Name:

Directions: Work only on this sheet (on both
sides, if needed); do not turn in any supplemen-
tary sheets of paper. There is actually plenty of
room for your answers, as long as you organize
yourself BEFORE starting writing. In order to
get full credit, SHOW YOUR WORK.

1. (10) Find the 8-bit 2s complement representation of
-18. (Give your answer in hex.)

2. (10) Consider the assembler output on p.3 of our PLN
unit on machine language. Suppose the program were to
have additional instructions beyond the label done, and
suppose at that label there were a JNZ instruction whose
target (i.e. jump destination) were in offset 0x0025 of the
.text segment. What would the machine code be for this
instruction?

3. (10) Write at most two lines of assembly code which
will copy the memory word pointed to by EAX to the
memory word pointed to by EBX. You may assume all
other registers are available to you.

4. (10) State the contents of the Mantissa Field for the
decimal number 1.75, under the IEEE standard.

5. (10) How would a compiler likely translate

x[12] += 15;

Here x is a global int array. Give your answer in assem-
bly language. Any code that works will get full credit,
but no credit will be given to any code containing more
than seven instructions, with five being “normal” and two
being possible.

6. Suppose the code on p.30 of our PLN unit on Linux
assembly language had been

.data
X: .string "abcde"
.space 3

5 characters plus a null

.text

.globl _start

_start:
movl $x, Jesi
movl Y%esi, %edi
addl $3, %edi
movl $6, Jecx
rep movsb

done:
movl $0,%eax

Suppose that we execute this in GDB, and pause at done.

(a) (10) What GDB command could we use to examine
the 9 bytes beginning at x?

(b) (10) What would the contents of those 9 bytes be?
(In your answer, state the content of each individual
byte, either in character, decimal or hex form.)

7. The POP instruction on line 25 of p.5 of the PLN unit
on subroutines is there to clean up the stack. But it only
removes one element from the stack, when it should be
two.

(a) (5) Replace the POP by an ADD instruction which
will properly clean up the stack.

(b) (5) Suppose instead of the ADD instruction we sim-
ply were to add a second POP. For which instruc-
tions, if any, would this cause a change in machine
code? (Note that I am asking whether machine
code itself would change, not whether offsets would
change.) List the new machine code for all such in-

structions.

8. (20) Look at the assembler language output for the
full example in Sec. 7 of the PLN unit on subroutines.
Suppose the .data and .text segments begin at 2008 and
80888, respectively. (All addresses in this problem will be
in decimal unless otherwise stated. Note that it may not
be necessary to use all given information in this problem.)
Then the address of the 0x48 for the DECL instruction
is . Also, suppose that just before the CALL is
executed, c¢(ESP) = 36000. Then right after the CALL
instruction is executed, the pushed value 3 for n will be in
the word with address __________ and the contents of byte
35998 will be __________.

Solutions:
1. Oxee

2. 75 0c
3.

movl (%eax), %ecx
movl Y%ecx, (Jebx)

4. 1.75 = 1+ 271 4+ 272, 50 the base-2 represention is
1.11, very similar to the example of 1.625 = 1.1015 in the
PLN. So, the Mantissa Field is 11 0...0.

21 0s
5.

movl $48, Y%ebx
addl $15, x(%ebx)

or

addl $15, x+48

or ...
6.a x/9¢c &x

6.b As mentioned in the PLN, MOVS does the same
thing a loop would do, only faster. In this case, in which
the destination and source arrays overlap each other, this
implies that some characters will be overwritten before
it reaches their turns to be copied. The final contents

starting at x+3 will be 'a’,’b’,’c’,’a’,’b’,’¢’,’a’,’b’,’c’, NOT
’a’,’b’,’c’,’d’,’e’,NULL.
7.a addl $8, Y%esp

7.b The extra POP adds one byte of code. So, the ma-
chine code for the CALL instruction changes, since the
distance to init from (the instruction after) the CALL
will increase by one byte. The new code will be e8 10 00
00 00.

8.a The offset of 0x48 is 0x0016 = 22, so the address is
80888+22 = 80910.

8.b The value 3 is in word 36000.

8.c The CALL will push the return address, so that value
will be in 36000-4 = 35996. Byte 35998 will be the third-
least significant byte in that word. The contents of the

whole word will be 80888+4-0x10 = 0x00013c08, and the
third-least significant byte will be 01.

