
Name:

Directions: Work only on this sheet (on both
sides, if needed); do not turn in any supplemen-
tary sheets of paper. There is actually plenty of
room for your answers, as long as you organize
yourself BEFORE starting writing. In order to
get full credit, SHOW YOUR WORK.

1. (5) A keyboard, for example, has an “address” (more
likely more than one), but we don’t use the term address
in that context on Intel-based machines. Instead, we use
the term .

2. (10) It was speculated in class that the JVM is big-
endian, judging from material in our PLN on JVM. Cite
the specific sentence in that PLN that implicitly tells us
that the JVM is big-endian.

3. (5) Suppose you run as -a on an assembly language
program on a UNIX/MIPS machine. In the listing for
the .text segment, in most cases the memory offsets of
consecutive instructions will differ by (fill in a
number).

4. It is possible that an instruction might trigger more
than one page fault. For each of the Intel instructions
below, state the maximum number of page faults that in-
struction could cause, including Steps A, B and C (but
don’t break your number down according to step). As-
sume no cache and no instruction prefetching.

(a) (5) movl %eax, (%ebx)

(b) (5) addl %eax, (%ebx)

(c) (5) iret

5. (10) Suppose the maintainers of the Linux OS kernel
were to change the source code for the struct for a TSS
to look like this:

struct tss {
int turns;
...
int esp;
...

};

Here the entry turns records how many turns (i.e. quanta
or timeslices) this process has completed so far. Give a
single line of assembly language, to be inserted somewhere
in the code on p.9 of our unit on OS, which would do
something with that entry.

6. Look at the code on p.21 of our unit on OS. Suppose
that just prior to the fetch of the INT instruction, we have
the following register values: c(PC) = 0x2088, c(ESP) =
0x602c, c(IDT)+8*0x80 = 0x112288, c[c(IDT)+8*0x80]
= 0x484746. The machine code for an INT instruction
has the format 11001101IMM1. Show the contents of the
following just after Step C is done:

(a) (10) PC

(b) (10) ESP

(c) (10) top of the stack

7. The following questions are on our unit on the JVM:

(a) (5) Suppose (in this part only) that the call to Min()
in main() on p.5 had been

X = Min(X,Y);

State the line number(s)/offsets on pp.5-6 for the in-
structions which would change.

(b) (10) Here is part of the od -t x1 listing of the file
Minimum.class

...
240 0a 00 00 00 54 00 02 00 03 00 00 00 0e 1a 1b a2
260 00 08 1a 3d a7 00 05 1b 3d 1c ac 00 00 00 02 00
300 0b 00 00 00 0e 00 03 00 00 00 11 00 0a 00 12 00
320 0c 00 13 00 0c 00 00 00 20 00 03 00 00 00 0e 00
340 19 00 14 00 00 00 00 00 0e 00 1a 00 14 00 01 00
360 07 00 07 00 1b 00 14 00 02 00 01 00 1c 00 00 00
400 02 00 1d

Give the op codes, in hex, for goto and ireturn.

(c) (10) Suppose in some program there is an if cmpge
instruction with offset 0x20000. Then the branch
target can be anywhere from to , in-
clusive (fill in two hex addresses).

Solutions:

1. port

2. p.7: “Thus the entire instruction should be
0xa20008...”

3. 4

4.a. 2 (instruction fetch, operand)

4.b. 2 (instruction fetch, operand; note that though
operand is accessed twice, it could only produce one page
fault)

4.c. 3 (instruction fetch, operands; note that though
there are 3 operands pushed onto the stack, only 2 page
faults could occur from them)

5.

incl 0(%ebx)

6. 0x484746, 0x6020, 0x208a

7.a. 19

7.b. 0xa7, 0xac

7.c. The lower bound is 0x00020000 + 0xffff80000 =
0x00018000 (see the material on sign extension in
our unit on machine language). The upper bound is
0x00020000 +0x00007fff = 0x00027fff.

1


