
Name:

Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary
sheets of paper. There is actually plenty of room for your answers, as long as you organize yourself
BEFORE starting writing. In order to get full credit, SHOW YOUR WORK.

1. (10) Almost any kind of CPU has a register which states where the current (or next, depending on the time)
instruction is in memory. On most machines, this is called the , and on Intel CPUs it is called the

.

2. (10) Suppose our word size is 8 bits. Then the number -4 is represented as in the 2s complement system,
and as in the signed-magnitude system.

3. (10) Suppose the beginning of the .data segment in an assembly language source file is

.data
a: .long 2
b: .long 30
...

Show the exact line in the output of as -a for the line corresponding to the source line labeled b. (Assume the .data
line is line 1 of the source file.)

4. (10) Look at page 3 of the PLN unit on machine language. Suppose on line 30, the instruction had been a jump
to done. Show the machine language if the jump type is JNZ. Then show the machine language if the jump type is
JMP.

5. (10) The C library function bcopy() would be better written in assembly language, as a big advantage could
come from using instructions like . (The function bcopy() copies a sequence of bytes from one
place in memory to another.)

6. (10) For each of the following instructions, state how many reads and writes of memory will occur. The period
under consideration is step C. Your answers will consist of two numbers for each instruction; write your answer right
next to the instruction.

(a) movl %eax, %ebx

(b) addl %eax, %ebx

(c) addl (%eax), %ebx

(d) cmpl %eax, (%ebx)

(e) subl $8, (%ebx)

(f) subl %eax, (%ebx)

(g) cmpl $8, (%ebx)

(h) jnz y

7. (10) Consider the instruction

movl $0xfff0eee0, %eax

Suppose we forget the $. Which one is most likely?

(i) The assembler will complain.

(ii) A seg fault will occur.

(iii) A different kind of execution error than seg fault will occur.

(iv) No execution errors will be reported, but the program’s results will be incorrect.

1

(v) No errors will be reported of any kind, and the program’s results will be correct.

8. The following code counts lower-case letters in the array x, placing the results in the byte array counts. E.g. the
count of the number of occurrences of ’a’ and ’e’ will be at counts and counts+4.

.data
x: .string "c92jemc82ne<824j8vcm92jq3.,.u"
counts:

.rept 26

.byte 0

.endr
.text
.globl _start
_start:

movl $x, %eax
top:

movl $0, %ebx

cmpb $0, %bl
jz done
cmpb $’a’, ______________
js nextchar
cmpb $’z’+1, ____________
jge nextchar
subl $’a’,%ebx
addl $____________, %ebx
incb _________________

nextchar:
addl $_________, %eax
jmp top

done: movl %edx, %edx

(a) (10) Fill in the blanks.

(b) (5) State the full GDB command we would use to check whether the program executed correctly when we get
to done.

(c) (5) This program will work correctly as long as no letter has a count of more than .

(d) (10) Show how we could replace the lines with addl and incb just before nextchar by a single instruction.

Solutions:

1. PC, EIP

2. 11111100, 10000100

3.

2 004 1e000000

4. 7503, EB03

5. MOVS

6. 0 0; 0 0; 1 0; 1 0; 1 1; 1 1; 1 0; 0 0

7. (ii)

8.a.

EAX will always point to the current character to be tallied

2

movl $x, %eax
top:

need to zero out all of EBX for later use (see subl)
movl $0, %ebx
get the character to be tallied
movb (%eax), %bl
check for end of string
cmpb $0, %bl
jz done
check to see if in range ’a’-’z’
cmpb $’a’, %bl
js nextchar
cmpb $’z’+1, %bl
jge nextchar
find distance past counts where we will increment
subl $’a’,%ebx
add that distance to counts to get address of place to increment
addl $counts, %ebx
now increment
incb (%ebx)
OK, ready to go to the next character in the string

nextchar:
addl $1, %eax
jmp top

done: movl %edx, %edx

8.b.

x/26b &counts

8.c. 28 − 1 = 255

8.d.

incb counts(%ebx)

3

