Name:	<pre>X = Integer.parseInt(Args[4]);</pre>
Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplemen- tary sheets of paper. There is actually plenty of	Show what JVM assembly language code would be generated by the compiler.
room for your answers, as long as you organize yourself BEFORE starting writing. In order to get full credit, SHOW YOUR WORK.	7. (10) Look at the program at the top of p.17 in the OS unit in our PLN. Give a single C printf() statement, to be placed somewhere in main(), which will print out the
1. In class, we mentioned that some OS features are impossible to implement without certain hardware. Fill in the blanks:	contents of ESP. Solutions: 1.a. The timer.
(a) (10) Timesharing is impossible without	 1.a. The timer. 1.b. Virtual memory hardware. 2.a. 2¹⁰.
(b) (5) Protection of one program's memory from writing by another program is impossible without	 2.b. 2²². 2.c. 2¹¹. 2.d. 2¹².
2. Fill in the following blanks with powers of 2. Write, for example, 2^7 , not 128. (The various parts of this problem are completely independent of each other.)	 2.e. 2¹². 3. The example of system calls in the OS unit of the PLN.
(a) (5) The maximum number of C int variables which could fit in an Intel page is	4.a. subu \$28,\$28,4
(b) (10) Assume the page-table format on p.15 of the OS unit in our PLN. Then a page table could occupy as many as bytes in memory.	li \$4,7 sw \$4,0(\$28)
 (c) (5) In 12-bit 2s complement storage, the largest value of a signed integer is1. 	4.b.
(d) (5) In 12-bit 2s complement storage, the largest value of an unsigned integer is 1.	sw \$12,4(\$28) 5.
(e) (10) The size, in bytes, of the stack space assigned to a program by the OS on an Intel machine will likely be a multiple of	andl \$0x1f, %eax 6.
3. (5) MIPS programmers usually pass subroutine arguments via registers, not via a stack. Sometimes we even do this on Intel. Cite an example from our PLN of this.	aload_0 iconst_4
4. Suppose we wish to set up a stack data structure (not necessarily related to subroutine calls) on a MIPS machine. Say the stack grows toward 0, and we use \$28 as our stack pointer.	<pre>aaload 7. printf("%d\n",&i);</pre>
 (a) (10) Give MIPS assembly code, at most three instructions or pseudoinstructions, which would push the value 7 onto the stack. (Don't worry about changing register contents.) 	
(b) (5) Give a real MIPS assembly instruction which will copy \$12 to the next-to-top element of the stack.	
5. (10) Give a single Intel assembly language instruction which will replace $c(EAX)$ by $c(EAX) \mod 32$.	
6. (10) In our Java example, Minimum.java, suppose the assignment to X in main() had been	