
Name: ____________________________

Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary
sheets of paper. There is actually plenty of room for your answers, as long as you organize yourself
BEFORE starting writing. In order to get full credit, SHOW YOUR WORK. Earlier problems tend
to be easier.

1. Fill in the blanks with either �increase,� �decrease� or �not a�ect� (you can use the same answer multiple times):

• (a) (5) A PUSH instruction will ___________ the value of ESP.

• (b) (5) A CALL instruction will ___________ the value of ESP.

• (c) (5) A JMP instruction will ___________ the value of ESP.

• (d) (5) A RET instruction will ___________ the value of ESP.

2. (10) Fill in the blank with a UNIX system call: The system call made by tcsh when you run as is __________________.

3. (10) Fill in the blank with information obtained during our discussion in lecture: If we wished to know how the in-
struction labeled INL on p.108 of Neveln is expressed in AT&T syntax, we would use ___________________.

4. Assume that both TryAddOne.c and AddOne.s are exactly as on our Web pages, with no changes whatsoever.
(Note: This is the revised version, with an incl instruction in AddOne.s.) The compiler will generate a pushl, a
call and an addl instruction from this line of C code. Suppose these three instructions are located at 0x500, 0x505
and 0x50a, respectively. Suppose also that addone() begins at 0x600 and x is at 0x700, and prior to the execution of
the pushl, EAX, EBX and ESP contain 0x168, 0x1088 and 0x102c, respectively.

• (a) (15) At the very end of the execution of the call instruction, what values will be in the PC, MAR and
MDR?

• (b) (10) What value will be in ESP immediately prior to the fetch of the addl at 0x50a?

• (c) (15) Give a complete list, in chronological order, of the values which will go into the MDR during the 5
instructions of addone(). Exclude instruction fetches.

5. (20) Write AT&T-syntax assembly code which will be callable from C using the function prototype

int sumarray(int *, int, int *);

For convenience, let us refer here to the arguments as �p,� �n� and �q.�This function will return the sum of n
consecutive words, the �rst of which is pointed to by p. It will also store in the word pointed to by q an indicator
as to whether any carries resulted from the summing (1 means yes, 0 means no). Do not include a .data segment.
Note: The C compiler will produce code which pushes the rightmost argument �rst (in this case, the place for the
carry), then the others moving right to left. Please write a draft version on scratch paper �rst, and then
copy it neatly to this sheet here.

Solutions:

1. decrease, decrease, not a�ect, increase

2. execve()

3. intel2gas

4.(a) PC: 0x600; MAR: 0x1024; MDR: 0x50a

4.(b) 0x1028

4.(c) 0x1088; 0x700; 7; 8; 0x1088; 0x50a

5.

1

.text

.globl sumarray

sumarray:

save old values of registers we'll use

pushl %ebx

pushl %ecx

pushl %edx

get parameters from stack

movl 16(%esp), %ebx # p

movl 20(%esp), %ecx # n

movl 24(%esp), %edx # q

use EAX for sum, since must return in EAX anyway

movl $0, %eax

set carry parameter to 0 for now, then to 1 later maybe

movl $0, (%edx) # note parentheses

top: addl (%ebx), %eax

jnc nc

carry found, so set carry parameter to 1

movl $1, (%edx)

nc: addl $4, %ebx # point EBX to next word to be summed

decl %ecx # decrement loop count

jnz top

restore old register values

popl %edx

popl %ecx

popl %ebx

EAX already set for return, so nothing left to do

ret

2

