
Name:

Directions: Work only on this sheet (on both
sides, if needed); do not turn in any supplemen-
tary sheets of paper. There is actually plenty of
room for your answers, as long as you organize
yourself BEFORE starting writing. In order to
get full credit, SHOW YOUR WORK.

1. (15) Look at the output of gcc -S at the top of p.10 of
our PLN unit on subroutines. Suppose the author of the
last two movl instructions had chosen to use ESP instead
of EBP. Show what those two instructions would be now.

2. Look at the second GDB session printout covered by
May in the discussion section. (It consists of an assem-
bly language program which sums elements in an array,
adapted from the example in Sec. 7 of our PLN unit on
subroutines; output from as -a; and a GDB session.)

(a) (15) When the ret is executed, what address will we
return to?

(b) (10) When the ret is executed, the circuitry for that
instruction will look in a certain memory location to
determine where to return to (i.e. the value asked
for in part (x) above). What will be the address of
that location?

(c) (15) In the GDB session, suppose we had issued the c
(“continue”) command, instead of q (“quit”). Then
what would be the address of the first instruction
fetch to occur outside our .text segment?

3. (10) Recall that strace is used like this:

% strace a.out

Based on knowledge from our course, give an example of
a line of C code which is likely to be in the source code
for strace. It must be a system call, and for full credit it
must be complete.

4. (35) The assembly language code below searches a
string for the first occurrence of ’a’ (guaranteed to exist),
and returns the position of that occurrence (0 for the first
character in the string, 1 for the second, 2 for the third,
etc.). The function firsta() is to be callable from any C
program, with this prototype:

int firsta(char *s);

Fill in the blanks:

.text

.globl firsta
firsta:

movl ________, %eax
top:

cmpb $’a’, (%eax)

jz foundit

jmp top

foundit:

ret

Solutions:

1.

movl $0, (%esp)
movl $4, (%esp)

2.a This is what is on the top of the stack at that point,
0x8048084.

2.b This is the address of the top of the stack at that
point, 0bfffcec4.

2.c We would continue, executing the two MOV instruc-
tions and then the RET in line 37. That would pop the
stack for the “return address,” when in fact there is no
return address on the stack. What would be on the stack
instead? Unfortunately, we erred in line 27, where we
should have added 8 to the stack pointer, so the value
$x+4 is still there. So, that is where we will “return”
to–the second word in the .data segment, which is at
0x80490a8.

3.

execve(argv[1]);

4.

4(%esp)
incl %eax
subl 4(%esp), %eax

1

