Name:

Directions: Work only on this sheet (on both
sides, if needed); do not turn in any supplemen-
tary sheets of paper. There is actually plenty of
room for your answers, as long as you organize
yourself BEFORE starting writing. In order to
get full credit, SHOW YOUR WORK.

1. (10) Suppose we are storing signed integers using “8s
complement arithmetic.” In other words, to store +n, we
would “wind forward or backward” from 000 n times, on
a 3-digit “odometer” having digits 0-7. Find the repre-
sentation of -12.

2. (10) Execution of a call instruction will change the
contents of two Intel registers: _____ and _____.

3. (15) The following code will put Os in alternate ele-
ments of a word array, starting at the element pointed
to by EAX. The number of elements to be zeroed is in
EBX. (EAX and EBX are initialized in previous code, not
shown here.) The code does change EAX and EBX as it
executes. Fill in the blanks.

top: movl ____, ____

addl ___
decl ____
jnz top

4. (10) Consider the C struct

struct zs {
int i;
char a,b;

}

Suppose we wish to have the equivalent of an array of 50
elements of type zs in the .data segment of an assembly
language program, starting at the label zs50. We do not
care what the initial values in the array are, and we will
NOT align on word boundaries. Show TWO ways to do
allocate the needed space.

5. (10) DDD will display an entire array x in a C program
if we move the mouse pointer to any instance of x in the
source code window. But if we try the same thing on an
array y in an assembly language program, DDD will only
display the first element of the array. State clearly and
precisely the cause of this disparity.

6. (10) Consider the instruction

movl $w, %ecx

Suppose the offset within the .data segment of w is 4096.
Give the exact machine code generated by the assembler,
in hex, for the above instruction. (Note: 4096 = 163.)

7. (15) Suppose we have a word in the .data segment
with the label g, and have code which places some value
in EAX. We want to place 1 in ECX if the product of the
two quantities is greater than or equal to 0x20000, or put
0 in ECX if not. Fill in the blanks:

imull _\\\\C
empl NN\, NN\
jge grrrrri
movl _____, Y%ecx
jmp grrrrr2
grrrrril:
movl _____, %ecx

grrrrr2: ...

8. Here is the complete assembly and machine code for a
certain program:

1 .text

2 .globl _start

3 0000 89EO _start: movl %esp, %heax
4 0002 C7000800 top: movl $8, (leax)
5 0000

6 0008 83C004 addl $4, Yeax

7 000b EBF5 jmp top

Suppose the .text segment begins at location 28000, the
.data segment begins at location 32800, and that c¢(ESP)
= 80000. (All addresses in this problem are decimal un-
less otherwise indicated. No guarantee that all this infor-
mation is needed.)

(a) (10) What will ¢(EIP) be near the end of the execu-
tion of the instruction in line 77

(b) (10) Suppose this program is run with no virtual
memory access protections, i.e. we can do any kind
of access to any spot in memory, and suppose we have
4G of memory, i.e. the full address space. What will
be the temporally-last value which we can be sure of
for ¢(EAX)?

Solutions:

1. Wind backwards 12 times from 000, getting 777 for -1,
776 for -2, etc., to get 764 for -12. OR: First find +12,
which is 015. Take the “7s complement,” yielding 763,
and add 1, yielding 764.

2. EIP, ESP

3.

top:
movl $0, (%eax)
addl $8, Yeax

decl %ebx
jnz top

4.

One way:

.space 300

Another way:

.rept 50
.long O
.byte 0
.byte 0
.endr

5. There are no data types, such as arrays, at the hard-
ware level, and thus not at the assembler level. The as-
sembler has no way of knowing that you intend something
to be an array, so even with —-gstabs the assembler can-
not put such information in the symbol table. There is
no problem in C, though, since the programmer specifies
an array.

6. Hex b900100000.
7.

imull g

cmpl $0x20000, %eax

jge grrrrri

movl $0, %ecx

jmp grrrrr2
grrrrrl:

movl $1, %ecx

8.a The instruction is a jump to 2800040002 = 28002,
so the circuitry for the instruction will put this value in
EIP.

8.b The value in EAX will keep increasing by 4 until it
gets to 232 — 4, after which the next increase will wrap
around to 0. Eventually ¢(EAX) reaches 28000, the start
of the .text segment. On the next iteration, c¢(EAX)
= 28004, pointed to bytes within the instruction on line
4. The MOV instruction on that line will thus overwrite
itself, and thus that instruction will never be executed
again. The value in EAX will reach 28008.

