
Name:

Directions: Work only on this sheet (on
both sides, if needed). MAKE SURE TO COPY YOUR
ANSWERS TO A SEPARATE SHEET FOR SEND-
ING ME AN ELECTRONIC COPY LATER.

1. (20) Fill in the blanks: The analog of a compiler
at the assembly language level is called a .
In our class, we refer to it metaphorically as a human

.

2. As you know, when writing functions/subroutines,
we may originally write one for use in one program but
then find we can use it—unchanged—in another pro-
gram. Suppose that is the case for the subroutine find-
min in Section 3.6, pp.72ff; in other words, we simply
copy lines 54-95 to the source file of another program,
and use the subroutine there. Say the array we’ll be
using it on begins at a label z and has 12 elements. The
relevant section of code will be

movl # blank (a)
blank (b)

c a l l f indmin
movl $168 ,w

(a) (15) State what should go in blank (a).

(b) (15) State what should go in blank (b).

(c) (15) Suppose the address of the memory location
labeled z turns out to be 0x100c. What value will
be in EDX when the subroutine returns (i.e. just
before we execute the instruction involving 168)?

3. (15) Consider an instruction

addl (%ecx) , (%edx)

Assume that the two registers point to memory loca-
tions that the program has permission to read from and
write to. Which one of the following is true? (Note that
this is NOT a multipart problem, and will occupy only
one line in your electronic file.)

(i) There would be no assembler error message, and
execution would work as intended.

(ii) There would be no assembler error, but execution
may produce incorrect results.

(iii) There would be no assembler error, but execution
may produce a seg fault or other execution error.

(iv) There would be an assembler error, even though the
assembler could have translated the line to machine
code that would work as intended.

(v) There would be an assembler error, because no such
machine instruction exists.

4. (20) Consider the program in Section 3.6, pp.72ff.
Suppose we assemble and link, creating an executable
file badsort. We then try to execute it “normally” from
the shell command line:

% badsort

Give the line number of the instruction in this source
code that will likely be the last one to execute before
the program encounters an execution error, e.g. a seg
fault.

Solutions:

1. assembler, clerk

2.a movl $z, %eax

2.b movl $11, %ebx

3. (v)

4. 52

1

