programs. The
basic procedure is to design the program logic using the familiar high level
control structures and translate the design into the appropriate assembly
language (much like a compiler would do).

36 CHAPTER 2. BASIC ASSEMBLY LANGUAGE

2.2.1 Comparisons

Control structures decide what to do based on comparisons of data. In
assembly, the result of a comparison is stored in the FLAGS register to be
used later. The 80x86 provides the CMP instruction to perform comparisons.
The FLAGS register is set based on the difference of the two operands of
the CMP instruction. The operands are subtracted and the FLAGS are set
based on the result, but the result is not stored anywhere. If you need the
result use the SUB instead of the CMP instruction.

For unsigned integers, there are two flags (bits in the FLAGS register)
that are important: the zero (ZF) and carry (CF) flags. The zero flag is
set (1) if the resulting difference would be zero. The carry flag is used as a
borrow flag for subtraction. Consider a comparison like:

cmp vleft, vright

The difference of vleft - vright is computed and the flags are set accord-
ing. If the difference of the of CMP is zero, vleft = vright, then ZF is set
(i.e., 1) and the CF is unset (i.e., 0). If vleft > vright, then ZF is unset
and CF is unset (no borrow). If vleft < vright, then ZF is unset and CF
is set (borrow).

For signed integers, there are three flags that are important: the zero
(ZF) flag, the overflow (OF) flag and the sign (SF) flag. The overflow flagWhy does SF = OF if

vleft > vright? If there
is no overflow, then the
difference will have the
correct value and must
be non-negative. Thus,
SF = OF = 0. However,
if there is an overflow, the
difference will not have the
correct value (and in fact
will be negative). Thus,
SF = OF = 1.

is set if the result of an operation overflows (or underflows). The sign flag
is set if the result of an operation is negative. If vleft = vright, the ZF
is set (just as for unsigned integers). If vleft > vright, ZF is unset and
SF = OF. If vleft < vright, ZF is unset and SF 6= OF.

Do not forget that other instructions can also change the FLAGS register,
not just CMP.

2.2.2 Branch instructions

Branch instructions can transfer execution to arbitrary points of a pro-
gram. In other words, they act like a goto. There are two types of branches:
unconditional and conditional. An unconditional branch is just like a goto,
it always makes the branch. A conditional branch may or may not make
the branch depending on the flags in the FLAGS register. If a conditional
branch does not make the branch, control passes to the next instruction.

The JMP (short for jump) instruction makes unconditional branches. Its
single argument is usually a code label to the instruction to branch to. The
assembler or linker will replace the label with correct address of the in-
struction. This is another one of the tedious operations that the assembler
does to make the programmer’s life easier. It is important to realize that

2.2. CONTROL STRUCTURES 37

JZ branches only if ZF is set
JNZ branches only if ZF is unset
JO branches only if OF is set
JNO branches only if OF is unset
JS branches only if SF is set
JNS branches only if SF is unset
JC branches only if CF is set
JNC branches only if CF is unset
JP branches only if PF is set
JNP branches only if PF is unset

Table 2.3: Simple Conditional Branches

the statement immediately after the JMP instruction will never be executed
unless another instruction branches to it!

There are several variations of the jump instruction:

SHORT This jump is very limited in range. It can only move up or down
128 bytes in memory. The advantage of this type is that it uses less
memory than the others. It uses a single signed byte to store the
displacement of the jump. The displacement is how bytes to move
ahead or behind. (The displacement is added to EIP). To specify a
short jump, use the SHORT keyword immediately before the label in
the JMP instruction.

NEAR This jump is the default type for both unconditional and condi-
tional branches, it can be used to jump to any location in a seg-
ment. Actually, the 80386 supports two types of near jumps. One
uses two bytes for the displacement. This allows one to move up or
down roughly 32,000 bytes. The other type uses four bytes for the
displacement, which of course allows one to move to any location in
the code segment. The four byte type is the default in 386 protected
mode. The two byte type can be specified by putting the WORD keyword
before the label in the JMP instruction.

FAR This jump allows control to move to another code segment. This is a
very rare thing to do in 386 protected mode.

Valid code labels follow the same rules as data labels. Code labels are
defined by placing them in the code segment in front of the statement they
label. A colon is placed at the end of the label at its point of definition. The
colon is not part of the name.

There are many different conditional branch instructions. They also
take a code label as their single operand. The simplest ones just look at a

38 CHAPTER 2. BASIC ASSEMBLY LANGUAGE

single flag in the FLAGS register to determine whether to branch or not.
See Table 2.3 for a list of these instructions. (PF is the parity flag which
indicates the odd or evenness of a result.)

The following pseudo-code:

if (EAX == 0)
EBX = 1;

else
EBX = 2;

could be written in assembly as:

1 cmp eax, 0 ; set flags (ZF set if eax - 0 = 0)
2 jz thenblock ; if ZF is set branch to thenblock
3 mov ebx, 2 ; ELSE part of IF
4 jmp next ; jump over THEN part of IF
5 thenblock:
6 mov ebx, 1 ; THEN part of IF
7 next:

Other comparisons are not so easy using the conditional branches in
Table 2.3. To illustrate, consider the following pseudo-code:

if (EAX >= 5)
EBX = 1;

else
EBX = 2;

If EAX is greater than or equal to five, the ZF may be set or unset and
SF will equal OF. Here is assembly code that tests for these conditions
(assuming that EAX is signed):

1 cmp eax, 5
2 js signon ; goto signon if SF = 1
3 jo elseblock ; goto elseblock if OF = 1 and SF = 0
4 jmp thenblock ; goto thenblock if SF = 0 and OF = 0
5 signon:
6 jo thenblock ; goto thenblock if SF = 1 and OF = 1
7 elseblock:
8 mov ebx, 2
9 jmp next

10 thenblock:
11 mov ebx, 1
12 next:

2.2. CONTROL STRUCTURES 39

Signed Unsigned
JE branches if vleft = vright JE branches if vleft = vright
JNE branches if vleft 6= vright JNE branches if vleft 6= vright
JL, JNGE branches if vleft < vright JB, JNAE branches if vleft < vright
JLE, JNG branches if vleft ≤ vright JBE, JNA branches if vleft ≤ vright
JG, JNLE branches if vleft > vright JA, JNBE branches if vleft > vright
JGE, JNL branches if vleft ≥ vright JAE, JNA branches if vleft ≥ vright

Table 2.4: Signed and Unsigned Comparison Instructions

The above code is very awkward. Fortunately, the 80x86 provides addi-
tional branch instructions to make these type of tests much easier. There
are signed and unsigned versions of each. Table 2.4 shows these instruc-
tions. The equal and not equal branches (JE and JNE) are the same for
both signed and unsigned integers. (In fact, JE and JNE are really identical
to JZ and JNZ, respectively.) Each of the other branch instructions have
two synonyms. For example, look at JL (jump less than) and JNGE (jump
not greater than or equal to). These are the same instruction because:

x < y =⇒ not(x ≥ y)

The unsigned branches use A for above and B for below instead of L and G.
Using these new branch instructions, the pseudo-code above can be

translated to assembly much easier.

1 cmp eax, 5
2 jge thenblock
3 mov ebx, 2
4 jmp next
5 thenblock:
6 mov ebx, 1
7 next:

2.2.3 The loop instructions

The 80x86 provides several instructions designed to implement for -like
loops. Each of these instructions takes a code label as its single operand.

LOOP Decrements ECX, if ECX 6= 0, branches to label

LOOPE, LOOPZ Decrements ECX (FLAGS register is not modified), if
ECX 6= 0 and ZF = 1, branches

LOOPNE, LOOPNZ Decrements ECX (FLAGS unchanged), if ECX 6=
0 and ZF = 0, branches

40 CHAPTER 2. BASIC ASSEMBLY LANGUAGE

The last two loop instructions are useful for sequential search loops. The
following pseudo-code:
sum = 0;
for (i=10; i >0; i−−)

sum += i;

could be translated into assembly as:

1 mov eax, 0 ; eax is sum
2 mov ecx, 10 ; ecx is i
3 loop_start:
4 add eax, ecx
5 loop loop_start

2.3 Translating Standard Control Structures

This section looks at how the standard control structures of high level
languages can be implemented in assembly language.

2.3.1 If statements

The following pseudo-code:
if (condition)

then block ;
else

else block ;

could be implemented as:

1 ; code to set FLAGS
2 jxx else_block ; select xx so that branches if condition false
3 ; code for then block
4 jmp endif
5 else_block:
6 ; code for else block
7 endif:

If there is no else, then the else block branch can be replaced by a
branch to endif.

1 ; code to set FLAGS
2 jxx endif ; select xx so that branches if condition false
3 ; code for then block
4 endif:

2.4. EXAMPLE: FINDING PRIME NUMBERS 41

2.3.2 While loops

The while loop is a top tested loop:
while(condition) {

body of loop;
}
This could be translated into:

1 while:
2 ; code to set FLAGS based on condition
3 jxx endwhile ; select xx so that branches if false
4 ; body of loop
5 jmp while
6 endwhile:

2.3.3 Do while loops

The do while loop is a bottom tested loop:
do {

body of loop;
} while(condition);

This could be translated into:

1 do:
2 ; body of loop
3 ; code to set FLAGS based on condition
4 jxx do ; select xx so that branches if true

2.4 Example: Finding Prime Numbers

This section looks at a program that finds prime numbers. Recall that
prime numbers are evenly divisible by only 1 and themselves. There is no
formula for doing this. The basic method this program uses is to find the
factors of all odd numbers3 below a given limit. If no factor can be found for
an odd number, it is prime. Figure 2.3 shows the basic algorithm written in
C.

Here’s the assembly version:

prime.asm
1 %include "asm_io.inc"
2 segment .data
3 Message db "Find primes up to: ", 0

32 is the only even prime number.

42 CHAPTER 2. BASIC ASSEMBLY LANGUAGE

1 unsigned guess; /∗ current guess for prime ∗/
2 unsigned factor ; /∗ possible factor of guess ∗/
3 unsigned limit ; /∗ find primes up to this value ∗/
4

5 printf (”Find primes up to : ”);
6 scanf(”%u”, &limit);
7 printf (”2\n”); /∗ treat first two primes as ∗/
8 printf (”3\n”); /∗ special case ∗/
9 guess = 5; /∗ initial guess ∗/

10 while (guess <= limit) {
11 /∗ look for a factor of guess ∗/
12 factor = 3;
13 while (factor∗ factor < guess &&
14 guess % factor != 0)
15 factor += 2;
16 if (guess % factor != 0)
17 printf (”%d\n”, guess);
18 guess += 2; /∗ only look at odd numbers ∗/
19 }

Figure 2.3:

4

5 segment .bss
6 Limit resd 1 ; find primes up to this limit
7 Guess resd 1 ; the current guess for prime
8

9 segment .text
10 global _asm_main
11 _asm_main:
12 enter 0,0 ; setup routine
13 pusha
14

15 mov eax, Message
16 call print_string
17 call read_int ; scanf("%u", & limit);
18 mov [Limit], eax
19

20 mov eax, 2 ; printf("2\n");
21 call print_int
22 call print_nl

2.4. EXAMPLE: FINDING PRIME NUMBERS 43

23 mov eax, 3 ; printf("3\n");
24 call print_int
25 call print_nl
26

27 mov dword [Guess], 5 ; Guess = 5;
28 while_limit: ; while (Guess <= Limit)
29 mov eax,[Guess]
30 cmp eax, [Limit]
31 jnbe end_while_limit ; use jnbe since numbers are unsigned
32

33 mov ebx, 3 ; ebx is factor = 3;
34 while_factor:
35 mov eax,ebx
36 mul eax ; edx:eax = eax*eax
37 jo end_while_factor ; if answer won’t fit in eax alone
38 cmp eax, [Guess]
39 jnb end_while_factor ; if !(factor*factor < guess)
40 mov eax,[Guess]
41 mov edx,0
42 div ebx ; edx = edx:eax % ebx
43 cmp edx, 0
44 je end_while_factor ; if !(guess % factor != 0)
45

46 add ebx,2 ; factor += 2;
47 jmp while_factor
48 end_while_factor:
49 je end_if ; if !(guess % factor != 0)
50 mov eax,[Guess] ; printf("%u\n")
51 call print_int
52 call print_nl
53 end_if:
54 mov eax,[Guess]
55 add eax, 2
56 mov [Guess], eax ; guess += 2
57 jmp while_limit
58 end_while_limit:
59

60 popa
61 mov eax, 0 ; return back to C
62 leave
63 ret prime.asm

44 CHAPTER 2. BASIC ASSEMBLY LANGUAGE

Chapter 3

Bit Operations

3.1 Shift Operations

Assembly language allows the programmer to manipulate the individual
bits of data. One common bit operation is called a shift. A shift operation
moves the position of the bits of some data. Shifts can be either toward
the left (i.e., toward the most significant bits) or toward the right (the least
significant bits).

3.1.1 Logical shifts

A logical shift is the simplest type of shift. It shifts in a very straight-
forward manner. Figure 3.1 shows an example of shifted a byte number.

Original 1 1 1 0 1 0 1 0
Left shifted 1 1 0 1 0 1 0 0
Right shifted 0 1 1 1 0 1 0 1

Figure 3.1: Logical shifts

Note that new, incoming bits are always zero. The SHL and SHR instruc-
tions are used to perform logical left and right shifts respectively. These
instructions allow one to shift by any number of positions. The number of
positions to shift can either be a constant or can be stored in the CL register.
The last bit shifted out of the data is stored in the carry flag. Here are some
code examples:

1 mov ax, 0C123H
2 shl ax, 1 ; shift 1 bit to left, ax = 8246H, CF = 1
3 shr ax, 1 ; shift 1 bit to right, ax = 4123H, CF = 0
4 shr ax, 1 ; shift 1 bit to right, ax = 2091H, CF = 1
5 mov ax, 0C123H

45

46 CHAPTER 3. BIT OPERATIONS

6 shl ax, 2 ; shift 2 bits to left, ax = 048CH, CF = 1
7 mov cl, 3
8 shr ax, cl ; shift 3 bits to right, ax = 0091H, CF = 1

3.1.2 Use of shifts

Fast multiplication and division are the most common uses of a shift
operations. Recall that in the decimal system, multiplication and division
by a power of ten are simple, just shift digits. The same is true for powers
of two in binary. For example, to double the binary number 10112 (or 11
in decimal), shift once to the left to get 101102 (or 22). The quotient of a
division by a power of two is the result of a right shift. To divide by just 2,
use a single right shift; to divide by 4 (22), shift right 2 places; to divide by
8 (23), shift 3 places to the right, etc. Shift instructions are very basic and
are much faster than the corresponding MUL and DIV instructions!

Actually, logical shifts can be used multiply and divide unsigned values.
They do not work in general for signed values. Consider the 2-byte value
FFFF (signed −1). If it is logically right shifted once, the result is 7FFF
which is +32, 767! Another type of shift can be used for signed values.

3.1.3 Arithmetic shifts

These shifts are designed to be allow signed numbers to be quickly mul-
tiplied and divided by powers of 2. They insure that the sign bit is treated
correctly.

SAL Shift Arithmetic Left - This instruction is just a synonym for SHL. It
is assembled into the exactly the same machine code as SHL. As long
as the sign bit is not changed by the shift, the result will be correct.

SAR Shift Arithmetic Right - This is a new instruction that does not shift
the sign bit (i.e., the msb) of its operand. The other bits are shifted
as normal except that the new bits that enter from the left are copies
of the sign bit (that is, if the sign bit is 1, the new bits are also 1).
Thus, if a byte is shifted with this instruction, only the lower 7 bits
are shifted. As for the other shifts, the last bit shifted out is stored in
the carry flag.

1 mov ax, 0C123H
2 sal ax, 1 ; ax = 8246H, CF = 1
3 sal ax, 1 ; ax = 048CH, CF = 1
4 sar ax, 2 ; ax = 0123H, CF = 0

3.1. SHIFT OPERATIONS 47

3.1.4 Rotate shifts

The rotate shift instructions work like logical shifts except that bits lost
off one end of the data are shifted in on the other side. Thus, the data is
treated as if it is a circular structure. The two simplest rotate instructions
are ROL and ROR which make left and right rotations, respectively. Just as
for the other shifts, these shifts leave the a copy of the last bit shifted around
in the carry flag.

1 mov ax, 0C123H
2 rol ax, 1 ; ax = 8247H, CF = 1
3 rol ax, 1 ; ax = 048FH, CF = 1
4 rol ax, 1 ; ax = 091EH, CF = 0
5 ror ax, 2 ; ax = 8247H, CF = 1
6 ror ax, 1 ; ax = C123H, CF = 1

There are two additional rotate instructions that shift the bits in the
data and the carry flag named RCL and RCR. For example, if the AX register
is rotated with these instructions, the 17-bits made up of AX and the carry
flag are rotated.

1 mov ax, 0C123H
2 clc ; clear the carry flag (CF = 0)
3 rcl ax, 1 ; ax = 8246H, CF = 1
4 rcl ax, 1 ; ax = 048DH, CF = 1
5 rcl ax, 1 ; ax = 091BH, CF = 0
6 rcr ax, 2 ; ax = 8246H, CF = 1
7 rcr ax, 1 ; ax = C123H, CF = 0

3.1.5 Simple application

Here is a code snippet that counts the number of bits that are “on”
(i.e., 1) in the EAX register.

1 mov bl, 0 ; bl will contain the count of ON bits
2 mov ecx, 32 ; ecx is the loop counter
3 count_loop:
4 shl eax, 1 ; shift bit into carry flag
5 jnc skip_inc ; if CF == 0, goto skip_inc
6 inc bl
7 skip_inc:
8 loop count_loop

48 CHAPTER 3. BIT OPERATIONS

X Y X AND Y
0 0 0
0 1 0
1 0 0
1 1 1

Table 3.1: The AND operation

1 0 1 0 1 0 1 0
AND 1 1 0 0 1 0 0 1

1 0 0 0 1 0 0 0

Figure 3.2: ANDing a byte

The above code destroys the original value of EAX (EAX is zero at the end of
the loop). If one wished to retain the value of EAX, line 4 could be replaced
with rol eax, 1.

3.2 Boolean Bitwise Operations

There are four common boolean operators: AND, OR, XOR and NOT.
A truth table shows the result of each operation for each possible value of
its operands.

3.2.1 The AND operation

The result of the AND of two bits is only 1 if both bits are 1, else the
result is 0 as the truth table in Table 3.1 shows.

Processors support these operations as instructions that act indepen-
dently on all the bits of data in parallel. For example, if the contents of AL
and BL are ANDed together, the basic AND operation is applied to each of
the 8 pairs of corresponding bits in the two registers as Figure 3.2 shows.
Below is a code example:

1 mov ax, 0C123H
2 and ax, 82F6H ; ax = 8022H

3.2.2 The OR operation

The inclusive OR of 2 bits is 0 only if both bits are 0, else the result is
1 as the truth table in Table 3.2 shows. Below is a code example:

1 mov ax, 0C123H
2 or ax, 0E831H ; ax = E933H

3.2. BOOLEAN BITWISE OPERATIONS 49

X Y X OR Y
0 0 0
0 1 1
1 0 1
1 1 1

Table 3.2: The OR operation

X Y X XOR Y
0 0 0
0 1 1
1 0 1
1 1 0

Table 3.3: The XOR operation

3.2.3 The XOR operation

The exclusive OR of 2 bits is 0 only if and only if both bits are equal,
else the result is 1 as the truth table in Table 3.3 shows. Below is a code
example:

1 mov ax, 0C123H
2 xor ax, 0E831H ; ax = 2912H

3.2.4 The NOT operation

The NOT operation is a unary operation (i.e., it acts on one operand,
not two like binary operations such as AND). The NOT of a bit is the
opposite value of the bit as the truth table in Table 3.4 shows. Below is a
code example:

1 mov ax, 0C123H
2 not ax ; ax = 3EDCH

Note that the NOT finds the one’s complement. Unlike the other bitwise
operations, the NOT instruction does not change any of the bits in the FLAGS
register.

3.2.5 The TEST instruction

The TEST instruction performs an AND operation, but does not store
the result. It only sets the FLAGS register based on what the result would
be (much like how the CMP instruction performs a subtraction but only sets
FLAGS). For example, if the result would be zero, ZF would be set.

50 CHAPTER 3. BIT OPERATIONS

X NOT X
0 1
1 0

Table 3.4: The NOT operation

Turn on bit i OR the number with 2i (which is the binary
number with just bit i on)

Turn off bit i AND the number with the binary number
with only bit i off. This operand is often
called a mask

Complement bit i XOR the number with 2i

Table 3.5: Uses of boolean operations

3.2.6 Uses of boolean operations

Boolean operations are very useful for manipulating individual bits of
data without modifying the other bits. Table 3.5 shows three common uses
of these operations. Below is some example code, implementing these ideas.

1 mov ax, 0C123H
2 or ax, 8 ; turn on bit 3, ax = C12BH
3 and ax, 0FFDFH ; turn off bit 5, ax = C10BH
4 xor ax, 8000H ; invert bit 31, ax = 410BH
5 or ax, 0F00H ; turn on nibble, ax = 4F0BH
6 and ax, 0FFF0H ; turn off nibble, ax = 4F00H
7 xor ax, 0F00FH ; invert nibbles, ax = BF0FH
8 xor ax, 0FFFFH ; 1’s complement, ax = 40F0H

The AND operation can also be used to find the remainder of a division
by a power of two. To find the remainder of a division by 2i, AND the
number with a mask equal to 2i− 1. This mask will contain ones from bit 0
up to bit i− 1. It is just these bits that contain the remainder. The result
of the AND will keep these bits and zero out the others. Next is a snippet
of code that finds the quotient and remainder of the division of 100 by 16.

1 mov eax, 100 ; 100 = 64H
2 mov ebx, 0000000FH ; mask = 16 - 1 = 15 or F
3 and ebx, eax ; ebx = remainder = 4
4 shr eax, 4 ; eax = quotient of eax/2^4 = 6

Using the CL register it is possible to modify arbitrary bits of data. Next is
an example that sets (turns on) an arbitrary bit in EAX. The number of the
bit to set is stored in BH.

3.3. MANIPULATING BITS IN C 51

1 mov cl, bh ; first build the number to OR with
2 mov ebx, 1
3 shl ebx, cl ; shift left cl times
4 or eax, ebx ; turn on bit

Turning a bit off is just a little harder.

1 mov cl, bh ; first build the number to AND with
2 mov ebx, 1
3 shl ebx, cl ; shift left cl times
4 not ebx ; invert bits
5 and eax, ebx ; turn off bit

Code to complement an arbitrary bit is left as an exercise for the reader.
It is not uncommon to see the following puzzling instruction in a 80x86

program:

xor eax, eax ; eax = 0

A number XOR’ed with itself always results in zero. This instruction is used
because its machine code is smaller than the corresponding MOV instruction.

3.3 Manipulating bits in C

3.3.1 The bitwise operators of C

Unlike some high-level languages, C does provide operators for bitwise
operations. The AND operation is represented by the binary & operator1.
The OR operation is represented by the binary | operator. The XOR oper-
ation is represetned by the binary ^ operator. And the NOT operation is
represented by the unary ~ operator.

The shift operations are performed by C’s << and >> binary operators.
The << operator performs left shifts and the >> operator performs right
shifts. These operators take two operands. The left operand is the value to
shift and the right operand is the number of bits to shift by. If the value
to shift is an unsigned type, a logical shift is made. If the value is a signed
type (like int), then an arithmetic shift is used. Below is some example C
code using these operators:

1 short int s ; /∗ assume that short int is 16−bit ∗/
2 short unsigned u;
3 s = −1; /∗ s = 0xFFFF (2’s complement) ∗/
4 u = 100; /∗ u = 0x0064 ∗/
5 u = u | 0x0100; /∗ u = 0x0164 ∗/

1This operator is different from the binary && and unary & operators!

52 CHAPTER 3. BIT OPERATIONS

Macro Meaning
S IRUSR user can read
S IWUSR user can write
S IXUSR user can execute
S IRGRP group can read
S IWGRP group can write
S IXGRP group can execute
S IROTH others can read
S IWOTH others can write
S IXOTH others can execute

Table 3.6: POSIX File Permission Macros

6 s = s & 0xFFF0; /∗ s = 0xFFF0 ∗/
7 s = s ˆ u; /∗ s = 0xFE94 ∗/
8 u = u << 3; /∗ u = 0x0B20 (logical shift) ∗/
9 s = s >> 2; /∗ s = 0xFFA5 (arithmetic shift) ∗/

3.3.2 Using bitwise operators in C

The bitwise operators are used in C for the same purposes as they are
used in assembly language. They allow one to manipulate individual bits of
data and can be used for fast multiplication and division. In fact, a smart
C compiler will use a shift for a multiplication like, x *= 2, automatically.

Many operating system API2’s (such as POSIX 3 and Win32) contain
functions which use operands that have data encoded as bits. For example,
POSIX systems maintain file permissions for three different types of users:
user (a better name would be owner), group and others. Each type of
user can be granted permission to read, write and/or execute a file. To
change the permissions of a file requires the C programmer to manipulate
individual bits. POSIX defines several macros to help (see Table 3.6). The
chmod function can be used to set the permissions of file. This function takes
two parameters, a string with the name of the file to act on and an integer4

with the appropriate bits set for the desired permissions. For example, the
code below sets the permissions to allow the owner of the file to read and
write to it, users in the group to read the file and others have no access.
chmod(”foo”, S IRUSR | S IWUSR | S IRGRP);

The POSIX stat function can be used to find out the current permission
2Application Programming Interface
3stands for Portable Operating System Interface for Computer Environments. A stan-

dard developed by the IEEE based on UNIX.
4Actually a parameter of type mode t which is a typedef to an integral type.

3.4. COUNTING BITS 53

bits for the file. Used with the chmod function, it is possible to modify some
of the permissions without changing others. Here is an example that removes
write access to others and adds read access to the owner of the file. The
other permissions are not altered.

1 struct stat file stats ; /∗ struct used by stat () ∗/
2 stat (”foo”, & file stats); /∗ read file info .
3 file stats .st mode holds permission bits ∗/
4 chmod(”foo”, (file stats .st mode & ˜S IWOTH) | S IRUSR);

3.4 Counting Bits

Earlier a straightforward technique was given for counting the number
of bits that are “on” in a double word. This section looks at other less direct
methods of doing this as an exercise using the bit operations discussed in
this chapter.

3.4.1 Method one

The first method is very simple, but not obvious. Here is the code for
the function:

1 int count bits (unsigned int data)
2 {
3 int cnt = 0;
4

5 while(data != 0) {
6 data = data & (data − 1);
7 cnt++;
8 }
9 return cnt;

10 }
How does this method work? In every iteration of the loop, one bit is

turned off in data. When all the bits are off (i.e., when data is zero), the
loop stops. The number of iterations required to make data zero is equal to
the number of bits in the original value of data.

Line 6 is where a bit of data is turned off. How does this work? Consider
the general form of the binary representation of data and the rightmost 1
in this representation. By definition, every bit after this 1 must be zero.
Now, what will be the binary representation of data - 1? The bits to the
left of the rightmost 1 will be the same as for data, but at the point of the
rightmost 1 the bits will be the complement of the original bits of data. For
example:
data = xxxxx10000
data - 1 = xxxxx01111

54 CHAPTER 3. BIT OPERATIONS

1 static unsigned char byte bit count [256]; /∗ lookup table ∗/
2

3 void initialize count bits ()
4 {
5 int cnt , i , data;
6

7 for (i = 0; i < 256; i++) {
8 cnt = 0;
9 data = i ;

10 while(data != 0) { /∗ method one ∗/
11 data = data & (data − 1);
12 cnt++;
13 }
14 byte bit count [i] = cnt;
15 }
16 }
17

18 int count bits (unsigned int data)
19 {
20 const unsigned char ∗ byte = (unsigned char ∗) & data;
21

22 return byte bit count [byte [0]] + byte bit count [byte [1]] +
23 byte bit count [byte [2]] + byte bit count [byte [3]];
24 }

Figure 3.3: Method Two

where the x’s are the same for both numbers. When data is AND ’ed with
data - 1, the result will zero the rightmost 1 in data and leave all the other
bits unchanged.

3.4.2 Method two

A lookup table can also be used to count the bits of an arbitrary double
word. The straightforward approach would be to precompute the number
of bits for each double word and store this in an array. However, there are
two related problems with this approach. There are roughly 4 billion double
word values! This means that the array will be very big and that initializing
it will also be very time consuming. (In fact, unless one is going to actually
use the array more than 4 billion times, more time will be taken to initialize
the array than it would require to just compute the bit counts using method
one!)

3.4. COUNTING BITS 55

A more realistic method would precompute the bit counts for all possible
byte values and store these into an array. Then the double word can be split
up into four byte values. The bit counts of these four byte values are looked
up from the array and sumed to find the bit count of the original double
word. Figure 3.3 shows the to code implement this approach.

The initiailize count bits function must be called before the first
call to the count bits function. This function initializes the global byte bit count
array. The count bits function looks at the data variable not as a double
word, but as an array of four bytes. The dword pointer acts as a pointer to
this four byte array. Thus, dword[0] is one of the bytes in data (either the
least significant or the most significant byte depending on if the hardware
is little or big endian, respectively.) Of course, one could use a construction
like:
(data >> 24) & 0x000000FF

to find the most significant byte value and similar ones for the other bytes;
however, these constructions will be slower than an array reference.

One last point, a for loop could easily be used to compute the sum on
lines 22 and 23. But, a for loop would include the overhead of initializing a
loop index, comparing the index after each iteration and incrementing the
index. Computing the sum as the explicit sum of four values will be faster.
In fact, a smart compiler would convert the for loop version to the explicit
sum. This process of reducing or eliminating loop iterations is a compiler
optimization technique known as loop unrolling.

3.4.3 Method Three

There is yet another clever method of counting the bits that are on in
data. This method literally adds the one’s and zero’s of the data together.
This sum must equal the number of one’s in the data. For example, consider
counting the one’s in a byte stored in a variable named data. The first step
is to perform the following operation:
data = (data & 0x55) + ((data >> 1) & 0x55);

What does this do? The hex constant 0x55 is 01010101 in binary. In the
first operand of the addition, data is AND ’ed with this, bits at the odd bit
positions are pulled out. The second operand ((data >> 1) & 0x55) first
moves all the bits at the even positions to an odd position and uses the same
mask to pull out these same bits. Now, the first operand contains the odd
bits and the second operand the even bits of data. When this two operands
are added together, the even and odd bits of data are added together. For
example, if data is 101100112, then:

data & 010101012 00 01 00 01
+ (data >> 1) & 010101012 or + 01 01 00 01

01 10 00 10

56 CHAPTER 3. BIT OPERATIONS

1 int count bits (unsigned int x)
2 {
3 static unsigned int mask[] = { 0x55555555,
4 0x33333333,
5 0x0F0F0F0F,
6 0x00FF00FF,
7 0x0000FFFF };
8 int i ;
9 int shift ; /∗ number of positions to shift to right ∗/

10

11 for (i=0, shift =1; i < 5; i++, shift ∗= 2)
12 x = (x & mask[i]) + ((x >> shift) & mask[i]);
13 return x;
14 }

Figure 3.4: Method 3

The addition on the right shows the actual bits added together. The
bits of the byte are divided into four 2-bit fields to show that actually there
are four independent additions being performed. Since the most these sums
can be is two, there is no possibility that the sum will overflow its field and
corrupt one of the other fields’ sums.

Of course, the total number of bits have not been computed yet. How-
ever, the same technique that was used above can be used to compute the
total in a series of similar steps. The next step would be:
data = (data & 0x33) + ((data >> 2) & 0x33);

Continuing the above example (remember that data now is 011000102):
data & 001100112 0010 0010

+ (data >> 2) & 001100112 or + 0001 0000
0011 0010

Now there are two 4-bit fields to that are independently added.
The next step is to add these two bit sums together to form the final

result:
data = (data & 0x0F) + ((data >> 4) & 0x0F);

Using the example above (with data equal to 001100102):
data & 000011112 00000010

+ (data >> 4) & 000011112 or + 00000011
00000101

Now data is 5 which is the correct result. Figure 3.4 shows an implemen-
tation of this method that counts the bits in a double word. It uses a for
loop to compute the sum. It would be faster to unroll the loop; however, the

3.4. COUNTING BITS 57

loop makes it clearer how the method generalizes to different sizes of data.

58 CHAPTER 3. BIT OPERATIONS

Chapter 4

Subprograms

This chapter looks at using subprograms to make modular programs and
to interface with high level languages (like C). Functions and procedures are
high level language examples of subprograms.

The code that calls a subprogram and the subprogram itself must agree
on how data will passed between them. These rules on how data will be
passed are called calling conventions. A large part of this chapter will deal
with the standard C calling conventions that can be used to interface as-
sembly subprograms with C programs. This (and other conventions) often
pass the addresses of data (i.e., pointers) to allow the subprogram to access
the data in memory.

4.1 Indirect Addressing

Indirect addressing allows registers to act like pointer variables. To in-
dicate that a register is to be used indirectly as a pointer, it is enclosed in
square brackets ([]). For example:

1 mov ax, [Data] ; normal direct memory addressing of a word
2 mov ebx, Data ; ebx = & Data
3 mov ax, [ebx] ; ax = *ebx

Because AX holds a word, line 3 reads a word starting at the address stored
in EBX. If AX was replaced with AL, only a single byte would be read.
It is important to realize that registers do not have types like variables do
in C. What EBX is assumed to point to is completely determined to what
instructions are used. Furthermore, even the fact that EBX is a pointer is
completely determined by the what instructions are used. If EBX is used
incorrectly, often there will be no assembler error; however, the program
will not work correctly. This is one of the many reasons that assembly
programming is more error prone than high level programming.

59

60 CHAPTER 4. SUBPROGRAMS

All the 32-bit general purpose (EAX, EBX, ECX, EDX) and index (ESI,
EDI) registers can be used for indirect addressing. In general, the 16-bit and
8-bit registers can not be.

4.2 Simple Subprogram Example

A subprogram is an independent unit of code that can be used from
different parts of a program. In other words, a subprogram is like a function
in C. A jump can be used to invoke the subprogram, but returning presents
a problem. If the subprogram is to be used by different parts of the program,
it must return back to the section of code that invoked it. Thus, the jump
back from the subprogram can not be hard coded to a label. The code below
shows how this could be done using the indirect form of the JMP instruction.
This form of the instruction uses the value of a register to determine where
to jump to (thus, the register acts much like a function pointer in C.) Here
is the first program from chapter 1 rewritten to use a subprogram.

sub1.asm
1 ; file: sub1.asm
2 ; Subprogram example program
3 %include "asm_io.inc"
4

5 segment .data
6 prompt1 db "Enter a number: ", 0 ; don’t forget nul terminator
7 prompt2 db "Enter another number: ", 0
8 outmsg1 db "You entered ", 0
9 outmsg2 db " and ", 0

10 outmsg3 db ", the sum of these is ", 0
11

12 segment .bss
13 input1 resd 1
14 input2 resd 1
15

16 segment .text
17 global _asm_main
18 _asm_main:
19 enter 0,0 ; setup routine
20 pusha
21

22 mov eax, prompt1 ; print out prompt
23 call print_string
24

25 mov ebx, input1 ; store address of input1 into ebx

4.2. SIMPLE SUBPROGRAM EXAMPLE 61

26 mov ecx, ret1 ; store return address into ecx
27 jmp short get_int ; read integer
28 ret1:
29 mov eax, prompt2 ; print out prompt
30 call print_string
31

32 mov ebx, input2
33 mov ecx, $ + 7 ; ecx = this address + 7
34 jmp short get_int
35

36 mov eax, [input1] ; eax = dword at input1
37 add eax, [input2] ; eax += dword at input2
38 mov ebx, eax ; ebx = eax
39

40 mov eax, outmsg1
41 call print_string ; print out first message
42 mov eax, [input1]
43 call print_int ; print out input1
44 mov eax, outmsg2
45 call print_string ; print out second message
46 mov eax, [input2]
47 call print_int ; print out input2
48 mov eax, outmsg3
49 call print_string ; print out third message
50 mov eax, ebx
51 call print_int ; print out sum (ebx)
52 call print_nl ; print new-line
53

54 popa
55 mov eax, 0 ; return back to C
56 leave
57 ret
58 ; subprogram get_int
59 ; Parameters:
60 ; ebx - address of dword to store integer into
61 ; ecx - address of instruction to return to
62 ; Notes:
63 ; value of eax is destroyed
64 get_int:
65 call read_int
66 mov [ebx], eax ; store input into memory
67 jmp ecx ; jump back to caller

sub1.asm

62 CHAPTER 4. SUBPROGRAMS

The get int subprogram uses a simple, register-based calling conven-
tion. It expects the EBX register to hold the address of the DWORD to
store the number input into and the ECX register to hold the code address
of the instruction to jump back to. In lines 25 to 28, the ret1 label is used
to compute this return address. In lines 32 to 34, the $ operator is used to
compute the return address. The $ operator returns the current address for
the line it appears on. The expression $ + 7 computes the address of the
MOV instruction on line 36.

Both of these return address computations are awkward. The first
method requires a label to be defined for each subprogram call. The second
method does not require a label, but does require careful thought. If a near
jump was used instead of a short jump, the number to add to $ would not
be 7! Fortunately, there is a much simpler way to invoke subprograms. This
method uses the stack.

4.3 The Stack

Many CPU’s have built in support of a stack. A stack is a Last-In First-
Out (LIFO) list. The stack is an area of memory that is organized in this
fashion. The PUSH instruction adds data to the stack and the POP instruction
removes data. The data removed is always the last data added (that is why
it is called a last-in first-out list).

The SS segment register specifies the segment that contains the stack
(usually this is the same segment data is stored into). The ESP register
contains the address of the data that would be removed from the stack.
This data is said to be at the top of the stack. Data can only be added in
double word units. That is, one can not push a single byte on the stack.

The PUSH instruction inserts a double word1 on the stack by subtracting
4 from ESP and then stores the double word at [ESP]. The POP instruction
reads the double word at [ESP] and then adds 4 to ESP. The code below
demostrates how these instructions work and assumes that ESP is initially
1000H.

1 push dword 1 ; 1 stored at 0FFCh, ESP = 0FFCh
2 push dword 2 ; 2 stored at 0FF8h, ESP = 0FF8h
3 push dword 3 ; 3 stored at 0FF4h, ESP = 0FF4h
4 pop eax ; EAX = 3, ESP = 0FF8h
5 pop ebx ; EBX = 2, ESP = 0FFCh
6 pop ecx ; ECX = 1, ESP = 1000h

1Actually words can be pushed too, but in 32-bit protected mode, it is better to work
with only double words on the stack.

4.4. THE CALL AND RET INSTRUCTIONS 63

The stack can be used as a convenient place to store data temporarily.
It is also used for making subprogram calls, passing parameters and local
variables.

The 80x86 also provides a PUSHA instruction that pushes the values of
EAX, EBX, ECX, EDX, ESI, EDI and EBP registers (not in this order).
The POPA instruction can be used to pop them all back off.

4.4 The CALL and RET Instructions

The 80x86 provides two instructions that use the stack to make calling
subprograms quick and easy. The CALL instruction makes an unconditional
jump to a subprogram and pushes the address of the next instruction on the
stack. The RET instruction pops off an address and jumps to that address.
When using this instructions, it is very important that one manage the stack
correctly so that the right number is popped off by the RET instruction!

The previous program can be rewritten to use these new instructions by
changing lines 25 to 34 to be:

mov ebx, input1
call get_int

mov ebx, input2
call get_int

and change the subprogram get int to:

get_int:
call read_int
mov [ebx], eax
ret

There are several advantages to using CALL and RET:

• It is simpler!

• It allows subprograms calls to be nested easily. Notice that get int
calls read int. This call pushes another address on the stack. At the
end of read int’s code is a RET that pops off the return address and
jumps back to get int’s code. Then when get int’s RET is executed,
it pops off the return address that jumps back to asm main. This works
correctly because of the LIFO property of the stack.

64 CHAPTER 4. SUBPROGRAMS

Remember it is very important to pop off all data that is pushed on the
stack. For example, consider the following:

1 get_int:
2 call read_int
3 mov [ebx], eax
4 push eax
5 ret ; pops off EAX value, not return address!!

This code would not return correctly!

4.5 Calling Conventions

When a subprogram is invoked, the calling code and the subprogram (the
callee) must agree on how to pass data between them. High-level languages
have standard ways to pass data known as calling conventions. For high-level
code to interface with assembly language, the assembly language code must
use the same conventions as the high-level language. The calling conventions
can differ from compiler to compiler or may vary depending on how the code
is compiled (e.g., if optimizations are on or not). One universal convention
is that the code will be invoked with a CALL instruction and return via a
RET.

All PC C compilers support one calling convention that will be described
in the rest of this chapter in stages. One property of these conventions are
that subprograms are reetrant. A reetrant subprogram may be called at any
point of a program safely (even inside the subprogram itself).

4.5.1 Passing parameters on the stack

Parameters to a subprogram may be passed on the stack. They are
pushed onto the stack before the CALL instruction. Just as in C, if the
parameter is to be changed by the subprogram, the address of the data
must be passed, not the value. If the parameter’s size is less than a double
word, it must be converted to a double word before being pushed.

The parameters on the stack are not popped off by the subprogram,
instead they are access in the stack itself. Why?

• Since they have to pushed on the stack before the CALL instruction,
the return address would have to be popped off first (and then pushed
back on again).

• Often the parameters will have to be used in several places in the
subprogram. Usually, they can not be kept in a register for the entire
subprogram and would have to be stored in memory. Leaving them

4.5. CALLING CONVENTIONS 65

ESP + 4 Parameter
ESP Return address

Figure 4.1:

ESP + 8 Parameter
ESP + 4 Return address
ESP subprogram data

Figure 4.2:

on the stack keeps a copy of the data in memory that can be accessed
at any point of the subprogram.

Consider a subprogram that is passed a single parameter on the stack. When using indirect ad-
dressing, the 80x86 proces-
sor accesses different seg-
ments depending on what
registers are used in the
indirect addressing expres-
sion. ESP (and EBP)
use the stack segment while
EAX, EBX, ECX and
EDX use the data segment.
However, this is usually
unimportant for most pro-
tected mode programs, be-
cause for them the data
and stack segments are the
same.

When the subprogram is invoked, the stack looks like Figure 4.1. The pa-
rameter can be accessed using indirect addressing ([ESP+4] 2).

If the stack is also used inside the subprogram to store data, the number
needed to be added to ESP will change. For example, Figure 4.2 shows what
the stack looks like if a DWORD is pushed the stack. Now the parameter is
at ESP + 8 not ESP + 4. Thus, it can be very error prone to use ESP when
referencing parameters. To solve this problem, the 80386 supplies another
register to use: EBP. This register’s only purpose is to reference data on the
stack. The C calling convention mandates that a subprogram first save the
value of EBP on the stack and then set EBP to be equal to ESP. This allows
ESP to change as data is pushed or popped off the stack without modifying
EBP. At the end of the subprogram, the original value of EBP must be
restored (this is why it is saved at the start of the subprogram.) Figure 4.3
shows the general form of a subprogram that follows these conventions.

Lines 2 and 3 in Figure 4.3 make up the general prologue of a subprogram.
Lines 5 and 6 make up the epilogue. Figure 4.4 shows what the stack looks
like immediately after the prologue. Now the parameter can be access with
[EBP + 8] at any place in the subprogram without worrying about what
else has been pushed onto the stack by the subprogram.

After the subprogram is over, the parameters that were pushed on the
stack must be removed. The C calling convention specifies that the caller
code must do this. Other conventions are different. For example, the Pascal
calling convention specifies that the subprogram must remove the parame-

2It is legal to add a constant to a register when using indirect addressing. More
complicated expressions are possible too. This is covered in the next chapter

66 CHAPTER 4. SUBPROGRAMS

1 subprogram_label:
2 push ebp ; save original EBP value on stack
3 mov ebp, esp ; new EBP = ESP
4 ; subprogram code
5 pop ebp ; restore original EBP value
6 ret

Figure 4.3: General subprogram form

ESP + 8 EBP + 8 Parameter
ESP + 4 EBP + 4 Return address
ESP EBP saved EBP

Figure 4.4:

ters. (There is another form of the RET instruction that makes this easy to
do.) Some C compilers support this convention too. The pascal keyword is
used in the prototype and definition of the function to tell the compiler to
use this convention. In fact, MS Windows API C functions use the Pascal
convention. Why? It is a little more efficient that the C convention. Why
do all C functions not use this convention, then? In general, C allows a
function to have varying number of arguments (e.g., the printf and scanf
functions). For these types of functions, the operation to remove the param-
eters from the stack will vary from one call of the function to the next. The
C convention allows the instructions to perform this operation to be easily
varied from one call to the next. The Pascal convention makes this opera-
tion very difficult. Thus, the Pascal convention (like the Pascal language)
does not allow this type of function. MS Windows can use this convention
since none of its API functions take varying numbers of arguments.

Figure 4.5 shows how a subprogram using the C calling convention would
be called. Line 3 removes the parameter from the stack by directly manipu-
lating the stack pointer. A POP instruction could be used to do this also, but
would require the useless result to be stored in a register. Actually, for this
particular case, many compilers would use a POP ECX instruction to remove
the parameter. The compiler would use a POP instead of an ADD because the
ADD requires more bytes for the instruction. However, the POP also changes
ECX’s value! Next is another example program with two subprograms that
use the C calling conventions discussed above. Line 54 (and other lines)
shows that multiple data and text segments may be declared in a single
source file. They will be combined into single data and text segments in

4.5. CALLING CONVENTIONS 67

1 push dword 1 ; pass 1 as parameter
2 call fun
3 add esp, 4 ; remove parameter from stack

Figure 4.5: Sample subprogram call

the linking process. Splitting up the data and code into separate segments
allow the data that a subprogram uses to be defined close by the code of the
subprogram.

sub3.asm
1 %include "asm_io.inc"
2

3 segment .data
4 sum dd 0
5

6 segment .bss
7 input resd 1
8

9 ;
10 ; psuedo-code algorithm
11 ; i = 1;
12 ; sum = 0;
13 ; while(get_int(i, &input), input != 0) {
14 ; sum += input;
15 ; i++;
16 ; }
17 ; print_sum(num);
18 segment .text
19 global _asm_main
20 _asm_main:
21 enter 0,0 ; setup routine
22 pusha
23

24 mov edx, 1 ; edx is ’i’ in pseudo-code
25 while_loop:
26 push edx ; save i on stack
27 push dword input ; push address on input on stack
28 call get_int
29 add esp, 8 ; remove i and &input from stack
30

68 CHAPTER 4. SUBPROGRAMS

31 mov eax, [input]
32 cmp eax, 0
33 je end_while
34

35 add [sum], eax ; sum += input
36

37 inc edx
38 jmp short while_loop
39

40 end_while:
41 push dword [sum] ; push value of sum onto stack
42 call print_sum
43 pop ecx ; remove [sum] from stack
44

45 popa
46 leave
47 ret
48

49 ; subprogram get_int
50 ; Parameters (in order pushed on stack)
51 ; number of input (at [ebp + 12])
52 ; address of word to store input into (at [ebp + 8])
53 ; Notes:
54 ; values of eax and ebx are destroyed
55 segment .data
56 prompt db ") Enter an integer number (0 to quit): ", 0
57

58 segment .text
59 get_int:
60 push ebp
61 mov ebp, esp
62

63 mov eax, [ebp + 12]
64 call print_int
65

66 mov eax, prompt
67 call print_string
68

69 call read_int
70 mov ebx, [ebp + 8]
71 mov [ebx], eax ; store input into memory
72

4.5. CALLING CONVENTIONS 69

73 pop ebp
74 ret ; jump back to caller
75

76 ; subprogram print_sum
77 ; prints out the sum
78 ; Parameter:
79 ; sum to print out (at [ebp+8])
80 ; Note: destroys value of eax
81 ;
82 segment .data
83 result db "The sum is ", 0
84

85 segment .text
86 print_sum:
87 push ebp
88 mov ebp, esp
89

90 mov eax, result
91 call print_string
92

93 mov eax, [ebp+8]
94 call print_int
95 call print_nl
96

97 pop ebp
98 ret sub3.asm

4.5.2 Local variables on the stack

The stack can be used as a convenient location for local variables. This is
exactly where C stores normal (or automatic in C lingo) variables. Using the
stack for variables is important if one wishes subprograms to be reentrant.
A reentrant subprogram will work if it is invoked at any place, including the
subprogram itself. In other words, reentrant subprograms can be invoked
recursively. Using the stack for variables also saves memory. Data not stored
on the stack is using memory from the beginning of the program until the
end of the program (C calls these types of variables global or static). Data
stored on the stack only use memory when the subprogram they are defined
for is active.

Local variables are stored right after the saved EBP value in the stack.
They are allocated by subtracting the number of bytes required from ESP
in the prologue of the subprogram. Figure 4.6 shows the new subprogram

70 CHAPTER 4. SUBPROGRAMS

1 subprogram_label:
2 push ebp ; save original EBP value on stack
3 mov ebp, esp ; new EBP = ESP
4 sub esp, LOCAL_BYTES ; = # bytes needed by locals
5 ; subprogram code
6 mov esp, ebp ; deallocate locals
7 pop ebp ; restore original EBP value
8 ret

Figure 4.6: General subprogram form with local variables

1 void calc sum(int n, int ∗ sump)
2 {
3 int i , sum = 0;
4

5 for (i=1; i <= n; i++)
6 sum += i;
7 ∗sump = sum;
8 }

Figure 4.7: C version of sum

skeleton. The EBP register is used to access local variables. Consider the
C function in Figure 4.7. Figure 4.8 shows how the equivalent subprogram
could be written in assembly.

Figure 4.9 shows what the stack looks like after the prologue of the pro-
gram in Figure 4.8. This combination of the parameters return information
and local variables used by a single subprogram call is called a stack frame.
Every invocation of a C function creates a new stack frame on the stack.

The prologue and epilogue of a subprogram can be simplified by using
two special instructions that are designed specifically for this purpose. The
ENTER instruction performs the prologue code and the LEAVE performs the
epilogue. The ENTER instruction takes two immediate operands. For the
C calling convention, the second operand is always 0. The first operand is
the number bytes needed by local variables. The LEAVE instruction has no
operands. Figure 4.10 shows how this instructions are used. Note that the
program skeleton (Figure 1.7) also uses ENTER and LEAVE.

4.6. MULTI-MODULE PROGRAMS 71

1 cal_sum:
2 push ebp
3 mov ebp, esp
4 sub esp, 4 ; make room for local sum
5

6 mov dword [ebp - 4], 0 ; sum = 0
7 mov ebx, 1 ; ebx (i) = 1
8 for_loop:
9 cmp ebx, [ebp+12] ; is i >= n?

10 jnle end_for
11

12 add [ebp-4], ebx ; sum += i
13 inc ebx
14 jmp short for_loop
15

16 end_for:
17 mov ebx, [ebp+8] ; ebx = sump
18 mov eax, [ebp-4] ; eax = sum
19 mov [ebx], eax ; *sump = sum;
20

21 mov esp, ebp
22 pop ebp
23 ret

Figure 4.8: Assembly version of sum

4.6 Multi-Module Programs

A multi-module program is one composed of more that one object file.
All the programs presented here have been multi-module programs. They
consisted of the C driver object file and the assembly object file (plus the
C library object files). Recall that the linker combines the object files into
a single executable program. The linker must match up references made
to each label in one module (i.e., object file) to its definition in another
module. In order for module A to use a label defined in module B, the
extern directive must be used. After the extern directive comes a comma
delimited list of labels. The directive tells the assembler to treat these
labels as external to the module. That is, these are labels that can be used
in this module, but are defined in another. The asm io.inc file defines the
read int, etc. routines as external.

In assembly, labels can not be accessed externally by default. If a label

72 CHAPTER 4. SUBPROGRAMS

ESP + 16 EBP + 12 n
ESP + 12 EBP + 8 sump
ESP + 8 EBP + 4 Return address
ESP + 4 EBP saved EBP
ESP EBP - 4 sum

Figure 4.9:

1 subprogram_label:
2 enter LOCAL_BYTES, 0 ; = # bytes needed by locals
3 ; subprogram code
4 leave
5 ret

Figure 4.10: General subprogram form with local variables using ENTER and
LEAVE

can be accessed from other modules than the one it is defined in, it must
be decalared global in its module. The global directive does this. Line 13
of the skeleton program listing in Figure 1.7 shows the asm main label
being defined as global. Without this declaration, there would be a linker
error. Why? Because the C code would not be able to refer to the internal
asm main label.

Next is the code for the previous example, rewritten to use two modules.
The two subprograms (get int and print sum) are in a separate source file
than the asm main routine.

main4.asm
1 %include "asm_io.inc"
2

3 segment .data
4 sum dd 0
5

6 segment .bss
7 input resd 1
8

9 segment .text
10 global _asm_main
11 extern get_int, print_sum

12 _asm_main:
13 enter 0,0 ; setup routine
14 pusha

4.6. MULTI-MODULE PROGRAMS 73

15

16 mov edx, 1 ; edx is ’i’ in pseudo-code
17 while_loop:
18 push edx ; save i on stack
19 push dword input ; push address on input on stack
20 call get_int
21 add esp, 8 ; remove i and &input from stack
22

23 mov eax, [input]
24 cmp eax, 0
25 je end_while
26

27 add [sum], eax ; sum += input
28

29 inc edx
30 jmp short while_loop
31

32 end_while:
33 push dword [sum] ; push value of sum onto stack
34 call print_sum
35 pop ecx ; remove [sum] from stack
36

37 popa
38 leave
39 ret main4.asm

sub4.asm
1 %include "asm_io.inc"
2

3 segment .data
4 prompt db ") Enter an integer number (0 to quit): ", 0
5

6 segment .text
7 global get_int, print_sum

8 get_int:
9 enter 0,0

10

11 mov eax, [ebp + 12]
12 call print_int
13

14 mov eax, prompt
15 call print_string
16

74 CHAPTER 4. SUBPROGRAMS

17 call read_int
18 mov ebx, [ebp + 8]
19 mov [ebx], eax ; store input into memory
20

21 leave
22 ret ; jump back to caller
23

24 segment .data
25 result db "The sum is ", 0
26

27 segment .text
28 print_sum:
29 enter 0,0
30

31 mov eax, result
32 call print_string
33

34 mov eax, [ebp+8]
35 call print_int
36 call print_nl
37

38 leave
39 ret sub4.asm

The previous example only has global code labels; however, global data
labels work exactly the same way.

4.7 Interfacing Assembly with C

Today, very few programs are written completely in assembly. Compilers
are very good at converting high level code into efficient machine code. Since
it is much easier to write code in a high level language, it is more popular.
In addition, high level code is much more protable than assembly!

When assembly is used, it is often only used for small parts of the code.
This can be done in two ways: calling assembly subroutines from C or
inline assembly. Inline assembly allows the programmer to place assembly
statements directly into C code. This can be very convenient; however, there
are disadvantages to inline assembly. The assembly code must be written in
the format the compiler uses. No compiler at the moment supports NASM’s
format. Different compilers require different formats. Borland and Microsoft
require MASM format. DJGPP and Linux’s gcc require GAS3 format. The

3GAS is the assembler that all GNU compiler’s use. It uses the AT&T syntax which

4.7. INTERFACING ASSEMBLY WITH C 75

1 segment .data
2 x dd 0
3 format db "x = %d\n", 0
4

5 segment .text
6 ...
7 push dword [x] ; push x’s value
8 push dword format ; push address of format string
9 call _printf ; note underscore!

10 add esp, 8 ; remove parameters from stack

Figure 4.11: Call to printf

technique of calling an assembly subroutine is much more standandized on
the PC.

Assembly routines are usually used with C for the following reasons:

• Direct access is needed to hardware features of the computer that are
difficult or impossible to access from C.

• The routine must be as fast as possible and the programmer can hand
optimize the code better than the compiler can.

The last reason is not as valid as it once was. Compiler technology has
improved over the years and compilers can often generate very efficient code
(especially if compiler optimizations are turned on). The disadvantages of
assembly routines are: reduced portability and readability.

Most of the C calling conventions have already been specified. However,
there are a few additional features that need to be described.

4.7.1 Saving registers

First, C assumes that a subroutine maintains the values of the following The register keyword can
be used in a C variable dec-
laration to suggest to the
compiler that it use a reg-
ister for this variable in-
stead of a memory loca-
tion. These are known as
register variables. Mod-
ern compilers do this auto-
matically without requiring
any suggestions.

registers: EBX, ESI, EDI, EBP, CS, DS, SS, ES. This does not mean that
the subroutine can not change them internally. Instead, it means that if
it does change their values, it must restore their original values before the
subroutine returns. The EBX, ESI and EDI values must be unmodified
because C uses these registers for register variables. Usually the stack is
used to save the original values of these registers.

is very different from the relatively similar syntaxes of MASM, TASM and NASM.

76 CHAPTER 4. SUBPROGRAMS

EBP + 12 value of x
EBP + 8 address of format string
EBP + 4 Return address
EBP saved EBP

Figure 4.12: Stack inside printf

4.7.2 Labels of functions

Most C compilers prepend a single underscore() character at the be-
ginning of the names of functions and global/static variables. For example,
a function named f will be assigned the label f. Thus, if this is to be an
assembly routine, it must be labelled f, not f. The Linux gcc compiler does
not prepend any character. Under Linux ELF executables, one simply would
use the label f for the C function f. However, DJGPP’s gcc does prepend
an underscore. Note that in the assembly skeleton program (Figure 1.7),
the label for the main routine is asm main.

4.7.3 Passing parameters

Under the C calling convention, the arguments of a function are pushed
on the stack in the reverse order that they appear in the function call.

Consider the following C statement: printf("x = %d\n",x); Figure 4.11
shows how this would be compiled (shown in the equivalent NASM format).
Figure 4.12 shows what the stack looks like after the prologue inside the
printf function. The printf function is one of the C library functions that
can take any number of arguments. The rules of the C calling conventions
were specifically written to allow these types of functions. Since the addressIt is not necessary to use

assembly to process an ar-
bitrary number of argu-
ments in C. The stdarg.h
header file defines macros
that can be used to process
them portably. See any
good C book for details.

of the format string is pushed last, it’s location on the stack will always be
at EBP + 8 not matter how many parameters are passed to the function.
The printf code can then look at the format string to determine how many
parameters should have been passed and look for them on the stack.

Of course, if a mistake is made, printf("x = %d\n"), the printf code
will still print out the double word value at [EBP + 12]. However, this will
not be x’s value!

4.7.4 Calculating addresses of local variables

Finding the address of a label defined in the data or bss segments is
simple. Basically, the linker does this. However, calculating the address
of a local variable (or parameter) on the stack is not as straightforward.
However, this is a very common need when calling subroutines. Consider
the case of passing the address of a variable (let’s call it x) to a function

4.7. INTERFACING ASSEMBLY WITH C 77

(let’s call it foo). If x is located at EBP − 8 on the stack, one cannot just
use:

mov eax, ebp - 8

Why? The value that MOV stores into EAX must be computed by the as-
sembler (that is, it must in the end be a constant). However, there is an
instruction that does the desired calculation. It is called LEA (for Load Ef-
fective Address). The following would calculate the address of x and store
it into EAX:

lea eax, [ebp - 8]

Now EAX holds the address of x and could be pushed on the stack when
calling function foo. Do not be confused, it looks like this instruction is
reading the data at [EBP−8]; however, this is not true. The LEA instruction
never reads memory! It only computes the address that would be read
by another instruction and stores this address in its first register operand.
Since it does not actually read any memory, no memory size designation
(e.g. dword) is needed or allowed.

4.7.5 Returning values

Non-void C functions return back a value. The C calling conventions
specify how this is done. Return values are passed via registers. All integral
types (char, int, enum, etc.) are returned in the EAX register. If they
are smaller than 32-bits, they are extended to 32-bits when stored in EAX.
(How they are extended depends on if they are signed or unsigned types.)
Pointer values are also stored in EAX. Floating point values are stored in
the ST0 register of the math coprocessor. (This register is discussed in the
floating point chapter.)

4.7.6 Other calling conventions

The rules described about describe the standard C calling convention
that is supported by all 80x86 C compilers. Often compilers support other
calling conventions as well. When interfacing with assembly language it
is very important to know what calling convention the compiler is using
when it calls your function. Usually, the default is to use the standard
calling convention; however, this is not always the case4. Compilers that use
multiple conventions often have command line switches that can be used to
change the default convention. They also provide extensions to the C syntax

4The Watcom C compiler is an example of one that does not use the standard conven-
tion by default.

78 CHAPTER 4. SUBPROGRAMS

to explicitly assign calling conventions to individual functions. However,
these extensions are not standardized and may vary from one compiler to
another.

The GCC compiler allows different calling conventions. The convention
of a function can be explicitly declared by using the attribute exten-
sion. For example, to declare a void function that uses the standard calling
convention named f that takes a single int parameter, use the following
syntax for its prototype:

void f (int) attribute ((cdecl));

GCC also supports the standard call calling convention. The function above
could be declared to use this convention by replacing the cdecl with stdcall.
The difference in stdcall and cdecl is that stdcall requires the subroutine
to remove the parameters from the stack (as the Pascal calling convention
does). Thus, the stdcall convention can only be used with functions that
take a fixed number of arguments (i.e., ones not like printf and scanf).

GCC also supports an additional attribute called regparm that tells the
compiler to use registers to pass up to 3 integer arguments to a function
instead of using the stack. This is a common type of optimization that
many compilers support.

Borland and Microsoft use a common syntax to declare calling conven-
tions. They add the cdecl and stdcall keywords to C. These keywords
act as function modifiers and appear immediately before the function name
in a prototype. For example, the function f above would be defined as
follows for Borland and Microsoft:
void cdecl f (int);

There are advantages and disadvantages to each of the calling conven-
tions. The main advantages of the cdecl convention is that it is simple and
very flexible. It can be used for any type of C function and C compiler. Us-
ing other conventions can limit the portability of the subroutine. Its main
disadvantage is that it can be slower that some of the others and use more
memory (since every invocation of the function requires code to remove the
parameters on the stack).

The advantages of the stdcall convention is that it uses less memory
than cdecl. No stack cleanup is required after the CALL instruction. Its main
disadvantage is that it can not be used with functions that have variable
numbers of arguments.

The advantage of using a convention that uses registers to pass integer
parameters is speed. The main disadvantage is that the convention is more
complex. Some parameters may be in registers and others on the stack.

4.7. INTERFACING ASSEMBLY WITH C 79

4.7.7 Examples

Next is an example that shows how an assembly routine can be interfaced
to a C program. (Note that this program does not use the assembly skeleton
program (Figure 1.7) or the driver.c module.)

main5.c

1 #include <stdio.h>
2 /∗ prototype for assembly routine ∗/
3 void calc sum(int , int ∗) attribute ((cdecl));
4

5 int main(void)
6 {
7 int n, sum;
8

9 printf (”Sum integers up to : ”);
10 scanf(”%d”, &n);
11 calc sum(n, &sum);
12 printf (”Sum is %d\n”, sum);
13 return 0;
14 }

main5.c

sub5.asm
1 ; subroutine _calc_sum
2 ; finds the sum of the integers 1 through n
3 ; Parameters:
4 ; n - what to sum up to (at [ebp + 8])
5 ; sump - pointer to int to store sum into (at [ebp + 12])
6 ; pseudo C code:
7 ; void calc_sum(int n, int * sump)
8 ; {
9 ; int i, sum = 0;

10 ; for(i=1; i <= n; i++)
11 ; sum += i;
12 ; *sump = sum;
13 ; }
14

15 segment .text
16 global _calc_sum
17 ;
18 ; local variable:

80 CHAPTER 4. SUBPROGRAMS

Sum integers up to: 10
Stack Dump # 1
EBP = BFFFFB70 ESP = BFFFFB68
+16 BFFFFB80 080499EC
+12 BFFFFB7C BFFFFB80
+8 BFFFFB78 0000000A
+4 BFFFFB74 08048501
+0 BFFFFB70 BFFFFB88
-4 BFFFFB6C 00000000
-8 BFFFFB68 4010648C

Sum is 55

Figure 4.13: Sample run of sub5 program

19 ; sum at [ebp-4]
20 _calc_sum:
21 enter 4,0 ; make room for sum on stack
22 push ebx ; IMPORTANT!
23

24 mov dword [ebp-4],0 ; sum = 0
25 dump_stack 1, 2, 4 ; print out stack from ebp-8 to ebp+16
26 mov ecx, 1 ; ecx is i in pseudocode
27 for_loop:
28 cmp ecx, [ebp+8] ; cmp i and n
29 jnle end_for ; if not i <= n, quit
30

31 add [ebp-4], ecx ; sum += i
32 inc ecx
33 jmp short for_loop
34

35 end_for:
36 mov ebx, [ebp+12] ; ebx = sump
37 mov eax, [ebp-4] ; eax = sum
38 mov [ebx], eax
39

40 pop ebx ; restore ebx
41 leave
42 ret sub5.asm

Why is line 22 of sub5.asm so important? Because the C calling con-
vention requires the value of EBX to be unmodified by the function call. If

4.7. INTERFACING ASSEMBLY WITH C 81

this is not done, it is very likely that the program will not work correctly.
Line 25 demonstrates how the dump stack macro works. Recall that the

first parameter is just a numeric label, and the second and third parameters
determine how many double words to display below and above EBP respec-
tively. Figure 4.13 shows an example run of the program. For this dump,
one can can see that the address of the dword to store the sum is BFFFFB80
(at EBP + 12); the number to sum up to is 0000000A (at EBP + 8); the re-
turn address for the routine is 08048501 (at EBP + 4); the saved EBP value
is BFFFFB88 (at EBP); the value of the local variable is 0 at (EBP - 4);
and finally the saved EBX value is 4010648C (at EBP - 8).

The calc sum function could be rewritten to return the sum as its return
value instead of using a pointer parameter. Since the sum is an integral
value, the sum would be left in the EAX register. Line 11 of the main5.c
file would need to changed to:

sum = calc sum(n);

Also, the prototype of calc sum would need be altered. Below is the modi-
fied assembly code:

sub6.asm
1 ; subroutine _calc_sum
2 ; finds the sum of the integers 1 through n
3 ; Parameters:
4 ; n - what to sum up to (at [ebp + 8])
5 ; Return value:
6 ; value of sum
7 ; pseudo C code:
8 ; int calc_sum(int n)
9 ; {

10 ; int i, sum = 0;
11 ; for(i=1; i <= n; i++)
12 ; sum += i;
13 ; return sum;
14 ; }
15 segment .text
16 global _calc_sum
17 ;
18 ; local variable:
19 ; sum at [ebp-4]
20 _calc_sum:
21 enter 4,0 ; make room for sum on stack
22

23 mov dword [ebp-4],0 ; sum = 0
24 mov ecx, 1 ; ecx is i in pseudocode

82 CHAPTER 4. SUBPROGRAMS

1 segment .data
2 format db "%d", 0
3

4 segment .text
5 ...
6 lea eax, [ebp-16]
7 push eax
8 push dword format
9 call _scanf

10 add esp, 8
11 ...

Figure 4.14: Calling scanf from assembly

25 for_loop:
26 cmp ecx, [ebp+8] ; cmp i and n
27 jnle end_for ; if not i <= n, quit
28

29 add [ebp-4], ecx ; sum += i
30 inc ecx
31 jmp short for_loop
32

33 end_for:
34 mov eax, [ebp-4] ; eax = sum
35

36 leave
37 ret sub6.asm

4.7.8 Calling C functions from assembly

One great advantage of interfacing C and assembly is that allows as-
sembly code to access the large C library and user written functions. For
example, what if one wanted to call the scanf function to read in an integer
from the keyboard. Figure 4.14 shows code to do this. One very important
point to remember is that scanf follows the C calling standard to the letter.
This means that it preserves the values of the EBX, ESI and EDI registers;
however, the EAX, ECX and EDX registers may be modified! In fact, EAX
will definitely be changed, as it will contain the return value of the scanf
call. For other examples of using interfacing with C, look at the code in
asm io.asm which was used to create asm io.obj.

4.8. REENTRANT AND RECURSIVE SUBPROGRAMS 83

4.8 Reentrant and Recursive Subprograms

A reentrant subprogram must satisfy the following properties:

• It must not modify any code instructions. In a high level language
this would be difficult, but in assembly it is not hard for a program to
try to modify its own code. For example:

mov word [cs:$+7], 5 ; copy 5 into the word 7 bytes ahead
add ax, 2 ; previous statement changes 2 to 5!

This code would work in real mode, but in protected mode operating
systems the code segment is marked as read only. When the first line
above executes the program will be aborted on these systems. This
type of programming is bad for many reasons. It is confusing, hard to
maintain and does not allow code sharing (see below).

• It must not modify global data (such as data in the data and the bss
segments). All variables are stored on the stack.

There are several advantages to writing reentrant code.

• A reentrant subprogram can be called recursively.

• A reentrant program can be shared by multiple processes. On many
multi-tasking operating systems, if there are multiple instances of a
program running, only one copy of the code is in memory. Shared
libraries and DLL’s (Dynamic Link Libraries) use this idea as well.

• Reentrant subprograms work much better in multi-threaded 5 pro-
grams. Windows 9x/NT and most UNIX-like operating systems (So-
laris, Linux, etc.) support multi-threaded programs.

4.8.1 Recursive subprograms

These types of subprograms call themselves. The recursion can be either
direct or indirect. Direct recursion occurs when a subprogram, say foo, calls
itself inside foo’s body. Indirect recursion occurs when a subprogram is not
called by itself directly, but by another subprogram it calls. For example,
subprogram foo could call bar and bar could call foo.

Recursive subprograms must have a termination condition. When this
condition is true, no more recursive calls are made. If a recursive routine
does not have a termination condition or the condition never becomes true,
the recursion will never end (much like an infinite loop).

5A multi-threaded program has multiple threads of execution. That is, the program
itself is multi-tasked.

84 CHAPTER 4. SUBPROGRAMS

1 ; finds n!
2 segment .text
3 global _fact
4 _fact:
5 enter 0,0
6

7 mov eax, [ebp+8] ; eax = n
8 cmp eax, 1
9 jbe term_cond ; if n <= 1, terminate

10 dec eax
11 push eax
12 call _fact ; call fact(n-1) recursively
13 pop ecx ; answer in eax
14 mul dword [ebp+8] ; edx:eax = eax * [ebp+8]
15 jmp short end_fact
16 term_cond:
17 mov eax, 1
18 end_fact:
19 leave
20 ret

Figure 4.15: Recursive factorial function

.

n=3 frame

n=2 frame

n=1 frame

n(3)
Return address

Saved EBP

n(2)

Return address

Saved EBP

n(1)
Return address

Saved EBP

Figure 4.16: Stack frames for factorial function

4.8. REENTRANT AND RECURSIVE SUBPROGRAMS 85

1 void f (int x)
2 {
3 int i ;
4 for (i=0; i < x; i++) {
5 printf (”%d\n”, i);
6 f(i);
7 }
8 }

Figure 4.17: Another example (C version)

Figure 4.15 shows a function that calculates factorials recursively. It
could be called from C with:
x = fact (3); /∗ find 3! ∗/
Figure 4.16 shows what the stack looks like at its deepest point for the above
function call.

Figures 4.17 and 4.18 show another more complicated recursive example
in C and assembly, respectively. What is the output is for f(3)? Note
that the ENTER instruction creates a new i on the stack for each recursive
call. Thus, each recursive instance of f has its own independent variable i.
Defining i as a double word in the data segment would not work the same.

4.8.2 Review of C variable storage types

C provides several types of variable storage.

global These variables are defined outside of any function and are stored
at fixed memory locations (in the data or bss segments) and exist
from the beginning of the program until the end. By default, they can
be accessed from any function in the program; however, if they are
declared as static, only the functions in the same module can access
them (i.e., in assembly terms, the label is internal, not external).

static These are local variables of a function that are declared static.
(Unfortunately, C uses the keyword static for two different purposes!)
These variables are also stored at fixed memory locations (in data or
bss), but can only be directly accessed in the functions they are defined
in.

automatic This is the default type for a C variable defined inside a func-
tion. This variables are allocated on the stack when the function they
are defined in is invoked and are deallocated when the function returns.
Thus, they do not have fixed memory locations.

86 CHAPTER 4. SUBPROGRAMS

1 %define i ebp-4
2 %define x ebp+8 ; useful macros
3 segment .data
4 format db "%d", 10, 0 ; 10 = ’\n’
5 segment .text
6 global _f
7 extern _printf
8 _f:
9 enter 4,0 ; allocate room on stack for i

10

11 mov dword [i], 0 ; i = 0
12 lp:
13 mov eax, [i] ; is i < x?
14 cmp eax, [x]
15 jnl quit
16

17 push eax ; call printf
18 push format
19 call _printf
20 add esp, 8
21

22 push dword [i] ; call f
23 call _f
24 pop eax
25

26 inc dword [i] ; i++
27 jmp short lp
28 quit:
29 leave
30 ret

Figure 4.18: Another example (assembly version)

4.8. REENTRANT AND RECURSIVE SUBPROGRAMS 87

register This keyword asks the compiler to use a register for the data in
this variable. This is just a request. The compiler does not have to
honor it. If the address of the variable is used anywhere in the program
it will not be honored (since registers do not have addresses). Also,
only simple integral types can be register values. Structured types
can not be; they would not fit in a register! C compilers will often
automatically make normal automatic variables into register variables
without any hint from the programmer.

volatile This keyword tells the compiler that the value of the variable may
change any moment. This means that the compiler can not make any
assumptions about when the variable is modified. Often a compiler
might store the value of a variable in a register temporarily and use
the register in place of the variable in a section of code. It can not
do these types of optimizations with volatile variables. A common
example of a volatile variable would be one could be altered by two
threads of a multi-threaded program. Consider the following code:

1 x = 10;
2 y = 20;
3 z = x;

If x could be altered by another thread, it is possible that the other
thread changes x between lines 1 and 3 so that z would not be 10.
However, if the x was not declared volatile, the compiler might assume
that x is unchanged and set z to 10.

Another use of volatile is to keep the compiler from using a register
for a variable.

88 CHAPTER 4. SUBPROGRAMS

Chapter 5

Arrays

5.1 Introduction

An array is a contiguous block of list of data in memory. Each element
of the list must be the same type and use exactly the same number of bytes
of memory for storage. Because of these properties, arrays allow efficient
access of the data by its position (or index) in the array. The address of any
element can be computed by knowing three facts:

• The address of the first element of the array.

• The number of bytes in each element

• The index of the element

It is convenient to consider the index of the first element of the array to
be zero (just as in C). It is possible to use other values for the first index,
but it complicates the computations.

5.1.1 Defining arrays

Defining arrays in the data and bss segments

To define an initialized array in the data segment, use the normal db,
dw, etc. directives. NASM also provides a useful directive named TIMES that
can be used to repeat a statement many times without having to duplicate
the statements by hand. Figure 5.1 shows several examples of these.

To define an uninitialized array in the bss segment, use the resb, resw,
etc. directives. Remember that these directives have an operand that spec-
ifies how many units of memory to reserve. Figure 5.1 also shows examples
of these types of definitions.

89

90 CHAPTER 5. ARRAYS

1 segment .data
2 ; define array of 10 double words initialized to 1,2,..,10
3 a1 dd 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
4 ; define array of 10 words initialized to 0
5 a2 dw 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
6 ; same as before using TIMES
7 a3 times 10 dw 0
8 ; define array of bytes with 200 0’s and then a 100 1’s
9 a4 times 200 db 0

10 times 100 db 1
11

12 segment .bss
13 ; define an array of 10 uninitialized double words
14 a5 resd 10
15 ; define an array of 100 uninitialized words
16 a6 resw 100

Figure 5.1: Defining arrays

Defining arrays as local variables on the stack

There is no direct way to define a local array variable on the stack.
As before, one computes the total bytes required by all local variables,
including arrays, and subtracts this from ESP (either directly or using the
ENTER instruction). For example, if a function needed a character variable,
two double word integers and a 50 element word array, one would need
1 + 2× 4 + 50× 2 = 109 bytes. However, the number subtracted from ESP
should be a multiple of four (112 in this case) to keep ESP on a double word
boundary. One could arrange the variables inside this 109 bytes in several
ways. Figure 5.2 shows two possible ways. The unused part of the first
ordering is there to keep the double words on double word boundaries to
speed up memory accesses.

5.1.2 Accessing elements of arrays

There is no [] operator in assembly language as in C. To access an
element of an array, its address must be computed. Consider the following
two array definitions:

array1 db 5, 4, 3, 2, 1 ; array of bytes
array2 dw 5, 4, 3, 2, 1 ; array of words

Here are some examples using this arrays:

5.1. INTRODUCTION 91

EBP - 1 char
unused

EBP - 8 dword 1
EBP - 12 dword 2 word

array

word
array EBP - 100

EBP - 104 dword 1
EBP - 108 dword 2
EBP - 109 char

EBP - 112 unused

Figure 5.2: Arrangments of the stack

1 mov al, [array1] ; al = array1[0]
2 mov al, [array1 + 1] ; al = array1[1]
3 mov [array1 + 3], al ; array1[3] = al
4 mov ax, [array2] ; ax = array2[0]
5 mov ax, [array2 + 2] ; ax = array2[1] (NOT array2[2]!)
6 mov [array2 + 6], ax ; array2[3] = ax
7 mov ax, [array2 + 1] ; ax = ??

In line 5, element 1 of the word array is referenced, not element 2. Why?
Words are two byte units, so to move to the next element of a word array,
one must move two bytes ahead, not one. Line 7 will read one byte from the
first element and one form the second. In C, the compiler looks at the type
of a pointer in determining how many bytes to move in an expression that
uses pointer arithmetic so that the programmer does not have to. However,
in assembly, it is up to the programmer to take the size of array elements in
account when moving from element to element.

Figure 5.3 shows a code snippet that adds all the elements of array1
in the previous example code. In line 7, AX is added to DX. Why not
AL? First, the two operands of the ADD instruction must be the same size.
Secondly, it would be easy to add up bytes and get a sum that was to big
to fit into a byte. By using DX, sums up to 65,535 are allowed. However, it
is important to realize that AH is being added also. This is why AH is set
to zero1 in line 3.

Figures 5.4 and 5.5 show two alternative ways to calculate the sum. The
lines in italics replace lines 6 and 7 of Figure 5.3.

1Setting AH to zero is implicitly assuming that AL is an unsigned number. If it is
signed, the appropriate action would be to insert a CBW instruction between lines 6 and 7

92 CHAPTER 5. ARRAYS

1 mov ebx, array1 ; ebx = address of array1
2 mov dx, 0 ; dx will hold sum
3 mov ah, 0 ; ?
4 mov ecx, 5
5 lp:
6 mov al, [ebx] ; al = *ebx
7 add dx, ax ; dx += ax (not al!)
8 inc ebx ; bx++
9 loop lp

Figure 5.3: Summing elements of an array (Version 1)

1 mov ebx, array1 ; ebx = address of array1
2 mov dx, 0 ; dx will hold sum
3 mov ecx, 5
4 lp:
5 add dl, [ebx] ; dl += *ebx

6 jnc next ; if no carry goto next

7 inc dh ; inc dh

8 next:

9 inc ebx ; bx++
10 loop lp

Figure 5.4: Summing elements of an array (Version 2)

5.1.3 More advanced indirect addressing

Not surprisingly, indirect addressing is often used with arrays. The most
general form of an indirect memory reference is:

[base reg + factor *index reg + constant]

where:

base reg is one of the registers EAX, EBX, ECX, EDX, EBP, ESP, ESI or
EDI.

factor is either 1, 2, 4 or 8. (If 1, factor is omitted.)

index reg is one of the registers EAX, EBX, ECX, EDX, EBP, ESI, EDI.
(Note that ESP is not in list.)

5.1. INTRODUCTION 93

1 mov ebx, array1 ; ebx = address of array1
2 mov dx, 0 ; dx will hold sum
3 mov ecx, 5
4 lp:
5 add dl, [ebx] ; dl += *ebx

6 adc dh, 0 ; dh += carry flag + 0

7 inc ebx ; bx++
8 loop lp

Figure 5.5: Summing elements of an array (Version 3)

constant is a 32-bit constant. The constant can be a label (or a label
expression).

5.1.4 Example

Here is an example that uses an array and passes it to a function. It
uses the array1c.c program (listed below) as a driver, not the driver.c
program.

array1.asm
1 %define ARRAY_SIZE 100
2 %define NEW_LINE 10
3

4 segment .data
5 FirstMsg db "First 10 elements of array", 0
6 Prompt db "Enter index of element to display: ", 0
7 SecondMsg db "Element %d is %d", NEW_LINE, 0
8 ThirdMsg db "Elements 20 through 29 of array", 0
9 InputFormat db "%d", 0

10

11 segment .bss
12 array resd ARRAY_SIZE
13

14 segment .text
15 extern _puts, _printf, _scanf, _dump_line
16 global _asm_main
17 _asm_main:
18 enter 4,0 ; local dword variable at EBP - 4
19 push ebx
20 push esi
21

94 CHAPTER 5. ARRAYS

22 ; initialize array to 100, 99, 98, 97, ...
23

24 mov ecx, ARRAY_SIZE
25 mov ebx, array
26 init_loop:
27 mov [ebx], ecx
28 add ebx, 4
29 loop init_loop
30

31 push dword FirstMsg ; print out FirstMsg
32 call _puts
33 pop ecx
34

35 push dword 10
36 push dword array
37 call _print_array ; print first 10 elements of array
38 add esp, 8
39

40 ; prompt user for element index
41 Prompt_loop:
42 push dword Prompt
43 call _printf
44 pop ecx
45

46 lea eax, [ebp-4] ; eax = address of local dword
47 push eax
48 push dword InputFormat
49 call _scanf
50 add esp, 8
51 cmp eax, 1 ; eax = return value of scanf
52 je InputOK
53

54 call _dump_line ; dump rest of line and start over
55 jmp Prompt_loop ; if input invalid
56

57 InputOK:
58 mov esi, [ebp-4]
59 push dword [array + 4*esi]
60 push esi
61 push dword SecondMsg ; print out value of element
62 call _printf
63 add esp, 12

5.1. INTRODUCTION 95

64

65 push dword ThirdMsg ; print out elements 20-29
66 call _puts
67 pop ecx
68

69 push dword 10
70 push dword array + 20*4 ; address of array[20]
71 call _print_array
72 add esp, 8
73

74 pop esi
75 pop ebx
76 mov eax, 0 ; return back to C
77 leave
78 ret
79

80 ;
81 ; routine _print_array
82 ; C-callable routine that prints out elements of a double word array as
83 ; signed integers.
84 ; C prototype:
85 ; void print_array(const int * a, int n);
86 ; Parameters:
87 ; a - pointer to array to print out (at ebp+8 on stack)
88 ; n - number of integers to print out (at ebp+12 on stack)
89

90 segment .data
91 OutputFormat db "%-5d %5d", NEW_LINE, 0
92

93 segment .text
94 global _print_array
95 _print_array:
96 enter 0,0
97 push esi
98 push ebx
99

100 xor esi, esi ; esi = 0
101 mov ecx, [ebp+12] ; ecx = n
102 mov ebx, [ebp+8] ; ebx = address of array
103 print_loop:
104 push ecx ; printf might change ecx!
105

96 CHAPTER 5. ARRAYS

106 push dword [ebx + 4*esi] ; push array[esi]
107 push esi
108 push dword OutputFormat
109 call _printf
110 add esp, 12 ; remove parameters (leave ecx!)
111

112 inc esi
113 pop ecx
114 loop print_loop
115

116 pop ebx
117 pop esi
118 leave
119 ret array1.asm

array1c.c

1 #include <stdio.h>
2

3 int asm main(void);
4 void dump line(void);
5

6 int main()
7 {
8 int ret status ;
9 ret status = asm main();

10 return ret status ;
11 }
12

13 /∗
14 ∗ function dump line
15 ∗ dumps all chars left in current line from input buffer
16 ∗/
17 void dump line()
18 {
19 int ch;
20

21 while((ch = getchar()) != EOF && ch != ’\n’)
22 /∗ null body∗/ ;
23 }

array1c.c

5.2. ARRAY/STRING INSTRUCTIONS 97

LODSB AL = [DS:ESI]
ESI = ESI ± 1

STOSB [ES:EDI] = AL
EDI = EDI ± 1

LODSW AX = [DS:ESI]
ESI = ESI ± 2

STOSW [ES:EDI] = AX
EDI = EDI ± 2

LODSD EAX = [DS:ESI]
ESI = ESI ± 4

STOSD [ES:EDI] = EAX
EDI = EDI ± 4

Figure 5.6: Reading and writing string instructions

5.2 Array/String Instructions

The 80x86 family of processors provide several instructions that are de-
signed to work with arrays. These instructions are called string instructions.
They use the index registers (ESI and EDI) to perform an operation and
then to automatically increment or decrement one or both of the index reg-
isters. The direction flag in the FLAGS register determines where the index
registers are incremented or decremented. There are two instructions that
modify the direction flag:

CLD clears the direction flag. In this state, the index registers are incre-
mented.

STD sets the direction flag. In this state, the index registers are decre-
mented.

A very common mistake in 80x86 programming is to forget to explicitly put
the direction flag in the correct state. This often leads to code that works
most of the time (when the direction flag happens to be in the desired state),
but does not work all the time.

5.2.1 Reading and writing memory

The simplest string instructions either read or write memory or both.
They may read or write a byte, word or double word at a time. Figure 5.6
shows these instructions with a short psuedo-code description of what they
do. There are several points to notice here. First, ESI is used for reading and
EDI for writing. It is easy to remember this if one remembers that SI stands
for Source Index and DI stands for Destination Index. Next, notice that the
register that holds the data is fixed (either AL, AX or EAX). Finally, note
that the storing instructions use ES to detemine the segment to write to,
not DS. In protected mode programming this is not usually a problem, since
there is only one data segment and ES should be automatically initialized
to reference it (just as DS is). However, in real mode programming, it is
very important for the programmer to initialize ES to the correct segment

98 CHAPTER 5. ARRAYS

1 segment .data
2 array1 dd 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
3

4 segment .bss
5 array2 resd 10
6

7 segment .text
8 cld ; don’t forget this!
9 mov esi, array1

10 mov edi, array2
11 mov ecx, 10
12 lp:
13 lodsd
14 stosd
15 loop lp

Figure 5.7: Load and store example

selector value2. Figure 5.7 shows an example use of these instructions that
copies an array into another.

The combination of a LODSx and STOSx instruction (as in lines 13 and 14
of Figure 5.7) is very common. In fact, this combination can be performed
by a single MOVSx string instruction. Figure 5.8 describes the operations that
these instructions perform. Lines 13 and 14 of Figure 5.7 could be replaced
with a single MOVSD instruction with the same effect. The only difference
would be that the EAX register would not be used at all in the loop.

5.2.2 The REP instruction prefix

The 80x86 family provides a special instruction prefix3 called REP that
can be used with the above string instructions. This prefix tells the CPU
to repeat the next string instruction a specified number of times. The ECX
register is used to count the iterations (just as for the LOOP instruction).
Using the REP prefix, the loop in Figure 5.7 (lines 12 to 15) could be replaced
with a single line:

2Another complication is that one can not copy the value of the DS register into the ES
register directly using a single MOV instruction. Instead, the value of DS must be copied to
a general purpose register (like AX) and then copied from that register to ES using two
MOV instructions.

3A instruction prefix is not an instruction, it is a special byte that is placed before a
string instruction that modifies the instructions behavior. Other prefixes are also used to
override segment defaults of memory accesses

5.2. ARRAY/STRING INSTRUCTIONS 99

MOVSB byte [ES:EDI] = byte [DS:ESI]
ESI = ESI ± 1
EDI = EDI ± 1

MOVSW word [ES:EDI] = word [DS:ESI]
ESI = ESI ± 2
EDI = EDI ± 2

MOVSD dword [ES:EDI] = dword [DS:ESI]
ESI = ESI ± 4
EDI = EDI ± 4

Figure 5.8: Memory move string instructions

1 segment .bss
2 array resd 10
3

4 segment .text
5 cld ; don’t forget this!
6 mov edi, array
7 mov ecx, 10
8 xor eax, eax
9 rep stosd

Figure 5.9: Zero array example

rep movsd

Figure 5.9 shows another example that zeroes out the contents of an array.

5.2.3 Comparison string instructions

Figure 5.10 shows several new string instructions that can be used to
compare memory with other memory or a register. They are useful for
comparing or searching arrays. They set the FLAGS register just like the
CMP instruction. The CMPSx instructions compare corresponding memory
locations and the SCASx scan memory locations for a specific value.

Figure 5.11 shows a short code snippet that searches for the number 12
in a double word array. The SCASD instruction on line 10 always adds 4 to
EDI, even if the value searched for is found. Thus, if one wishes to find the
address of the 12 found in the array, it is necessary to subtract 4 from EDI
(as line 16 does).

100 CHAPTER 5. ARRAYS

CMPSB compares byte [DS:ESI] and byte [ES:EDI]
ESI = ESI ± 1
EDI = EDI ± 1

CMPSW compares word [DS:ESI] and word [ES:EDI]
ESI = ESI ± 2
EDI = EDI ± 2

CMPSD compares dword [DS:ESI] and dword [ES:EDI]
ESI = ESI ± 4
EDI = EDI ± 4

SCASB compares AL and [ES:EDI]
EDI ± 1

SCASW compares AX and [ES:EDI]
EDI ± 2

SCASD compares EAX and [ES:EDI]
EDI ± 4

Figure 5.10: Comparison string instructions

5.2.4 The REPx instruction prefixes

There are several other REP-like instruction prefixes that can be used
with the comparison string instructions. Figure 5.12 shows the two new
prefixes and describes their operation. REPE and REPZ are just synonyms
for the same prefix (as are REPNE and REPNZ). If the repeated comparison
string instruction stops because of the result of the comparison, the index
register or registers are still incremented and ECX decremented; however,
the FLAGS register still holds the state that terminated the repetition.
Thus, it is possible to use the Z flag to determine if the repeated comparisonsWhy can one not just look

to see if ECX is zero after
the repeated comparison?

stopped because of a comparison or ECX becoming zero.
Figure 5.13 shows an example code snippet that determines if two blocks

of memory are equal. The JE on line 7 of the example checks to see the result
of the previous instruction. If the repeated comparison stopped because it
found two unequal bytes, the Z flag will still be cleared and no branch is
made; however, if the comparisons stopped because ECX became zero, the
Z flag will still be set and the code branches to the equal label.

5.2.5 Example

This section contains an assembly source file with several functions that
implement array operations using string instructions. Many of the functions
duplicate familiar C library functions.

memory.asm

5.2. ARRAY/STRING INSTRUCTIONS 101

1 segment .bss
2 array resd 100
3

4 segment .text
5 cld
6 mov edi, array ; pointer to start of array
7 mov ecx, 100 ; number of elements
8 mov eax, 12 ; number to scan for
9 lp:

10 scasd
11 je found
12 loop lp
13 ; code to perform if not found
14 jmp onward
15 found:
16 sub edi, 4 ; edi now points to 12 in array
17 ; code to perform if found
18 onward:

Figure 5.11: Search example

REPE, REPZ repeats instruction while Z flag is set or at most ECX times
REPNE, REPNZ repeats instruction while Z flag is cleared or at most ECX

times

Figure 5.12: REPx instruction prefixes

1 global _asm_copy, _asm_find, _asm_strlen, _asm_strcpy
2

3 segment .text
4 ; function _asm_copy
5 ; copies blocks of memory
6 ; C prototype
7 ; void asm_copy(void * dest, const void * src, unsigned sz);
8 ; parameters:
9 ; dest - pointer to buffer to copy to

10 ; src - pointer to buffer to copy from
11 ; sz - number of bytes to copy
12

13 ; next, some helpful symbols are defined
14

102 CHAPTER 5. ARRAYS

1 segment .text
2 cld
3 mov esi, block1 ; address of first block
4 mov edi, block2 ; address of second block
5 mov ecx, size ; size of blocks in bytes
6 repe cmpsb ; repeat while Z flag is set
7 je equal ; if Z set, blocks equal
8 ; code to perform if blocks are not equal
9 jmp onward

10 equal:
11 ; code to perform if equal
12 onward:

Figure 5.13: Comparing memory blocks

15 %define dest [ebp+8]
16 %define src [ebp+12]
17 %define sz [ebp+16]
18 _asm_copy:
19 enter 0, 0
20 push esi
21 push edi
22

23 mov esi, src ; esi = address of buffer to copy from
24 mov edi, des ; edi = address of buffer to copy to
25 mov ecx, sz ; ecx = number of bytes to copy
26

27 cld ; clear direction flag
28 rep movsb ; execute movsb ECX times
29

30 pop edi
31 pop esi
32 leave
33 ret
34

35

36 ; function _asm_find
37 ; searches memory for a given byte
38 ; void * asm_find(const void * src, char target, unsigned sz);
39 ; parameters:

5.2. ARRAY/STRING INSTRUCTIONS 103

40 ; src - pointer to buffer to search
41 ; target - byte value to search for
42 ; sz - number of bytes in buffer
43 ; return value:
44 ; if target is found, pointer to first occurrence of target in buffer
45 ; is returned
46 ; else
47 ; NULL is returned
48 ; NOTE: target is a byte value, but is pushed on stack as a dword value.
49 ; The byte value is stored in the lower 8-bits.
50 ;
51 %define src [ebp+8]
52 %define target [ebp+12]
53 %define sz [ebp+16]
54

55 _asm_find:
56 enter 0,0
57 push edi
58

59 mov eax, target ; al has value to search for
60 mov edi, src
61 mov ecx, sz
62 cld
63

64 repne scasb ; scan until ECX == 0 or [ES:EDI] == AL
65

66 je found_it ; if zero flag set, then found value
67 mov eax, 0 ; if not found, return NULL pointer
68 jmp short quit
69 found_it:
70 mov eax, edi
71 dec eax ; if found return (DI - 1)
72 quit:
73 pop edi
74 leave
75 ret
76

77

78 ; function _asm_strlen
79 ; returns the size of a string
80 ; unsigned asm_strlen(const char *);
81 ; parameter:

104 CHAPTER 5. ARRAYS

82 ; src - pointer to string
83 ; return value:
84 ; number of chars in string (not counting, ending 0) (in EAX)
85

86 %define src [ebp + 8]
87 _asm_strlen:
88 enter 0,0
89 push edi
90

91 mov edi, src ; edi = pointer to string
92 mov ecx, 0FFFFFFFFh ; use largest possible ECX
93 xor al,al ; al = 0
94 cld
95

96 repnz scasb ; scan for terminating 0
97

98 ;
99 ; repnz will go one step too far, so length is FFFFFFFE - ECX,

100 ; not FFFFFFFF - ECX
101 ;
102 mov eax,0FFFFFFFEh
103 sub eax, ecx ; length = 0FFFFFFFEh - ecx
104

105 pop edi
106 leave
107 ret
108

109 ; function _asm_strcpy
110 ; copies a string
111 ; void asm_strcpy(char * dest, const char * src);
112 ; parameters:
113 ; dest - pointer to string to copy to
114 ; src - pointer to string to copy from
115 ;
116 %define dest [ebp + 8]
117 %define src [ebp + 12]
118 _asm_strcpy:
119 enter 0,0
120 push esi
121 push edi
122

123 mov edi, dest

5.2. ARRAY/STRING INSTRUCTIONS 105

124 mov esi, src
125 cld
126 cpy_loop:
127 lodsb ; load AL & inc si
128 stosb ; store AL & inc di
129 or al, al ; set condition flags
130 jnz cpy_loop ; if not past terminating 0, continue
131

132 pop edi
133 pop esi
134 leave
135 ret memory.asm

memex.c

1 #include <stdio.h>
2

3 #define STR SIZE 30
4 /∗ prototypes ∗/
5

6 void asm copy(void ∗, const void ∗, unsigned) attribute ((cdecl));
7 void ∗ asm find(const void ∗,
8 char target , unsigned) attribute ((cdecl));
9 unsigned asm strlen(const char ∗) attribute ((cdecl));

10 void asm strcpy(char ∗, const char ∗) attribute ((cdecl));
11

12 int main()
13 {
14 char st1 [STR SIZE] = ”test string”;
15 char st2 [STR SIZE];
16 char ∗ st ;
17 char ch;
18

19 asm copy(st2, st1 , STR SIZE); /∗ copy all 30 chars of string ∗/
20 printf (”%s\n”, st2);
21

22 printf (”Enter a char : ”); /∗ look for byte in string ∗/
23 scanf(”%c%∗[ˆ\n]”, &ch);
24 st = asm find(st2 , ch , STR SIZE);
25 if (st)
26 printf (”Found it: %s\n”, st);
27 else
28 printf (”Not found\n”);

106 CHAPTER 5. ARRAYS

29

30 st1 [0] = 0;
31 printf (”Enter string :”);
32 scanf(”%s”, st1);
33 printf (”len = %u\n”, asm strlen(st1));
34

35 asm strcpy(st2 , st1); /∗ copy meaningful data in string ∗/
36 printf (”%s\n”, st2);
37

38 return 0;
39 }

memex.c

Chapter 6

Floating Point

6.1 Floating Point Representation

6.1.1 Non-integral binary numbers

When number systems were discussed in the first chapter, only integer
values were discussed. Obviously, it must be possible to represent non-
integral numbers in other bases as well as decimal. In decimal, digits to the
right of the decimal point have associated negative powers of ten:

0.123 = 1× 10−1 + 2× 10−2 + 3× 10−3

Not surprisingly, binary numbers work similarly:

0.1012 = 1× 2−1 + 0× 2−2 + 1× 2−3 = 0.625

This idea can be combined with the integer methods of Chapter 1 to convert
a general number:

110.0112 = 4 + 2 + 0.25 + 0.125 = 6.375

Converting from decimal to binary is not very difficult either. In general,
divide the decimal number into two parts: integer and fraction. Convert the
integer part to binary using the methods from Chapter 1. The fractional
part is converted using the method described below.

Consider a binary fraction with the bits labeled a, b, c, . . . The number
in binary then looks like:

0.abcdef . . .

Multiply the number by two. The binary representation of the new number
will be:

a.bcdef . . .

107

108 CHAPTER 6. FLOATING POINT

0.5625× 2 = 1.125
0.125× 2 = 0.25
0.25× 2 = 0.5
0.5× 2 = 1.0

first bit = 1
second bit = 0

third bit = 0
fourth bit = 1

Figure 6.1: Converting 0.5625 to binary

0.85× 2 = 1.7
0.7× 2 = 1.4
0.4× 2 = 0.8
0.8× 2 = 1.6
0.6× 2 = 1.2
0.2× 2 = 0.4
0.4× 2 = 0.8
0.8× 2 = 1.6

Figure 6.2: Converting 0.85 to binary

Note that the first bit is now in the one’s place. Replace the a with 0 to get:

0.bcdef . . .

and multiply by two again to get:

b.cdef . . .

Now the second bit (b) is in the one’s position. This procedure can be
repeated until as many bits are needed are found. Figure 6.1 shows a real
example that converts 0.5625 to binary. The method stops when a fractional
part of zero is reached.

As another example, consider converting 23.85 to binary. It is easy to
convert the integral part (23 = 101112), but what about the fractional part
(0.85)? Figure 6.2 shows the beginning of this calculation. If one looks at

6.1. FLOATING POINT REPRESENTATION 109

the numbers carefully, an infinite loop is found! This means that 0.85 is a
repeating binary (as opposed to a repeating decimal in base 10)1 There is a
pattern to the numbers in the calculation. Looking at the pattern, one can
see that 0.85 = 0.1101102. Thus, 23.85 = 10111.1101102.

One important consequence of the above calculation is that 23.85 can
not be represented exactly in binary using a finite number of bits. (Just
as 1

3 can not be represented in decimal with a finite number of digits.) As
this chapter shows, float and double variables in C are stored in binary.
Thus, values like 23.85 can not be stored exactly into these variables. Only
an approximation of 23.85 can be stored.

To simplify the hardware, floating point numbers are stored in a con-
sistent format. This format uses scientific notation (but in binary, using
powers of two, not ten). For example, 23.85 or 10111.11011001100110 . . .2
would be stored as:

1.011111011001100110 . . .× 2100

(where the exponent (100) is in binary). A normalized floating point number
has the form:

1.ssssssssssssssss× 2eeeeeee

where 1.sssssssssssss is the significand and eeeeeeee is the exponent.

6.1.2 IEEE floating point representation

The IEEE (Institute of Electrical and Electronic Engineers) is an inter-
national organization that has designed specific binary formats for storing
floating point numbers. This format is used on most (but not all!) com-
puters made today. Often it is supported by the hardware of the computer
itself. For example, Intel’s numeric (or math) coprocessors (which are built
into all its CPU’s since the Pentium) use it. The IEEE defines two different
formats with different precisions: single and double precision. Single preci-
sion is used by float variables in C and double precision is used by double
variables.

Intel’s math coprocessor also uses a third, higher precision called ex-
tended precision. In fact, all data in the coprocessor itself is in this precision.
When it is stored in memory from the coprocessor it is converted to either
single or double precision automatically.2 Extended precision uses a slightly
different general format than the IEEE float and double formats and so will
not be discussed here.

1It should not be so surprising that a number might repeat in one base, but not another.
Think about 1

3
, it repeats in decimal, but in ternary (base 3) it would be 0.13.

2 Some compilers (such as Borland’s) long double type uses this extended precision.
However, other compilers use double precision for both double and long double. (This
is allowed by ANSI C.)

110 CHAPTER 6. FLOATING POINT

31 30 23 22 0
s e f

s sign bit - 0 = positive, 1 = negative
e biased exponent (8-bits) = true exponent + 7F (127 decimal). The

values 00 and FF have special meaning (see text).
f fraction - the first 23-bits after the 1. in the significand.

Figure 6.3: IEEE single precision

IEEE single precision

Single precision floating point uses 32 bits to encode the number. It
is usually accurate to 7 significant decimal digits. Floating point numbers
are stored in a much more complicated format than integers. Figure 6.3
shows the basic format of a IEEE single precision number. There are sev-
eral quirks to the format. Floating point numbers do not use the two’s
complement representation for negative numbers. They use a signed mag-
nitude representation. Bit 31 determines the sign of the number as shown.

The binary exponent is not stored directly. Instead, the sum of the
exponent and 7F is stored is stored from bit 23 to 30. This biased exponent
is always non-negative.

The fraction part assumes a normalized significand (in the form 1.sssssssss).
Since the first bit is always an one, the leading one is not stored! This al-
lows the storage of an additional bit at the end and so increases the precision
slightly. This idea is know as the hidden one representation.

How would 23.85 be stored? First, it is positive so the sign bit is 0. NextOne should always keep in
mind that the bytes 41 BE
CC CD can be interpreted
different ways depending
on what a program does
with them! As as single
precision floating point
number, they represent
23.850000381, but as a
double word integer, they
represent 1,103,023,309!
The CPU does not know
which is the correct
interpretation!

the true exponent is 4, so the biased exponent is 7F + 4 = 8316. Finally, the
fraction is 01111101100110011001100 (remember the leading one is hidden).
Putting this all together (to help clarify the different sections of the floating
point format, the sign bit and the faction have been underlined and the bits
have been grouped into 4-bit nibbles):

0 100 0001 1 011 1110 1100 1100 1100 11002 = 41BECCCC16

This is not exactly 23.85 (since it is a repeating binary). If one converts
the above back to decimal, one finds that it is approximately 23.849998474.
This number is very close to 23.85, but it is not exact. Actually, in C, 23.85
would not be represented exactly as above. Since the left-most bit that was
truncated from the exact representation is 1, the last bit is rounded up to 1.
So 23.85 would be represented as 41 BE CC CD in hex using single precision.
Converting this to decimal results in 23.850000381 which is a slightly better
approximation of 23.85.

6.1. FLOATING POINT REPRESENTATION 111

e = 0 and f = 0 denotes the number zero (which can not be nor-
malized) Note that there is a +0 and -0.

e = 0 and f 6= 0 denotes a denormalized number. These are dis-
cussed in the next section.

e = FF and f = 0 denotes infinity (∞). There are both positive
and negative infinities.

e = FF and f 6= 0 denotes an undefined result, known as NaN
(Not a Number).

Table 6.1: Special values of f and e

63 62 52 51 0
s e f

Figure 6.4: IEEE double precision

How would -23.85 be represented? Just change the sign bit: C1 BE CC
CD. Do not take the two’s complement!

Certain combinations of e and f have special meanings for IEEE floats.
Table 6.1 describes these special values. An infinity is produced by an
overflow or by division by zero. An undefined result is produced by an
invalid operation such as trying to find the square root of a negative number,
adding two infinities, etc.

Normalized single precision numbers can range in magnitude from 1.0×
2−126 (≈ 1.1755× 10−35) to 1.11111 . . .× 2127 (≈ 3.4028× 1035).

Denormalized numbers

Denormalized numbers can be used to represent numbers with magni-
tudes too small to normalize (i.e., below 1.0×2−126). For example, consider
the number 1.0012×2−129 (≈ 1.6530×10−39). In the given normalized form,
the exponent is too small. However, it can be represented in the unnormal-
ized form: 0.010012 × 2−127. To store this number, the biased exponent is
set to 0 (see Table 6.1) and the fraction is the complete significant of the
number written as a product with 2−127 (i.e., all bits are stored including
the one to the left of the decimal point). The representation of 1.001×2−129

is then:
0 000 0000 0 001 0010 0000 0000 0000 0000

IEEE double precision

IEEE double precision uses 64 bits to represent numbers and is usually
accurate to about 15 significant decimal digits. As Figure 6.4 shows, the

112 CHAPTER 6. FLOATING POINT

basic format is very similar to single precision. More bits are used for the
biased exponent (11) and the fraction (52) than for single precision.

The larger range for the biased exponent has two consequences. The first
is that it is calculated as the sum of the true exponent and 3FF (1023) (not
7F as for single precision). Secondly, a large range of true exponents (and
thus a larger range of magnitudes) is allowed. Double precision magnitudes
can range from approximately 10−308 to 10308.

It is the larger field of the fraction that is responsible for the increase in
the number of significant digits for double values.

As an example, consider 23.85 again. The biased exponent will be 4 +
3FF = 403 in hex. Thus, the double representation would be:

0 100 0000 0011 0111 1101 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010

or 40 37 D9 99 99 99 99 9A in hex. If one converts this back to decimal,
one finds 23.8500000000000014 (there are 12 zeros!) which is a much better
approximation of 23.85.

The double precision has the same special values as single precision3.
Denormalized numbers are also very similar. The only main difference is
that double denormalized numbers use 2−1023 instead of 2−127.

6.2 Floating Point Arithmetic

Floating point arithmetic on a computer is different than in continuous
mathematics. In mathematics, all numbers can be considered exact. As
shown in the previous section, on a computer many numbers can not be
represented exactly with a finite number of bits. All calculations are per-
formed with limited precision. In the examples of this section, numbers with
a 8-bit significands will be used for simplicity.

6.2.1 Addition

To add two floating point numbers, the exponents must be equal. If
they are not already equal, then they must be made equal by shifting the
significand of the number with the smaller exponent. For example, consider
10.375 + 6.34375 = 16.71875 or in binary:

1.0100110× 23

+ 1.1001011× 22

3The only difference is that for the infinity and undefined values, the biased exponent
is 7FF not FF.

6.2. FLOATING POINT ARITHMETIC 113

These two number do not have the same exponent so shift the significand
to make the exponents the same and then add:

1.0100110× 23

+ 0.1100110× 23

10.0001100× 23

Note that the shifting of 1.1001011× 22 drops off the trailing one and after
rounding results in 0.1100110×23. The result of the addition, 10.0001100×23

(or 1.00001100 × 24) is equal to 10000.1102 or 16.75. This is not equal to
the exact answer (16.71875)! It is only an approximation due to the round
off errors of the addition process.

It is important to realize that floating point arithmetic on a computer
(or calculator) is always an approximation. The laws of mathematics do
not always work with floating point numbers on a computer. Mathemat-
ics assumes infinite precision which no computer can match. For example,
mathematics teaches that (a+ b)− b = a; however, this may not hold true
exactly on a computer!

6.2.2 Subtraction

Subtraction works very similarly and has the same problems as addition.
As an example, consider 16.75− 15.9375 = 0.8125:

1.0000110× 24

− 1.1111111× 23

Shifting 1.1111111× 23 gives (rounding up) 1.0000000× 24

1.0000110× 24

− 1.0000000× 24

0.0000110× 24

0.0000110× 24 = 0.112 = 0.75 which is not exactly correct.

6.2.3 Multiplication and division

For multiplication, the significands are multiplied and the exponents are
added. Consider 10.375× 2.5 = 25.9375:

1.0100110× 23

× 1.0100000× 21

10100110
+ 10100110

1.10011111000000× 24

114 CHAPTER 6. FLOATING POINT

Of course, the real result would be rounded to 8-bits to give:

1.1010000× 24 = 11010.0002 = 26

Division is more complicated, but has similar problems with round off
errors.

6.2.4 Ramifications for programming

The main point of this section is that floating point calculations are not
exact. The programmer needs to be aware of this. A common mistake
that programmers make with floating point numbers is to compare them
assuming that a calculation is exact. For example, consider a function named
f(x) that makes a complex calculation and a program is trying to find the
function’s roots4. One might be tempted to use the following statement to
check to see if x is a root:

if (f(x) == 0.0)

But, what if f(x) returns 1 × 10−30? This very likely means that x is a
very good approximation of a true root; however, the equality will be false.
There may not be any IEEE floating point value of x that returns exactly
zero, due to round off errors in f(x).

A much better method would be to use:
if (fabs(f(x)) < EPS)

where EPS is a macro defined to be a very small positive value (like 1×10−10).
This is true whenever f(x) is very close to zero. In general, to compare a
floating point value (say x) to another (y) use:

if (fabs(x − y)/fabs(y) < EPS)

6.3 The Numeric Coprocessor

6.3.1 Hardware

The earliest Intel processors had no hardware support for floating point
operations. This does not mean that they could not perform float operations.
It just means that they had to be performed by procedures composed of
many non-floating point instructions. For these early systems, Intel did
provide an additional chip called a math coprocessor. A math coprocessor
has machine instructions that perform many floating point operations much
faster than using a software procedure (on early processors, at least 10 times
faster!). The coprocessor for the 8086/8088 was called the 8087. For the
80286, there was a 80287 and for the 80386, a 80387. The 80486DX processor

4A root of a function is a value x such that f(x) = 0

6.3. THE NUMERIC COPROCESSOR 115

integrated the math coprocessor into the 80486 itself.5 Since the Pentium, all
generations of 80x86 processors have a builtin math coprocessor; however, it
is still programmed as if it was a separate unit. Even earlier systems without
a coprocessor can install software that emulates a math coprocessor. These
emulator packages are automatically activated when a program executes a
coprocessor instruction and runs a software procedure that produces the
same result as the coprocessor would have (though much slower, of course).

The numeric coprocessor has eight floating point registers. Each register
holds 80-bits of data. Floating point numbers are always stored as 80-bit
extended precision numbers in these registers. The registers are named ST0,
ST1, ST2, . . . ST7. The floating point registers are used differently than the
integer registers of the main CPU. The floating point registers are organized
as a stack. Recall that a stack is a Last-In First-Out (LIFO) list. ST0 always
refers to the value at the top of the stack. All new numbers are added to the
top of the stack. Existing numbers are pushed down on the stack to make
room for the new number.

There is also a status register in the numeric coprocessor. It has several
flags. Only the 4 flags used for comparisons will be covered: C0, C1, C2 and
C3. The use of these is discussed later.

6.3.2 Instructions

To make it easy to distinguish the normal CPU instructions from copro-
cessor ones, all the coprocessor mnemonics start with a F.

Loading and storing

There are several instructions that load data onto the top of the copro-
cessor register stack:
FLD source loads a floating point number from memory onto the top of

the stack. The source may be a single, double or extended
precision number or a coprocessor register.

FILD source reads a integer from memory, converts it to floating point
and stores the result on top of the stack. The source may be
either a word, double word or quad word.

FLD1 stores a one on the top of the stack.
FLDZ stores a zero on the top of the stack.

There are also several instructions that store data from the stack into
memory. Some of these instructions also pop (i.e., remove) the number from
the stack as it stores it.

5However, the 80486SX did not have have an integrated coprocessor. There was a
separate 80487SX chip for these machines.

116 CHAPTER 6. FLOATING POINT

FST dest stores the top of the stack (ST0) into memory. The desti-
nation may either a single or double precision number or a
coprocessor register.

FSTP dest stores the top of the stack into memory just as FST; however,
after the number is stored, its value is popped from the stack.
The destination may either a single, double or extended pre-
cision number or a coprocessor register.

FIST dest stores the value of the top of the stack converted to an integer
into memory. The destination may either a word or a double
word. The stack itself is unchanged. How the floating point
number is converted to an integer depends on some bits in
the coprocessor’s control word. This is a special (non-floating
point) word register that controls how the coprocessor works.
By default, the control word is initialized so that it rounds
to the nearest integer when it converts to integer. However,
the FSTCW (Store Control Word) and FLDCW (Load Control
Word) instructions can be used to change this behavior.

FISTP dest Same as FIST except for two things. The top of the stack is
popped and the destination may also be a quad word.

There are two other instructions that can be move or remove data on
the stack itself.
FXCH STn exchanges the values in ST0 and STn on the stack (where n

is register number from 1 to 7).
FFREE STn frees up a register on the stack by marking the register as

unused or empty.

Addition and subtraction

Each of the addition instructions compute the sum of ST0 and another
operand. The result is always stored in a coprocessor register.
FADD src ST0 += src . The src may be any coprocessor register

or a single or double precision number in memory.
FADD dest, ST0 dest += ST0. The dest may be any coprocessor reg-

ister.
FADDP dest or
FADDP dest, STO

dest += ST0 then pop stack. The dest may be any
coprocessor register.

FIADD src ST0 += (float) src . Adds an integer to ST0. The
src must be a word or double word in memory.

There are twice as many subtraction instructions than addition because
the order of the operands is important for subtraction (i.e., a + b = b + a,
but a− b 6= b− a!). For each instruction is an alternate one that subtracts
in the reverse order. These reverse instructions all end in either R or RP.
Figure 6.5 shows a short code snippet that adds up the elements of an array

6.3. THE NUMERIC COPROCESSOR 117

1 segment .bss
2 array resq SIZE
3 sum resq 1
4

5 segment .text
6 mov ecx, SIZE
7 mov esi, array
8 fldz ; ST0 = 0
9 lp:

10 fadd qword [esi] ; ST0 += *(esi)
11 add esi, 8 ; move to next double
12 loop lp
13 fstp qword sum ; store result into sum

Figure 6.5: Array sum example

of doubles. On lines 10 and 13, one must specify the size of the memory
operand. Otherwise the assembler would not know whether the memory
operand was a float (dword) or a double (qword).

FSUB src ST0 -= src . The src may be any coprocessor register
or a single or double precision number in memory.

FSUBR src ST0 = src - ST0. The src may be any coproces-
sor register or a single or double precision number in
memory.

FSUB dest, ST0 dest -= ST0. The dest may be any coprocessor reg-
ister.

FSUBR dest, ST0 dest = ST0 - dest . The dest may be any copro-
cessor register.

FSUBP dest or
FSUBP dest, STO

dest -= ST0 then pop stack. The dest may be any
coprocessor register.

FSUBRP dest or
FSUBRP dest, STO

dest = ST0 - dest then pop stack. The dest may
be any coprocessor register.

FISUB src ST0 -= (float) src . Subtracts an integer from
ST0. The src must be a word or double word in mem-
ory.

FISUBR src ST0 = (float) src - ST0. Subtracts ST0 from an
integer. The src must be a word or double word in
memory.

118 CHAPTER 6. FLOATING POINT

Multiplication and division

The multiplication instructions are completely analogous to the addition
instructions.
FMUL src ST0 *= src . The src may be any coprocessor register

or a single or double precision number in memory.
FMUL dest, ST0 dest *= ST0. The dest may be any coprocessor reg-

ister.
FMULP dest or
FMULP dest, STO

dest *= ST0 then pop stack. The dest may be any
coprocessor register.

FIMUL src ST0 *= (float) src . Multiplies an integer to ST0.
The src must be a word or double word in memory.

Not surprisingly, the division instructions are analogous to the subtrac-
tion instructions. Division by zero results in an infinity.
FDIV src ST0 /= src . The src may be any coprocessor register

or a single or double precision number in memory.
FDIVR src ST0 = src / ST0. The src may be any coproces-

sor register or a single or double precision number in
memory.

FDIV dest, ST0 dest /= ST0. The dest may be any coprocessor reg-
ister.

FDIVR dest, ST0 dest = ST0 / dest . The dest may be any copro-
cessor register.

FDIVP dest or
FDIVP dest, STO

dest /= ST0 then pop stack. The dest may be any
coprocessor register.

FDIVRP dest or
FDIVRP dest, STO

dest = ST0 / dest then pop stack. The dest may
be any coprocessor register.

FIDIV src ST0 /= (float) src . Divides ST0 by an integer.
The src must be a word or double word in memory.

FIDIVR src ST0 = (float) src / ST0. Divides an integer by
ST0. The src must be a word or double word in mem-
ory.

Comparisons

The coprocessor also performs comparisons of floating point numbers.
The FCOM family of instructions does this operation.

6.3. THE NUMERIC COPROCESSOR 119

1 ; if (x > y)
2 ;
3 fld qword [x] ; ST0 = x
4 fcomp qword [y] ; compare STO and y
5 fstsw ax ; move C bits into FLAGS
6 sahf
7 jna else_part ; if x not above y, goto else_part
8 then_part:
9 ; code for then part

10 jmp end_if
11 else_part:
12 ; code for else part
13 end_if:

Figure 6.6: Comparison example

FCOM src compares ST0 and src . The src can be a coprocessor register
or a float or double in memory.

FCOMP src compares ST0 and src , then pops stack. The src can be a
coprocessor register or a float or double in memory.

FCOMPP compares ST0 and ST1, then pops stack twice.
FICOM src compares ST0 and (float) src . The src can be a a word or

dword integer in memory.
FICOMP src compares ST0 and (float)src , then pops stack. The src a

word or dword integer in memory.
FTST compares ST0 and 0.

These instructions change the C0, C1, C2 and C3 bits of the coprocessor
status register. Unfortunately, it is not possible for the CPU to access these
bits directly. The conditional branch instructions use the FLAGS register,
not the coprocessor status register. However, it is relatively simple to trans-
fer the bits of the status word into the corresponding bits of the FLAGS
register using some new instructions:
FSTSW dest Stores the coprocessor status word into either a word in mem-

ory or the AX register.
SAHF Stores the AH register into the FLAGS register.
LAHF Loads the AH register with the bits of the FLAGS register.

Figure 6.6 shows a short example code snippet. Lines 5 and 6 transfer
the C0, C1, C2 and C3 bits of the coprocessor status word into the FLAGS
register. The bits are transfered so that they are analogous to the result
of a comparison of two unsigned integers. This is why line 7 uses a JNA
instruction.

120 CHAPTER 6. FLOATING POINT

The Pentium Pro (and later processors (Pentium II and III)) support two
new comparison operators that directly modify the CPU’s FLAGS register.

FCOMI src compares ST0 and src . The src must be a coprocessor reg-
ister.

FCOMIP src compares ST0 and src , then pops stack. The src must be a
coprocessor register.

Figure 6.7 shows an example subroutine that finds the maximum of two dou-
bles using the FCOMIP instruction. Do not confuse these instructions with
the integer comparison functions (FICOM and FICOMP).

Miscellaneous instructions

This section covers some other miscellaneous instructions that the co-
processor provides.

FCHS ST0 = - ST0 Changes the sign of ST0
FABS ST0 = |ST0| Takes the absolute value of ST0
FSQRT ST0 =

√
STO Takes the square root of ST0

FSCALE ST0 = ST0×2bST1c multiples ST0 by a power of 2 quickly. ST1
is not removed from the coprocessor stack. Figure 6.8 shows
an example of how to use this instruction.

6.3.3 Examples

6.3.4 Quadratic formula

The first example shows how the quadratic formula can be encoded in
assembly. Recall that the quadratic formula computes the solutions to the
quadratic equation:

ax2 + bx+ c = 0

The formula itself gives two solutions for x: x1 and x2.

x1, x2 =
−b±

√
b2 − 4ac

2a

The expression inside the square root (b2 − 4ac) is called the discriminant.
Its value is useful in determining which of the following three possibilities
are true for the solutions.

1. There is only one real degenerate solution. b2 − 4ac = 0

2. There are two real solutions. b2 − 4ac > 0

3. There are two complex solutions. b2 − 4ac < 0

Here is a small C program that uses the assembly subroutine:

6.3. THE NUMERIC COPROCESSOR 121

quadt.c

1 #include <stdio.h>
2

3 int quadratic (double, double, double, double ∗, double ∗);
4

5 int main()
6 {
7 double a,b,c , root1 , root2;
8

9 printf (”Enter a , b , c : ”);
10 scanf(”%lf %lf %lf”, &a, &b, &c);
11 if (quadratic (a , b , c, &root1, &root2))
12 printf (”roots: %.10g %.10g\n”, root1, root2);
13 else
14 printf (”No real roots\n”);
15 return 0;
16 }

quadt.c

Here is the assembly routine:

quad.asm
1 ; function quadratic
2 ; finds solutions to the quadratic equation:
3 ; a*x^2 + b*x + c = 0
4 ; C prototype:
5 ; int quadratic(double a, double b, double c,
6 ; double * root1, double *root2)
7 ; Parameters:
8 ; a, b, c - coefficients of powers of quadratic equation (see above)
9 ; root1 - pointer to double to store first root in

10 ; root2 - pointer to double to store second root in
11 ; Return value:
12 ; returns 1 if real roots found, else 0
13

14 %define a qword [ebp+8]
15 %define b qword [ebp+16]
16 %define c qword [ebp+24]
17 %define root1 dword [ebp+32]
18 %define root2 dword [ebp+36]
19 %define disc qword [ebp-8]
20 %define one_over_2a qword [ebp-16]

122 CHAPTER 6. FLOATING POINT

21

22 segment .data
23 MinusFour dw -4
24

25 segment .text
26 global _quadratic
27 _quadratic:
28 push ebp
29 mov ebp, esp
30 sub esp, 16 ; allocate 2 doubles (disc & one_over_2a)
31 push ebx ; must save original ebx
32

33 fild word [MinusFour]; stack -4
34 fld a ; stack: a, -4
35 fld c ; stack: c, a, -4
36 fmulp st1 ; stack: a*c, -4
37 fmulp st1 ; stack: -4*a*c
38 fld b
39 fld b ; stack: b, b, -4*a*c
40 fmulp st1 ; stack: b*b, -4*a*c
41 faddp st1 ; stack: b*b - 4*a*c
42 ftst ; test with 0
43 fstsw ax
44 sahf
45 jb no_real_solutions ; if disc < 0, no real solutions
46 fsqrt ; stack: sqrt(b*b - 4*a*c)
47 fstp disc ; store and pop stack
48 fld1 ; stack: 1.0
49 fld a ; stack: a, 1.0
50 fscale ; stack: a * 2^(1.0) = 2*a, 1
51 fdivp st1 ; stack: 1/(2*a)
52 fst one_over_2a ; stack: 1/(2*a)
53 fld b ; stack: b, 1/(2*a)
54 fld disc ; stack: disc, b, 1/(2*a)
55 fsubrp st1 ; stack: disc - b, 1/(2*a)
56 fmulp st1 ; stack: (-b + disc)/(2*a)
57 mov ebx, root1
58 fstp qword [ebx] ; store in *root1
59 fld b ; stack: b
60 fld disc ; stack: disc, b
61 fchs ; stack: -disc, b
62 fsubrp st1 ; stack: -disc - b

6.3. THE NUMERIC COPROCESSOR 123

63 fmul one_over_2a ; stack: (-b - disc)/(2*a)
64 mov ebx, root2
65 fstp qword [ebx] ; store in *root2
66 mov eax, 1 ; return value is 1
67 jmp short quit
68

69 no_real_solutions:
70 mov eax, 0 ; return value is 0
71

72 quit:
73 pop ebx
74 mov esp, ebp
75 pop ebp
76 ret quad.asm

6.3.5 Reading array from file

In this example, an assembly routine reads doubles from a file. Here is
a short C test program:

readt.c

1 /∗
2 ∗ This program tests the 32−bit read doubles () assembly procedure.
3 ∗ It reads the doubles from stdin . (Use redirection to read from file .)
4 ∗/
5 #include <stdio.h>
6 extern int read doubles (FILE ∗, double ∗, int);
7 #define MAX 100
8

9 int main()
10 {
11 int i ,n;
12 double a[MAX];
13

14 n = read doubles(stdin , a , MAX);
15

16 for (i=0; i < n; i++)
17 printf (”%3d %g\n”, i, a[i]);
18 return 0;
19 }

readt.c

124 CHAPTER 6. FLOATING POINT

Here is the assembly routine

read.asm
1 segment .data
2 format db "%lf", 0 ; format for fscanf()
3

4 segment .text
5 global _read_doubles
6 extern _fscanf
7

8 %define SIZEOF_DOUBLE 8
9 %define FP dword [ebp + 8]

10 %define ARRAYP dword [ebp + 12]
11 %define ARRAY_SIZE dword [ebp + 16]
12 %define TEMP_DOUBLE [ebp - 8]
13

14 ;
15 ; function _read_doubles
16 ; C prototype:
17 ; int read_doubles(FILE * fp, double * arrayp, int array_size);
18 ; This function reads doubles from a text file into an array, until
19 ; EOF or array is full.
20 ; Parameters:
21 ; fp - FILE pointer to read from (must be open for input)
22 ; arrayp - pointer to double array to read into
23 ; array_size - number of elements in array
24 ; Return value:
25 ; number of doubles stored into array (in EAX)
26

27 _read_doubles:
28 push ebp
29 mov ebp,esp
30 sub esp, SIZEOF_DOUBLE ; define one double on stack
31

32 push esi ; save esi
33 mov esi, ARRAYP ; esi = ARRAYP
34 xor edx, edx ; edx = array index (initially 0)
35

36 while_loop:
37 cmp edx, ARRAY_SIZE ; is edx < ARRAY_SIZE?
38 jnl short quit ; if not, quit loop
39 ;
40 ; call fscanf() to read a double into TEMP_DOUBLE

6.3. THE NUMERIC COPROCESSOR 125

41 ; fscanf() might change edx so save it
42 ;
43 push edx ; save edx
44 lea eax, TEMP_DOUBLE
45 push eax ; push &TEMP_DOUBLE
46 push dword format ; push &format
47 push FP ; push file pointer
48 call _fscanf
49 add esp, 12
50 pop edx ; restore edx
51 cmp eax, 1 ; did fscanf return 1?
52 jne short quit ; if not, quit loop
53

54 ;
55 ; copy TEMP_DOUBLE into ARRAYP[edx]
56 ; (The 8-bytes of the double are copied by two 4-byte copies)
57 ;
58 mov eax, [ebp - 8]
59 mov [esi + 8*edx], eax ; first copy lowest 4 bytes
60 mov eax, [ebp - 4]
61 mov [esi + 8*edx + 4], eax ; next copy highest 4 bytes
62

63 inc edx
64 jmp while_loop
65

66 quit:
67 pop esi ; restore esi
68

69 mov eax, edx ; store return value into eax
70

71 mov esp, ebp
72 pop ebp
73 ret read.asm

6.3.6 Finding primes

This final example looks at finding prime numbers again. This imple-
mentation is more efficient than the previous one. It stores the primes it
has found in an array and only divides by the previous primes it has found
instead of every odd number to find new primes.

One other difference is that it computes the square root of the guess for
the next prime to determine at what point it can stop searching for factors.

126 CHAPTER 6. FLOATING POINT

It alters the coprocessor control word so that it that when it stores the square
root as an integer, it truncates instead of rounding. This is controlled by
bits 10 and 11 of the control word. This bits are called the RC (Rounding
Control) bits. If they are both 0 (the default), the coprocessor rounds when
converting to integer. If they are both 1, the coprocessor truncates integer
conversions. Notice that the routine is careful to save the original control
word and restore it before it returns.

Here is the C driver program:

fprime.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 /∗
4 ∗ function find primes
5 ∗ finds the indicated number of primes
6 ∗ Parameters:
7 ∗ a − array to hold primes
8 ∗ n − how many primes to find
9 ∗/

10 extern void find primes (int ∗ a , unsigned n);
11

12 int main()
13 {
14 int status ;
15 unsigned i;
16 unsigned max;
17 int ∗ a;
18

19 printf (”How many primes do you wish to find? ”);
20 scanf(”%u”, &max);
21

22 a = calloc (sizeof(int), max);
23

24 if (a) {
25

26 find primes (a,max);
27

28 /∗ print out the last 20 primes found ∗/
29 for(i= (max > 20) ? max − 20 : 0; i < max; i++)
30 printf (”%3d %d\n”, i+1, a[i]);
31

32 free (a);
33 status = 0;

6.3. THE NUMERIC COPROCESSOR 127

34 }
35 else {
36 fprintf (stderr , ”Can not create array of %u ints\n”, max);
37 status = 1;
38 }
39

40 return status ;
41 }

fprime.c

Here is the assembly routine:

prime2.asm
1 segment .text
2 global _find_primes
3 ;
4 ; function find_primes
5 ; finds the indicated number of primes
6 ; Parameters:
7 ; array - array to hold primes
8 ; n_find - how many primes to find
9 ; C Prototype:

10 ;extern void find_primes(int * array, unsigned n_find)
11 ;
12 %define array ebp + 8
13 %define n_find ebp + 12
14 %define n ebp - 4 ; number of primes found so far
15 %define isqrt ebp - 8 ; floor of sqrt of guess
16 %define orig_cntl_wd ebp - 10 ; original control word
17 %define new_cntl_wd ebp - 12 ; new control word
18

19 _find_primes:
20 enter 12,0 ; make room for local variables
21

22 push ebx ; save possible register variables
23 push esi
24

25 fstcw word [orig_cntl_wd] ; get current control word
26 mov ax, [orig_cntl_wd]
27 or ax, 0C00h ; set rounding bits to 11 (truncate)
28 mov [new_cntl_wd], ax
29 fldcw word [new_cntl_wd]

128 CHAPTER 6. FLOATING POINT

30

31 mov esi, [array] ; esi points to array
32 mov dword [esi], 2 ; array[0] = 2
33 mov dword [esi + 4], 3 ; array[1] = 3
34 mov ebx, 5 ; ebx = guess = 5
35 mov dword [n], 2 ; n = 2
36 ;
37 ; This outer loop finds a new prime each iteration, which it adds to the
38 ; end of the array. Unlike the earlier prime finding program, this function
39 ; does not determine primeness by dividing by all odd numbers. It only
40 ; divides by the prime numbers that it has already found. (That’s why they
41 ; are stored in the array.)
42 ;
43 while_limit:
44 mov eax, [n]
45 cmp eax, [n_find] ; while (n < n_find)
46 jnb short quit_limit
47

48 mov ecx, 1 ; ecx is used as array index
49 push ebx ; store guess on stack
50 fild dword [esp] ; load guess onto coprocessor stack
51 pop ebx ; get guess off stack
52 fsqrt ; find sqrt(guess)
53 fistp dword [isqrt] ; isqrt = floor(sqrt(quess))
54 ;
55 ; This inner loop divides guess (ebx) by earlier computed prime numbers
56 ; until it finds a prime factor of guess (which means guess is not prime)
57 ; or until the prime number to divide is greater than floor(sqrt(guess))
58 ;
59 while_factor:
60 mov eax, dword [esi + 4*ecx] ; eax = array[ecx]
61 cmp eax, [isqrt] ; while (isqrt < array[ecx]
62 jnbe short quit_factor_prime
63 mov eax, ebx
64 xor edx, edx
65 div dword [esi + 4*ecx]
66 or edx, edx ; && guess % array[ecx] != 0)
67 jz short quit_factor_not_prime
68 inc ecx ; try next prime
69 jmp short while_factor
70

71 ;

6.3. THE NUMERIC COPROCESSOR 129

72 ; found a new prime !
73 ;
74 quit_factor_prime:
75 mov eax, [n]
76 mov dword [esi + 4*eax], ebx ; add guess to end of array
77 inc eax
78 mov [n], eax ; inc n
79

80 quit_factor_not_prime:
81 add ebx, 2 ; try next odd number
82 jmp short while_limit
83

84 quit_limit:
85

86 fldcw word [orig_cntl_wd] ; restore control word
87 pop esi ; restore register variables
88 pop ebx
89

90 leave
91 ret prime2.asm

130 CHAPTER 6. FLOATING POINT

1 global _dmax
2

3 segment .text
4 ; function _dmax
5 ; returns the larger of its two double arguments
6 ; C prototype
7 ; double dmax(double d1, double d2)
8 ; Parameters:
9 ; d1 - first double

10 ; d2 - second double
11 ; Return value:
12 ; larger of d1 and d2 (in ST0)
13 %define d1 ebp+8
14 %define d2 ebp+16
15 _dmax:
16 enter 0, 0
17

18 fld qword [d2]
19 fld qword [d1] ; ST0 = d1, ST1 = d2
20 fcomip st1 ; ST0 = d2
21 jna short d2_bigger
22 fcomp st0 ; pop d2 from stack
23 fld qword [d1] ; ST0 = d1
24 jmp short exit
25 d2_bigger: ; if d2 is max, nothing to do
26 exit:
27 leave
28 ret

Figure 6.7: FCOMIP example

6.3. THE NUMERIC COPROCESSOR 131

1 segment .data
2 x dq 2.75 ; converted to double format
3 five dw 5
4

5 segment .text
6 fild dword [five] ; ST0 = 5
7 fld qword [x] ; ST0 = 2.75, ST1 = 5
8 fscale ; ST0 = 2.75 * 32, ST1 = 5

Figure 6.8: FSCALE example

132 CHAPTER 6. FLOATING POINT

Chapter 7

Structures and C++

7.1 Structures

7.1.1 Introduction

Structures are used in C to group together related data into a composite
variable. This technique has several advantages:

1. It clarifies the code by showing that the data defined in the structure
are intimately related.

2. It simplifies passing the data to functions. Instead of passing multiple
variables separately, they can be passed as a single unit.

3. It increases the locality1 of the code.

From the assembly standpoint, a structure can be considered as an array
with elements of varying size. The elements of real arrays are always the
same size and type. This property is what allows one to calculate the address
of any element by knowing the starting address of the array, the size of the
elements and the desired element’s index.

A structure’s elements do not have to be the same size (and usually are
not). Because of this each element of a structure must be explicitly specified
and is given a tag (or name) instead of a numerical index.

In assembly, the element of a structure will be accessed in a similar
way as an element of an array. To access an element, one must know the
starting address of the structure and the relative offset of that element from
the beginning of the structure. However, unlike an array where this offset
can be calculated by the index of the element, the element of a structure is
assigned an offset by the compiler.

1See the virtual memory management section of any Operating System text book for
discussion of this term.

133

134 CHAPTER 7. STRUCTURES AND C++

Offset Element
0 x
2

y
6

z

Figure 7.1: Structure S

Offset Element
0 x
2 unused
4

y
8

z

Figure 7.2: Structure S

For example, consider the following structure:

struct S {
short int x ; /∗ 2−byte integer ∗/
int y ; /∗ 4−byte integer ∗/
double z ; /∗ 8−byte float ∗/
};

Figure 7.1 shows how a variable of type S might look in the computer’s
memory. The ANSI C standard states that the elements of a structure are
arranged in the memory in the same order as they are defined in the struct
definition. It also states that the first element is at the very beginning of
the structure (i.e., offset zero). It also defines another useful macro in the
stddef.h header file named offsetof(). This macro computes and returns
the offset of any element of a structure. The macro takes two parameters,
the first is the name of the type of the structure, the second is the name of
the element to find the offset of. Thus, the result of offsetof(S, y) would
be 2 from Figure 7.1.

7.1. STRUCTURES 135

7.1.2 Memory alignment

If one uses the offsetof macro to find the offset of y using the gcc
compiler, they will find that it returns 4, not 2! Why? Because gcc (and Recall that an address is on

a double word boundary if
it is divisible by 4

many other compilers) align variables on double word boundaries by default.
In 32-bit protected mode, the CPU reads memory faster if the data starts at
a double word boundary. Figure 7.2 shows how the S structure really looks
using gcc. The compiler inserts two unused bytes into the structure to align
y (and z) on a double word boundary. This shows why it is a good idea
to use offsetof to compute the offsets instead of calculating them oneself
when using structures defined in C.

Of course, if the structure is only used in assembly, the programmer
can determine the offsets himself. However, if one is interfacing C and
assembly, it is very important that both the assembly code and the C code
agree on the offsets of the elements of the structure! One complication is
that different C compilers may give different offsets to the elements. For
example, as we have seen, the gcc compiler creates a S structure that looks
like Figure 7.2; however, Borland’s compiler would create a structure that
looked like Figure 7.1. C compilers provide ways to specify the alignment
used for data. However, the ANSI C standard does not specify how this will
be done and thus, different compilers do it differently. Borland’s compiler
has a flag, -a, that can be used to define the alignment used for all data.
Compiling with -a 4 tells bcc to use double word alignment. Microsoft’s
compiler provides a #pragma pack directive that can be used to set the
alignment (consult Microsoft’s documentation for details).

The gcc compiler has a flexible and complicated method of specifying the
alignment. The compiler allows one to specify the alignment of any type
using a special syntax. For example, the following line:

typedef short int unaligned int attribute ((aligned (1)));

defines a new type named unaligned int that is aligned on byte boundaries.
(Yes, all the parenthesis after attribute are required!) The 1 in the
aligned parameter can be replaced with other powers of two to specify
other alignments. (2 for word alignment, 4 for double word alignment, etc.)
If the y element of the was changed to be an unaligned int type, gcc would
put y at offset 2. However, z would still be at offset 8 since doubles are also
double word aligned by default. The definition of z’s type would have to be
changed as well for it to put at offset 6.

7.1.3 Using structures in assembly

As discussed above, accessing a structure in assembly is very much like
accessing an array. For a simple example, consider how one would write
an assembly routine that would zero out the y element of a S structure.

136 CHAPTER 7. STRUCTURES AND C++

Assuming the prototype of the routine would be:
void zero y (S ∗ s p);

the assembly routine would be:

1 %define y_offset 4
2 _zero_y:
3 enter 0,0
4 mov eax, [ebp + 8] ; get s_p (struct pointer) from stack
5 mov dword [eax + y_offset], 0
6 leave
7 ret

C allows one to pass a structure by value to a function; however, this
is almost always a bad idea. When passed by value, the entire data in the
structure must be copied to the stack and then retrieved by the routine. It
is much more efficient to pass a pointer to a structure instead.

C also allows a structure type to used as the return value of a function.
Obviously a structure can not be returned in the EAX register. Different
compilers handle this situation differently. A common solution that com-
pilers use is to internally rewrite the function as one that takes a structure
pointer as a parameter. The pointer is used to put the return value into a
structure defined outside of the routine called.

Most assemblers (including NASM) have built-in support for defining
structures in your assembly code. Consult your documentation for details.

7.2 Assembly and C++

The C++ programming language is an extension of the C language.
Many of the basic rules of interfacing C and assembly language also apply
to C++. However, some rules need to be modified. Also, some of the
extensions of C++ are easier to understand with an knowledge of assembly
language. This section assumes a basic knowledge of C++.

7.2.1 Overloading and Name Mangling

C++ allows different functions (and class member functions) with the
same name to be defined. When more than one function share the same
name, the functions are said to be overloaded. If two functions are defined
with the same name in C, the linker will produce an error because it will
find two definitions for the same symbol in the object files it is linking. For
example, consider the code in Figure 7.3. The equivalent assembly code
would define two labels named f which will obviously be an error.

7.2. ASSEMBLY AND C++ 137

1 #include <stdio.h>
2

3 void f (int x)
4 {
5 printf (”%d\n”, x);
6 }
7

8 void f (double x)
9 {

10 printf (”%g\n”, x);
11 }

Figure 7.3: Two f() functions

C++ uses the same linking process as C, but avoids this error by per-
forming name mangling or modifying the symbol used to label the function.
In a way, C already uses name mangling, too. It adds an underscore to the
name of the C function when creating the label for the function. However,
C will mangle the name of both functions in Figure 7.3 the same way and
produce an error. C++ uses a more sophisticated mangling process that
produces two different labels for the functions. For example, the first func-
tion in Figure 7.3 would be assigned by DJGPP the label f Fi and the
second function, f Fd. This avoids any linker errors.

Unfortunately, there is no standard for how to manage names in C++
and different compilers mangle names differently. For example, Borland
C++ would use the labels @f$qi and @f$qd for the two functions in Fig-
ure 7.3. However, the rules are not completely arbitrary. The mangled name
encodes the signature of the function. The signature of a function is defined
by the order and the type of its parameters. Notice that the function that
takes a single int argument has an i at the end of its mangled name (for
both DJGPP and Borland) and that the one that takes a double argument
has a d at the end of its mangled name. If there was a function named f
with the prototype:

void f (int x , int y , double z);

DJGPP would mangle its name to be f Fiid and Borland to @f$qiid.
The return type of the function is not part of a function’s signature and

is not encoded in its mangled name. This fact explains a rule of overloading
in C++. Only functions whose signatures are unique may be overloaded. As
one can see, if two functions with the same name and signature are defined
in C++, they will produce the same mangled name and will create a linker
error. By default, all C++ functions are name mangled, even ones that are

138 CHAPTER 7. STRUCTURES AND C++

not overloaded. When it is compiling a file, the compiler has no way of
whether a particular function is overloaded or not, so it mangles all names.
In fact, it also mangles the names of global variables as well by encoding
the type of the variable in a similar way as function signatures. Thus, if
one defines a global variable in one file as a certain type and then tries to
use in another file as the wrong type, a linker error will be produced. This
characteristic of C++ is known as typesafe linking. It also exposes another
type of error, inconsistent prototypes. This occurs when the definition of a
function in one module does not agree with the prototype used by another
module. In C, this can be a very difficult problem to debug. C does not
catch this error. The program will compile and link, but will have undefined
behavior as the calling code will be pushing different types on the stack than
the function expects. In C++, it will produce a linker error.

When the C++ compiler is parsing a function call, it looks for a matching
function by looking at the types of the arguments passed to the function2.
If it finds a match, it then creates a CALL to the correct function using the
compiler’s name mangling rules.

Since different compilers use different name mangling rules, C++ code
compiled by different compilers may not be able to be linked together. This
fact is important when considering using a precompiled C++ library! If one
wishes to write a function in assembly that will be used with C++ code,
she must know the name mangling rules for the C++ compiler to be used
(or use the technique explained below).

The astute student may question whether the code in Figure 7.3 will
work as expected. Since C++ name mangles all functions, then the printf
function will be mangled and the compiler will not produce a CALL to the
label printf. This is a valid concern! If the prototype for printf was
simply placed at the top of the file, this would happen. The prototype is:

int printf (const char ∗, ...);

DJGPP would mangle this to be printf FPCce. (The F is for function, P
for pointer, C for const, c for char and e for ellipsis.) This would not call
the regular C library’s printf function! Of course, there must be a way for
C++ code to call C code. This is very important because there is a lot of
useful old C code around. In addition to allowing one to call legacy C code,
C++ also allows one to call assembly code using the normal C mangling
conventions.

C++ extends the extern keyword to allow it to specify that the func-
tion or global variable it modifies uses the normal C conventions. In C++
terminology, the function or global variable uses C linkage. For example, to

2The match does not have to be an exact match, the compiler will consider matches
made by casting the arguments. The rules for this process are beyond the scope of this
book. Consult a C++ book for details.

7.2. ASSEMBLY AND C++ 139

1 void f (int & x) // the & denotes a reference parameter
2 { x++; }
3

4 int main()
5 {
6 int y = 5;
7 f(y); // reference to y is passed , note no & here!
8 printf (”%d\n”, y); // prints out 6!
9 return 0;

10 }

Figure 7.4: Reference example

declare printf to have C linkage, use the prototype:

extern ”C” int printf (const char ∗, ...);

This instructs the compiler not to use the C++ name mangling rules on this
function, but instead to use the C rules. However, by doing this, the printf
function may not be overloaded. This provides the easiest way to interface
C++ and assembly, define the function to use C linkage and then use the C
calling convention.

For convenience, C++ also allows the linkage of a block of functions
and global variables to be defined. The block is denoted by the usual curly
braces.
extern ”C”{

/∗ C linkage global variables and function prototypes ∗/
}

If one examines the ANSI C header files that come with C/C++ com-
pilers today, they will find the following near the top of each header file:
#ifdef cplusplus
extern ”C”{
#endif

And a similar construction near the bottom containing a closing curly brace.
C++ compilers define the cplusplus macro (with two leading under-
scores). The snippet above encloses the entire header file within an extern "C"
block if the header file is compiled as C++, but does nothing if compiled
as C (since a C compiler would give a syntax error for extern "C"). This
same technique can be used by any programmer to create a header file for
assembly routines that can be used with either C or C++.

140 CHAPTER 7. STRUCTURES AND C++

7.2.2 References

References are another new feature of C++. They allow one to pass
parameters to functions without explicitly using pointers. For example,
consider the code in Figure 7.4. Actually, reference parameters are pretty
simple, they really are just pointers. The compiler just hides this from
the programmer (just as Pascal compilers implement var parameters as
pointers). When the compiler generates assembly for the function call on
line 7, it passes the address of y. If one was writing function f in assembly,
they would act as if the prototype was3:

void f (int ∗ xp);

References are just a convenience that are especially useful for opera-
tor overloading. This is another feature of C++ that allows one to define
meanings for common operators on structure or class types. For example, a
common use is to define the plus (+) operator to concatenate string objects.
Thus, if a and b were strings, a + b would return the concatenation of the
strings a and b. C++ would actually call a function to do this (in fact, these
expression could be rewritten in function notation as operator +(a,b)).
For efficiency, one would like to pass the address of the string objects in-
stead of passing them by value. Without references, this could be done as
operator +(&a,&b), but this would require one to write in operator syntax
as &a + &b. This would be very awkward and confusing. However, by using
references, one can write it as a + b, which looks very natural.

7.2.3 Inline functions

Inline functions are yet another feature of C++4. Inline functions are
meant to replace the error-prone, preprocessor-based macros that take pa-
rameters. Recall from C, that writing a macro that squares a number might
look like:
#define SQR(x) ((x)∗(x))

Because the preprocessor does not understand C and does simple sub-
stitutions, the parenthesis are required to compute the correct answer in
most cases. However, even this version will not give the correct answer for
SQR(x++).

Macros are used because they eliminate the overhead of making a func-
tion call for a simple function. As the chapter on subprograms demonstrated,
performing a function call involves several steps. For a very simple function,
the time it takes to make the function call may be more that the time to
actually perform the operations in the function! Inline functions are a much

3Of course, they might want to declare the function with C linkage to avoid name
mangling as discussed in Section 7.2.1

4 C compilers often support this feature as an extension of ANSI C

7.2. ASSEMBLY AND C++ 141

1 inline int inline f (int x)
2 { return x∗x; }
3

4 int f (int x)
5 { return x∗x; }
6

7 int main()
8 {
9 int y , x = 5;

10 y = f(x);
11 y = inline f (x);
12 return 0;
13 }

Figure 7.5: Inlining example

more friendly way to write code that looks like a normal function, but that
does not CALL a common block of code. Instead, calls to inline functions
are replaced by code that performs the function. C++ allows a function to
be made inline by placing the keyword inline in front of the function defi-
nition. For example, consider the functions declared in Figure 7.5. The call
to function f on line 10 does a normal function call (in assembly, assuming
x is at address ebp-8 and y is at ebp-4):

1 push dword [ebp-8]
2 call _f
3 pop ecx
4 mov [ebp-4], eax

However, the call to function inline f on line 11 would look like:

1 mov eax, [ebp-8]
2 imul eax, eax
3 mov [ebp-4], eax

In this case, there are two advantages to inlining. First, the inline func-
tion is faster. No parameters are pushed on the stack, no stack frame is
created and then destroyed, no branch is made. Secondly, the inline func-
tion call uses less code! This last point is true for this example, but does
not hold true in all cases.

142 CHAPTER 7. STRUCTURES AND C++

1 class Simple {
2 public :
3 Simple (); // default constructor
4 ˜Simple (); // destructor
5 int get data () const; // member functions
6 void set data (int);
7 private :
8 int data ; // member data
9 };

10

11 Simple :: Simple()
12 { data = 0; }
13

14 Simple::˜Simple()
15 { /∗ null body ∗/ }
16

17 int Simple :: get data () const
18 { return data; }
19

20 void Simple :: set data (int x)
21 { data = x; }

Figure 7.6: A simple C++ class

The main disadvantage of inlining is that inline code is not linked and
so the code of an inline function must be available to all files that use it.
The previous example assembly code shows this. The call of the non-inline
function only requires knowledge of the parameters, the return value type,
calling convention and the name of the label for the function. All this
information is available from the prototype of the function. However, using
the inline function requires knowledge of the all the code of the function.
This means that if any part of an inline function is changed, all source
files that use the function must be recompiled. Recall that for non-inline
functions, if the prototype does not change, often the files that use the
function need not be recompiled. For all these reasons, the code for inline
functions are usually placed in header files. This practice is contrary to the
normal hard and fast rule in C that executable code statements are never
placed in header files.

7.2. ASSEMBLY AND C++ 143

void set data (Simple ∗ object , int x)
{

object−>data = x;
}

Figure 7.7: C Version of Simple::set data()

1 _set_data__6Simplei: ; mangled name
2 push ebp
3 mov ebp, esp
4

5 mov eax, [ebp + 8] ; eax = pointer to object (this)
6 mov edx, [ebp + 12] ; edx = integer parameter
7 mov [eax], edx ; data is at offset 0
8

9 leave
10 ret

Figure 7.8: Compiler output of Simple::set data(int)

7.2.4 Classes

A C++ class describes a type of object. An object has both data mem-
bers and function members5. In other words, it’s a struct with data and
functions associated with it. Consider the simple class defined in Figure 7.6.
A variable of Simple type would look just like a normal C struct with a
single int member. The functions are not stored in memory assigned to the Actually, C++ uses the

this keyword to access the
pointer to the object acted
on from inside the member
function.

structure. However, member functions are different from other functions.
They are passed a hidden parameter. This parameter is a pointer to the
object that the member function is acting on.

For example, consider the set data method of the Simple class of Fig-
ure 7.6. If it was written in C, it would look like a function that was passed
explicitly passed a pointer to the object being acted on as the code in Fig-
ure 7.7 shows. The -S switch on the DJGPP compiler (and the gcc and
Borland compilers as well) tells the compiler to produce an assembly file
containing the equivalent assembly language for the code produced. For
DJGPP and gcc the assembly file ends in an .s extension and unfortu-
nately uses AT&T assembly language syntax which is quite different from
NASM and MASM syntaxes6. (Borland and MS compilers generate a file

5Often called member functions in C++ or more generally methods.
6The gcc compiler system includes its own assembler called gas. The gas assembler

144 CHAPTER 7. STRUCTURES AND C++

with a .asm extension using MASM syntax.) Figure 7.8 shows the output
of DJGPP converted to NASM syntax and with comments added to clarify
the purpose of the statements. On the very first line, note that the set data
method is assigned a mangled label that encodes the name of the method,
the name of the class and the parameters. The name of the class is encoded
because other classes might have a method named set data and the two
methods must be assigned different labels. The parameters are encoded so
that the class can overload the set data method to take other parameters
just as normal C++ functions. However, just as before, different compilers
will encode this information differently in the mangled label.

Next on lines 2 and 3, the familiar function prologue appears. On line 5,
the first parameter on the stack is stored into EAX. This is not the x param-
eter! Instead it is the hidden parameter7 that points to the object being
acted on. Line 6 stores the x parameter into EDX and line 7 stores EDX into
the double word that EAX points to. This is the data member of the Simple
object being acted on, which being the only data in the class, is stored at
offset 0 in the Simple structure.

Example

This section uses the ideas of the chapter to create a C++ class that
represents an unsigned integer of arbitrary size. Since the integer can be
any size, it will be stored in an array of unsigned integers (double words).
It can be made any size by using dynamical allocation. The double words
are stored in little endian order (i.e., the least significant double word is at
index 0). Figure 7.9 shows the definition of the Big int class8. The size
of a Big int is measured by the size of the unsigned array that is used to
store its data. The size data member of the class is assigned offset zero
and the number member is assigned offset 4.

To simplify these example, only object instances with the same size ar-
rays can be added to or subtracted from each other.

The class has three constructors: the first (line 9) initializes the class
instance by using a normal unsigned integer; the second (line 18) initializes
the instance by using a string that contains a hexadecimal value. The third
constructor (line 21) is the copy constructor.

This discussion focuses on how the addition and subtraction operators

uses AT&T syntax and thus the compiler outputs the code in the format for gas. There
are several pages on the web that discuss the differences in INTEL and AT&T formats.
There is also a free program named a2i (http://www.multimania.com/placr/a2i.html),
that converts AT&T format to NASM format.

7As usual, nothing is hidden in the assembly code!
8See the code example source for the complete code for this example. The text will

only refer to some of the code.

7.2. ASSEMBLY AND C++ 145

1 class Big int {
2 public :
3 /∗
4 ∗ Parameters:
5 ∗ size − size of integer expressed as number of
6 ∗ normal unsigned int ’ s
7 ∗ initial value − initial value of Big int as a normal unsigned int
8 ∗/
9 explicit Big int (size t size ,

10 unsigned initial value = 0);
11 /∗
12 ∗ Parameters:
13 ∗ size − size of integer expressed as number of
14 ∗ normal unsigned int ’ s
15 ∗ initial value − initial value of Big int as a string holding
16 ∗ hexadecimal representation of value .
17 ∗/
18 Big int (size t size ,
19 const char ∗ initial value);
20

21 Big int (const Big int & big int to copy);
22 ˜Big int ();
23

24 // returns size of Big int (in terms of unsigned int ’ s)
25 size t size () const;
26

27 const Big int & operator = (const Big int & big int to copy);
28 friend Big int operator + (const Big int & op1,
29 const Big int & op2);
30 friend Big int operator − (const Big int & op1,
31 const Big int & op2);
32 friend bool operator == (const Big int & op1,
33 const Big int & op2);
34 friend bool operator < (const Big int & op1,
35 const Big int & op2);
36 friend ostream & operator << (ostream & os,
37 const Big int & op);
38 private :
39 size t size ; // size of unsigned array
40 unsigned ∗ number ; // pointer to unsigned array holding value
41 };

Figure 7.9: Definition of Big int class

146 CHAPTER 7. STRUCTURES AND C++

1 // prototypes for assembly routines
2 extern ”C”{
3 int add big ints (Big int & res ,
4 const Big int & op1,
5 const Big int & op2);
6 int sub big ints (Big int & res ,
7 const Big int & op1,
8 const Big int & op2);
9 }

10

11 inline Big int operator + (const Big int & op1, const Big int & op2)
12 {
13 Big int result (op1. size ());
14 int res = add big ints (result , op1, op2);
15 if (res == 1)
16 throw Big int :: Overflow();
17 if (res == 2)
18 throw Big int :: Size mismatch();
19 return result ;
20 }
21

22 inline Big int operator − (const Big int & op1, const Big int & op2)
23 {
24 Big int result (op1. size ());
25 int res = sub big ints (result , op1, op2);
26 if (res == 1)
27 throw Big int :: Overflow();
28 if (res == 2)
29 throw Big int :: Size mismatch();
30 return result ;
31 }

Figure 7.10: Big int Class Arithmetic Code

7.2. ASSEMBLY AND C++ 147

work since this is where the assembly language is used. Figure 7.10 shows
the relevant parts of the header file for these operators. They show how the
operators are set up to call the assembly routines. Since different compilers
use radically different mangling rules for operator functions, inline operator
functions are used to set up a calls to C linkage assembly routines. This
makes it relatively easy to port to different compilers and is just as fast as
direct calls. This technique also eliminates the need to throw an exception
from assembly!

Why is assembly used at all here? Recall that to perform multiple pre-
cision arithmetic, the carry must be moved from one dword to be added to
the next significant dword. C++ (and C) do not allow the programmer to
access the CPU’s carry flag. Performing the addition could only be done
by using C++ to independently recalculate the carry flag and conditionally
add it to the next dword. It is much more efficient to write the code in
assembly where the carry flag can be accessed and using the ADC instruction
which automatically adds the carry flag in makes a lot of sense.

For brevity, only the add big ints assembly routine will be discussed
here. Below is the code for this routine (from big math.asm):

big math.asm
1 segment .text
2 global add_big_ints, sub_big_ints
3 %define size_offset 0
4 %define number_offset 4
5

6 %define EXIT_OK 0
7 %define EXIT_OVERFLOW 1
8 %define EXIT_SIZE_MISMATCH 2
9

10 ; Parameters for both add and sub routines
11 %define res ebp+8
12 %define op1 ebp+12
13 %define op2 ebp+16
14

15 add_big_ints:
16 push ebp
17 mov ebp, esp
18 push ebx
19 push esi
20 push edi
21 ;
22 ; first set up esi to point to op1
23 ; edi to point to op2

148 CHAPTER 7. STRUCTURES AND C++

24 ; ebx to point to res
25 mov esi, [op1]
26 mov edi, [op2]
27 mov ebx, [res]
28 ;
29 ; make sure that all 3 Big_int’s have the same size
30 ;
31 mov eax, [esi + size_offset]
32 cmp eax, [edi + size_offset]
33 jne sizes_not_equal ; op1.size_ != op2.size_
34 cmp eax, [ebx + size_offset]
35 jne sizes_not_equal ; op1.size_ != res.size_
36

37 mov ecx, eax ; ecx = size of Big_int’s
38 ;
39 ; now, point registers to point to their respective arrays
40 ; esi = op1.number_
41 ; edi = op2.number_
42 ; ebx = res.number_
43 ;
44 mov ebx, [ebx + number_offset]
45 mov esi, [esi + number_offset]
46 mov edi, [edi + number_offset]
47

48 clc ; clear carry flag
49 xor edx, edx ; edx = 0
50 ;
51 ; addition loop
52 add_loop:
53 mov eax, [edi+4*edx]
54 adc eax, [esi+4*edx]
55 mov [ebx + 4*edx], eax
56 inc edx ; does not alter carry flag
57 loop add_loop
58

59 jc overflow
60 ok_done:
61 xor eax, eax ; return value = EXIT_OK
62 jmp done
63 overflow:
64 mov eax, EXIT_OVERFLOW
65 jmp done

7.2. ASSEMBLY AND C++ 149

66 sizes_not_equal:
67 mov eax, EXIT_SIZE_MISMATCH
68 done:
69 pop edi
70 pop esi
71 pop ebx
72 leave
73 ret big math.asm

Hopefully, most of this code should be straightforward to the reader by
now. Lines 25 to 27 store pointers to the Big int objects passed to the
function into registers. Remember that references really are just pointers.
Lines 31 to 35 check to make sure that the sizes of the three object’s arrays
are the same. (Note that the offset of size is added to the pointer to access
the data member.) Lines 44 to 46 adjust the registers to point to the array
used by the respective objects instead of the objects themselves. (Again,
the offset of the number member is added to the object pointer.)

The loop in lines 52 to 57 adds the integers stored in the arrays together
by adding the least significant dword first, then the next least significant
dwords, etc. The addition must be done in this sequence for extended preci-
sion arithmetic (see Section 2.1.5). Line 59 checks for overflow, on overflow
the carry flag will be set by the last addition of the most significant dword.
Since the dwords in the array are stored in little endian order, the loop starts
at the beginning of the array and moves forward toward the end.

Figure 7.11 shows a short example using the Big int class. Note that
Big int constants must be declared explicitly as on line 16. This is necessary
for two reasons. First, there is no conversion constructor that will convert
an unsigned int to a Big int. Secondly, only Big int’s of the same size can
be added. This makes conversion problematic since it would be difficult to
know what size to convert to. A more sophisticated implementation of the
class would allow any size to be added to any other size. The author did not
wish to over complicate this example by implementing this here. (However,
the reader is encouraged to do this.)

7.2.5 Inheritance and Polymorphism

Inheritance allows one class to inherit the data and methods of another.
For example, consider the code in Figure 7.12. It shows two classes, A and
B, where class B inherits from A. The output of the program is:

Size of a: 4 Offset of ad: 0
Size of b: 8 Offset of ad: 0 Offset of bd: 4
A::m()
A::m()

150 CHAPTER 7. STRUCTURES AND C++

1 #include ”big int.hpp”
2 #include <iostream>
3 using namespace std;
4

5 int main()
6 {
7 try {
8 Big int b(5,”8000000000000a00b”);
9 Big int a(5,”80000000000010230”);

10 Big int c = a + b;
11 cout << a << ” + ”<< b << ” = ”<< c << endl;
12 for (int i=0; i < 2; i++) {
13 c = c + a;
14 cout << ”c = ”<< c << endl;
15 }
16 cout << ”c−1 = ”<< c − Big int(5,1) << endl;
17 Big int d(5, ”12345678”);
18 cout << ”d = ”<< d << endl;
19 cout << ”c == d ”<< (c == d) << endl;
20 cout << ”c > d ”<< (c > d) << endl;
21 }
22 catch(const char ∗ str) {
23 cerr << ”Caught: ”<< str << endl;
24 }
25 catch(Big int :: Overflow) {
26 cerr << ”Overflow”<< endl;
27 }
28 catch(Big int :: Size mismatch) {
29 cerr << ”Size mismatch”<< endl;
30 }
31 return 0;
32 }

Figure 7.11: Simple Use of Big int

7.2. ASSEMBLY AND C++ 151

1 #include <cstddef>
2 #include <iostream>
3 using namespace std;
4

5 class A {
6 public :
7 void cdecl m() { cout << ”A::m()”<< endl; }
8 int ad;
9 };

10

11 class B : public A {
12 public :
13 void cdecl m() { cout << ”B::m()”<< endl; }
14 int bd;
15 };
16

17 void f (A ∗ p)
18 {
19 p−>ad = 5;
20 p−>m();
21 }
22

23 int main()
24 {
25 A a;
26 B b;
27 cout << ”Size of a: ” << sizeof(a)
28 << ” Offset of ad: ” << offsetof(A,ad) << endl;
29 cout << ”Size of b: ” << sizeof(b)
30 << ” Offset of ad: ” << offsetof(B,ad)
31 << ” Offset of bd: ” << offsetof(B,bd) << endl;
32 f(&a);
33 f(&b);
34 return 0;
35 }

Figure 7.12: Simple Inheritance

152 CHAPTER 7. STRUCTURES AND C++

1 _f__FP1A: ; mangled function name
2 push ebp
3 mov ebp, esp
4 mov eax, [ebp+8] ; eax points to object
5 mov dword [eax], 5 ; using offset 0 for ad
6 mov eax, [ebp+8] ; passing address of object to A::m()
7 push eax
8 call _m__1A ; mangled method name for A::m()
9 add esp, 4

10 leave
11 ret

Figure 7.13: Assembly Code for Simple Inheritance

1 class A {
2 public :
3 virtual void cdecl m() { cout << ”A::m()”<< endl; }
4 int ad;
5 };
6

7 class B : public A {
8 public :
9 virtual void cdecl m() { cout << ”B::m()”<< endl; }

10 int bd;
11 };

Figure 7.14: Polymorphic Inheritance

Notice that the ad data members of both classes (B inherits it from A) are
at the same offset. This is important since the f function may be passed a
pointer to either an A object or any object of a type derived (i.e., inherited
from) A. Figure 7.13 shows the (edited) asm code for the function (generated
by gcc).

Note that in the output that A’s m method was called for both the a and
b objects. From the assembly, one can see that the call to A::m() is hard-
coded into the function. For true object-oriented programming, the method
called should depend on what type of object is passed to the function. This
is known as polymorphism. C++ turns this feature off by default. One uses
the virtual keyword to enable it. Figure 7.14 shows how the two classes
would be changed. None of the other code needs to be changed. Polymor-

7.2. ASSEMBLY AND C++ 153

1 ?f@@YAXPAVA@@@Z:
2 push ebp
3 mov ebp, esp
4

5 mov eax, [ebp+8]
6 mov dword [eax+4], 5 ; p->ad = 5;
7

8 mov ecx, [ebp + 8] ; ecx = p
9 mov edx, [ecx] ; edx = pointer to vtable

10 mov eax, [ebp + 8] ; eax = p
11 push eax ; push "this" pointer
12 call dword [edx] ; call first function in vtable
13 add esp, 4 ; clean up stack
14

15 pop ebp
16 ret

Figure 7.15: Assembly Code for f() Function

phism can be implemented many ways. Unfortunately, gcc’s implementation
is in transistion at the time of this writing and is becoming significantly more
complicated than it’s initial implementation. In the interest of simplifying
this discussion, the author will only cover the implementation of polymor-
phism which the Windows based, Microsoft and Borland compilers use. This
implementation has not changed in many years and probably will not change
in the foreseeable future.

With these changes, the output of the program changes:

Size of a: 8 Offset of ad: 4
Size of b: 12 Offset of ad: 4 Offset of bd: 8
A::m()
B::m()

Now the second call to f calls the B::m() method because it is passed
a B object. This is not the only change however. The size of an A is now 8
(and B is 12). Also, the offset of ad is 4, not 0. What is at offset 0? The
answer to these questions are related to how polymorphism is implemented.

A C++ class that has any virtual methods is given an extra hidden field
that is a pointer to an array of method pointers9. This table is often called
the vtable. For the A and B classes this pointer is stored at offset 0. The

9For classes without virtual methods C++ compilers always make the class compatible
with the a normal C struct with the same data members.

154 CHAPTER 7. STRUCTURES AND C++

1 class A {
2 public :
3 virtual void cdecl m1() { cout << ”A::m1()”<< endl; }
4 virtual void cdecl m2() { cout << ”A::m2()”<< endl; }
5 int ad;
6 };
7

8 class B : public A { // B inherits A’s m2()
9 public :

10 virtual void cdecl m1() { cout << ”B::m1()”<< endl; }
11 int bd;
12 };
13 /∗ prints the vtable of given object ∗/
14 void print vtable (A ∗ pa)
15 {
16 // p sees pa as an array of dwords
17 unsigned ∗ p = reinterpret cast<unsigned ∗>(pa);
18 // vt sees vtable as an array of pointers
19 void ∗∗ vt = reinterpret cast<void ∗∗>(p[0]);
20 cout << hex << ”vtable address = ”<< vt << endl;
21 for (int i=0; i < 2; i++)
22 cout << ”dword ”<< i << ”: ”<< vt[i] << endl;
23

24 // call virtual functions in EXTREMELY non−portable way!
25 void (∗m1func pointer)(A ∗); // function pointer variable
26 m1func pointer = reinterpret cast<void (∗)(A∗)>(vt[0]);
27 m1func pointer(pa); // call method m1 via function pointer
28

29 void (∗m2func pointer)(A ∗); // function pointer variable
30 m2func pointer = reinterpret cast<void (∗)(A∗)>(vt[1]);
31 m2func pointer(pa); // call method m2 via function pointer
32 }
33

34 int main()
35 {
36 A a; B b1; B b2;
37 cout << ”a: ”<< endl; print vtable (&a);
38 cout << ”b1: ”<< endl; print vtable (&b);
39 cout << ”b2: ”<< endl; print vtable (&b2);
40 return 0;
41 }

Figure 7.16: More complicated example

7.2. ASSEMBLY AND C++ 155

s -

bd

b1

0

4

8

4ad

&B::m1()

&A::m2()

vtable

vtablep
0

Figure 7.17: Internal representation of b1

Windows compilers always puts this pointer at the beginning of the class at
the top of the inheritance tree. Looking at the assembly code (Figure 7.15)
generated for function f (from Figure 7.12) for the virtual method version
of the program, one can see that the call to method m is not to a label.
Line 9 finds the address of the vtable from the object. The address of the
object is pushed on the stack in line 11. Line 12 calls the virtual method by
branching to the first address in the vtable10. This call does not use a label,
it branches to the code address pointed to by EDX. This type of call is an
example of late binding. Late binding delays the decision of which method
to call until the code is running. This allows the code to call the appropriate
method for the object. The normal case (Figure 7.13) hard-codes a call to a
certain method and is called early binding (since here the method is bound
early, at compile time).

The attentive reader will be wondering why the class methods in Fig-
ure 7.14 are explicitly declared to use the C calling convention by using
the cdecl keyword. By default, Microsoft uses a different calling conven-
tion for C++ class methods than the standard C convention. It passes the
pointer to the object acted on by the method in the ECX register instead
of using the stack. The stack is still used for the other explicit parameters
of the method. The cdecl modifier tells it to use the standard C calling
convention. Borland C++ uses the C calling convention by default.

Next let’s look at a sightly more complicated example (Figure 7.16). In it
the classes A and B each have two methods: m1 and m2. Remember that since
class B does not define it’s own m2 method, it inherits the A class’s method.
Figure 7.17 shows how the b object appears in memory. Figure 7.18 shows
the output of the program. First, look at the address of the vtable for each
object. The two B object’s addresses are the same and thus, they share

10Of course, this value is already in the ECX register. It was put there in line 8 and
line 10 could be removed and the next line changed to push ECX. The code is not very
efficient because it was generated without compiler optimizations turned on.

156 CHAPTER 7. STRUCTURES AND C++

a:
vtable address = 004120E8
dword 0: 00401320
dword 1: 00401350
A::m1()
A::m2()
b1:
vtable address = 004120F0
dword 0: 004013A0
dword 1: 00401350
B::m1()
A::m2()
b2:
vtable address = 004120F0
dword 0: 004013A0
dword 1: 00401350
B::m1()
A::m2()

Figure 7.18: Output of program in Figure 7.16

the same vtable. A vtable is a property of the class not an object (like a
static data member). Next, look at the addresses in the vtables. From
looking at assembly output, one can determine that the m1 method pointer
is at offset 0 (or dword 0) and m2 is at offset 4 (dword 1). The m2 method
pointers are the same for the A and B class vtables because class B inherits
the m2 method from the A class.

Lines 25 to 32 show how one could call a virtual function by reading its
address out of the vtable for the object11. The method address is stored into
a C-type function pointer with an explicit this pointer. From the output in
Figure 7.18, one can see that it does work. However, please do not write
code like this! This is only used to illustrate how the virtual methods use
the vtable.

There are some practical lessons to learn from this. One important fact is
that one would have to very careful when reading and writing class variables
to a binary file. One can not just use a binary read or write on the entire
object as this would read or write out the vtable pointer to the file! This is
a pointer to where the vtable resides in the program’s memory and will vary
from program to program. This same problem can occur in C with structs,
but in C, structs only have pointers in them if the programmer explicitly

11Remember this code only works with the MS and Borland compilers, not gcc.

7.2. ASSEMBLY AND C++ 157

puts them in. There are no obvious pointers defined in either the A or B
classes.

Again, it is important to realize that different compilers implement vir-
tual methods differently. In Windows, COM (Component Object Model)
class objects use vtables to implement COM interfaces12. Only compilers
that implement virtual method vtables as Microsoft does can create COM
classes. This is why Borland uses the same implementation as Microsoft and
one of the reasons why gcc can not be used to create COM classes.

The code for the virtual method looks exactly like a non-virtual one.
Only the code that calls it is different. If the compiler can be absolutely
sure of what virtual method will be called, it can ignore the vtable and call
the method directly (e.g., use early binding).

7.2.6 Other C++ features

The workings of other C++ features (e.g., RunTime Type Information,
and multiple inheritance) are beyond the scope of this text. If the reader
wishes to go further, a good starting point is The Annotated C++ Reference
Manual by Ellis and Stroustrup and The Design and Evolution of C++ by
Stroustrup.

12COM classes also use the stdcall calling convention, not the standard C one.

158 CHAPTER 7. STRUCTURES AND C++

Appendix A

80x86 Instructions

A.1 Non-floating Point Instructions

This section lists and describes the actions and formats of the non-
floating point instructions of the Intel 80x86 CPU family.

The formats use the following abbreviations:

R general register
R8 8-bit register
R16 16-bit register
R32 32-bit register
SR segment register
M memory
M8 byte
M16 word
M32 double word
I immediate value

These can be combined for the multiple operand instructions. For example,
the format R, R means that the instruction takes two register operands.
Many of the two operand instructions allow the same operands. The abbre-
viation O2 is used to represent these operands: R,R R,M R,I M,R M,I. If
a 8-bit register or memory can be used for an operand, the abbreviation,
R/M8 is used.

The table also shows how various bits of the FLAGS register are affected
by each instruction. If the column is blank, the corresponding bit is not
affected at all. If the bit is always changed to a particular value, a 1 or 0 is
shown in the column. If the bit is changed to a value that depends on the
operands of the instruction, a C is placed in the column. Finally, if the bit
is modified in some undefined way a ? appears in the column. Because the

159

160 APPENDIX A. 80X86 INSTRUCTIONS

only instructions that change the direction flag are CLD and STD, it is not
listed under the FLAGS columns.

Flags
Name Description Formats O S Z A P C

ADC Add with Carry O2 C C C C C C
ADD Add Integers O2 C C C C C C
AND Bitwise AND O2 0 C C ? C 0
CALL Call Routine R M I
CBW Convert Byte to Word
CDQ Convert Dword to

Qword
CLC Clear Carry 0
CLD Clear Direction Flag
CMC Complement Carry C
CMP Compare Integers O2 C C C C C C
CMPSB Compare Bytes C C C C C C
CMPSW Compare Words C C C C C C
CMPSD Compare Dwords C C C C C C
CWD Convert Word to

Dword into DX:AX
CWDE Convert Word to

Dword into EAX
DEC Decrement Integer R M C C C C C
DIV Unsigned Divide R M ? ? ? ? ? ?
ENTER Make stack frame I,0
IDIV Signed Divide R M ? ? ? ? ? ?
IMUL Signed Multiply R M

R16,R/M16
R32,R/M32
R16,I
R32,I
R16,R/M16,I
R32,R/M32,I

C ? ? ? ? C

INC Increment Integer R M C C C C C
INT Generate Interrupt I
JA Jump Above I
JAE Jump Above or Equal I
JB Jump Below I
JBE Jump Below or Equal I
JC Jump Carry I
JCXZ Jump if CX = 0 I

A.1. NON-FLOATING POINT INSTRUCTIONS 161

Flags
Name Description Formats O S Z A P C

JE Jump Equal I
JG Jump Greater I
JGE Jump Greater or

Equal
I

JL Jump Less I
JLE Jump Less or Equal I
JMP Unconditional Jump R M I
JNA Jump Not Above I
JNAE Jump Not Above or

Equal
I

JNB Jump Not Below I
JNBE Jump Not Below or

Equal
I

JNC Jump No Carry I
JNE Jump Not Equal I
JNG Jump Not Greater I
JNGE Jump Not Greater or

Equal
I

JNL Jump Not Less I
JNLE Jump Not Less or

Equal
I

JNO Jump No Overflow I
JNS Jump No Sign I
JNZ Jump Not Zero I
JO Jump Overflow I
JPE Jump Parity Even I
JPO Jump Parity Odd I
JS Jump Sign I
JZ Jump Zero I
LAHF Load FLAGS into AH
LEA Load Effective Address R32,M
LEAVE Leave Stack Frame
LODSB Load Byte
LODSW Load Word
LODSD Load Dword
LOOP Loop I
LOOPE/LOOPZ Loop If Equal I
LOOPNE/LOOPNZ Loop If Not Equal I

162 APPENDIX A. 80X86 INSTRUCTIONS

Flags
Name Description Formats O S Z A P C

MOV Move Data O2
SR,R/M16
R/M16,SR

MOVSB Move Byte
MOVSW Move Word
MOVSD Move Dword
MOVSX Move Signed R16,R/M8

R32,R/M8
R32,R/M16

MOVZX Move Unsigned R16,R/M8
R32,R/M8
R32,R/M16

MUL Unsigned Multiply R M C ? ? ? ? C
NEG Negate R M C C C C C C
NOP No Operation
NOT 1’s Complement R M
OR Bitwise OR O2 0 C C ? C 0
POP Pop From Stack R/M16

R/M32
POPA Pop All
POPF Pop FLAGS C C C C C C
PUSH Push to Stack R/M16

R/M32 I
PUSHA Push All
PUSHF Push FLAGS
RCL Rotate Left with Carry R/M,I

R/M,CL
C C

RCR Rotate Right with
Carry

R/M,I
R/M,CL

C C

REP Repeat
REPE/REPZ Repeat If Equal
REPNE/REPNZ Repeat If Not Equal
RET Return
ROL Rotate Left R/M,I

R/M,CL
C C

ROR Rotate Right R/M,I
R/M,CL

C C

SAHF Copies AH into
FLAGS

C C C C C

A.1. NON-FLOATING POINT INSTRUCTIONS 163

Flags
Name Description Formats O S Z A P C

SAL Shifts to Left R/M,I
R/M, CL

C

SBB Subtract with Borrow O2 C C C C C C
SCASB Scan for Byte C C C C C C
SCASW Scan for Word C C C C C C
SCASD Scan for Dword C C C C C C
SETA Set Above R/M8
SETAE Set Above or Equal R/M8
SETB Set Below R/M8
SETBE Set Below or Equal R/M8
SETC Set Carry R/M8
SETE Set Equal R/M8
SETG Set Greater R/M8
SETGE Set Greater or Equal R/M8
SETL Set Less R/M8
SETLE Set Less or Equal R/M8
SETNA Set Not Above R/M8
SETNAE Set Not Above or

Equal
R/M8

SETNB Set Not Below R/M8
SETNBE Set Not Below or

Equal
R/M8

SETNC Set No Carry R/M8
SETNE Set Not Equal R/M8
SETNG Set Not Greater R/M8
SETNGE Set Not Greater or

Equal
R/M8

SETNL Set Not Less R/M8
SETNLE Set Not LEss or Equal R/M8
SETNO Set No Overflow R/M8
SETNS Set No Sign R/M8
SETNZ Set Not Zero R/M8
SETO Set Overflow R/M8
SETPE Set Parity Even R/M8
SETPO Set Parity Odd R/M8
SETS Set Sign R/M8
SETZ Set Zero R/M8
SAR Arithmetic Shift to

Right
R/M,I
R/M, CL

C

164 APPENDIX A. 80X86 INSTRUCTIONS

Flags
Name Description Formats O S Z A P C

SHR Logical Shift to Right R/M,I
R/M, CL

C

SHL Logical Shift to Left R/M,I
R/M, CL

C

STC Set Carry 1
STD Set Direction Flag
STOSB Store Btye
STOSW Store Word
STOSD Store Dword
SUB Subtract O2 C C C C C C
TEST Logical Compare R/M,R

R/M,I
0 C C ? C 0

XCHG Exchange R/M,R
R,R/M

XOR Bitwise XOR O2 0 C C ? C 0

A.2. FLOATING POINT INSTRUCTIONS 165

A.2 Floating Point Instructions

In this section, many of the 80x86 math coprocessor instructions are
described. The description section briefly describes the operation of the
instruction. To save space, information about whether the instruction pops
the stack is not given in the description.

The format column shows what type of operands can be used with each
instruction. The following abbreviations are used:

STn A coprocessor register
F Single precision number in memory
D Double precision number in memory
E Extended precision number in memory
I16 Integer word in memory
I32 Integer double word in memory
I64 Integer quad word in memory

Instructions requiring a Pentium Pro or better are marked with an as-
terisk(∗).

Instruction Description Format
FABS ST0 = |ST0|
FADD src ST0 += src STn F D
FADD dest, ST0 dest += STO STn
FADDP dest [,ST0] dest += ST0 STn
FCHS ST0 = −ST0
FCOM src Compare ST0 and src STn F D
FCOMP src Compare ST0 and src STn F D
FCOMPP src Compares ST0 and ST1
FCOMI∗ src Compares into FLAGS STn
FCOMIP∗ src Compares into FLAGS STn
FDIV src ST0 /= src STn F D
FDIV dest, ST0 dest /= STO STn
FDIVP dest [,ST0] dest /= ST0 STn
FDIVR src ST0 = src /ST0 STn F D
FDIVR dest, ST0 dest = ST0/dest STn
FDIVRP dest [,ST0] dest = ST0/dest STn
FFREE dest Marks as empty STn
FIADD src ST0 += src I16 I32
FICOM src Compare ST0 and src I16 I32
FICOMP src Compare ST0 and src I16 I32
FIDIV src STO /= src I16 I32
FIDIVR src STO = src /ST0 I16 I32

166 APPENDIX A. 80X86 INSTRUCTIONS

Instruction Description Format
FILD src Push src on Stack I16 I32 I64
FIMUL src ST0 *= src I16 I32
FINIT Initialize Coprocessor
FIST dest Store ST0 I16 I32
FISTP dest Store ST0 I16 I32 I64
FISUB src ST0 -= src I16 I32
FISUBR src ST0 = src - ST0 I16 I32
FLD src Push src on Stack STn F D E
FLD1 Push 1.0 on Stack
FLDCW src Load Control Word Register I16
FLDPI Push π on Stack
FLDZ Push 0.0 on Stack
FMUL src ST0 *= src STn F D
FMUL dest, ST0 dest *= STO STn
FMULP dest [,ST0] dest *= ST0 STn
FRNDINT Round ST0
FSCALE ST0 = ST0× 2bST1c

FSQRT ST0 =
√
STO

FST dest Store ST0 STn F D
FSTP dest Store ST0 STn F D E
FSTCW dest Store Control Word Register I16
FSTSW dest Store Status Word Register I16 AX
FSUB src ST0 -= src STn F D
FSUB dest, ST0 dest -= STO STn
FSUBP dest [,ST0] dest -= ST0 STn
FSUBR src ST0 = src -ST0 STn F D
FSUBR dest, ST0 dest = ST0-dest STn
FSUBP dest [,ST0] dest = ST0-dest STn
FTST Compare ST0 with 0.0
FXCH dest Exchange ST0 and dest STn

	Preface
	1 Introduction
	1.1 Number Systems
	1.1.1 Decimal
	1.1.2 Binary
	1.1.3 Hexadecimal

	1.2 Computer Organization
	1.2.1 Memory
	1.2.2 The CPU
	1.2.3 The 80x86 family of CPUs
	1.2.4 8086 16-bit Registers
	1.2.5 80386 32-bit registers
	1.2.6 Real Mode
	1.2.7 16-bit Protected Mode
	1.2.8 32-bit Protected Mode
	1.2.9 Interrupts

	1.3 Assembly Language
	1.3.1 Machine language
	1.3.2 Assembly language
	1.3.3 Instruction operands
	1.3.4 Basic instructions
	1.3.5 Directives
	1.3.6 Input and Output
	1.3.7 Debugging

	1.4 Creating a Program
	1.4.1 First program
	1.4.2 Compiler dependencies
	1.4.3 Assembling the code
	1.4.4 Compiling the C code
	1.4.5 Linking the object files
	1.4.6 Understanding an assembly listing file

	1.5 Skeleton File

	2 Basic Assembly Language
	2.1 Working with Integers
	2.1.1 Integer representation
	2.1.2 Sign extension
	2.1.3 Two's complement arithmetic
	2.1.4 Example program
	2.1.5 Extended precision arithmetic

	2.2 Control Structures
	2.2.1 Comparisons
	2.2.2 Branch instructions
	2.2.3 The loop instructions

	2.3 Translating Standard Control Structures
	2.3.1 If statements
	2.3.2 While loops
	2.3.3 Do while loops

	2.4 Example: Finding Prime Numbers

	3 Bit Operations
	3.1 Shift Operations
	3.1.1 Logical shifts
	3.1.2 Use of shifts
	3.1.3 Arithmetic shifts
	3.1.4 Rotate shifts
	3.1.5 Simple application

	3.2 Boolean Bitwise Operations
	3.2.1 The AND operation
	3.2.2 The OR operation
	3.2.3 The XOR operation
	3.2.4 The NOT operation
	3.2.5 The TEST instruction
	3.2.6 Uses of boolean operations

	3.3 Manipulating bits in C
	3.3.1 The bitwise operators of C
	3.3.2 Using bitwise operators in C

	3.4 Counting Bits
	3.4.1 Method one
	3.4.2 Method two
	3.4.3 Method Three

	4 Subprograms
	4.1 Indirect Addressing
	4.2 Simple Subprogram Example
	4.3 The Stack
	4.4 The CALL and RET Instructions
	4.5 Calling Conventions
	4.5.1 Passing parameters on the stack
	4.5.2 Local variables on the stack

	4.6 Multi-Module Programs
	4.7 Interfacing Assembly with C
	4.7.1 Saving registers
	4.7.2 Labels of functions
	4.7.3 Passing parameters
	4.7.4 Calculating addresses of local variables
	4.7.5 Returning values
	4.7.6 Other calling conventions
	4.7.7 Examples
	4.7.8 Calling C functions from assembly

	4.8 Reentrant and Recursive Subprograms
	4.8.1 Recursive subprograms
	4.8.2 Review of C variable storage types

	5 Arrays
	5.1 Introduction
	5.1.1 Defining arrays
	5.1.2 Accessing elements of arrays
	5.1.3 More advanced indirect addressing
	5.1.4 Example

	5.2 Array/String Instructions
	5.2.1 Reading and writing memory
	5.2.2 The REP instruction prefix
	5.2.3 Comparison string instructions
	5.2.4 The REPx instruction prefixes
	5.2.5 Example

	6 Floating Point
	6.1 Floating Point Representation
	6.1.1 Non-integral binary numbers
	6.1.2 IEEE floating point representation

	6.2 Floating Point Arithmetic
	6.2.1 Addition
	6.2.2 Subtraction
	6.2.3 Multiplication and division
	6.2.4 Ramifications for programming

	6.3 The Numeric Coprocessor
	6.3.1 Hardware
	6.3.2 Instructions
	6.3.3 Examples
	6.3.4 Quadratic formula
	6.3.5 Reading array from file
	6.3.6 Finding primes

	7 Structures and C++
	7.1 Structures
	7.1.1 Introduction
	7.1.2 Memory alignment
	7.1.3 Using structures in assembly

	7.2 Assembly and C++
	7.2.1 Overloading and Name Mangling
	7.2.2 References
	7.2.3 Inline functions
	7.2.4 Classes
	7.2.5 Inheritance and Polymorphism
	7.2.6 Other C++ features

	A 80x86 Instructions
	A.1 Non-floating Point Instructions
	A.2 Floating Point Instructions

