
A Tour of Recommender Systems
Norm Matloff

University of California, Davis

Ancient “Yelp”

2

About This Book

This work is licensed under a Creative Commons Attribution-No Derivative Works 3.0 United
States License. Copyright is retained by N. Matloff in all non-U.S. jurisdictions, but permission to
use these materials in teaching is still granted, provided the authorship and licensing information
here is displayed in each unit. I would appreciate being notified if you use this book for teaching,
just so that I know the materials are being put to use, but this is not required.

The author has striven to minimize the number of errors, but no guarantee is made as to accuracy
of the contents of this book.

The cover is from the British Museum onine site,

https://www.britishmuseum.org/research/collection_online/collection_object_details/

collection_image_gallery.aspx?partid=1&assetid=1613004116&objectid=277770

with descripition:

Clay tablet; letter from Nanni to Ea-nasir complaining that the wrong grade of copper
ore has been delivered after a gulf voyage and about misdirection and delay of a further
delivery...

The world’s first recommender system!

https://www.britishmuseum.org/research/collection_online/collection_object_details/collection_image_gallery.aspx?partid=1&assetid=1613004116&objectid=277770
https://www.britishmuseum.org/research/collection_online/collection_object_details/collection_image_gallery.aspx?partid=1&assetid=1613004116&objectid=277770

i

Author’s Biographical Sketch

Dr. Norm Matloff is a professor of computer science at the University of California at Davis, and
was formerly a professor of statistics at that university. He is a former database software developer
in Silicon Valley, and has been a statistical consultant for firms such as the Kaiser Permanente
Health Plan.

Prof. Matloff’s recently published books include‘ Parallel Computation for Data Science (CRC,
2015), Statistical Regression and Classification: from Linear Models to Machine Learning (CRC
2017), and Probability and Statistics for Data Science: Math+R+Data (CRC 2019). The second
book was the recipient of the Ziegal Award in 2017. His book with NSP, The Art of Machine
Learning: Algoorithms+Data+R, will be published in 2022.

Dr. Matloff was born in Los Angeles, and grew up in East Los Angeles and the San Gabriel Valley.
He has a PhD in pure mathematics from UCLA, specializing in probability theory and statistics. He
has published numerous papers in computer science and statistics, with current research interests
in machine learning, fair learning, missing data methods, and data privacy.

Prof. Matloff is a former appointed member of IFIP Working Group 11.3, an international com-
mittee concerned with database software security, established under UNESCO. He was a founding
member of the UC Davis Department of Statistics, and participated in the formation of the UCD
Computer Science Department as well. He is a recipient of the campuswide Distinguished Teaching
Award and Distinguished Public Service Award at UC Davis.

ii

Contents

1

2 CONTENTS

Chapter 1

Setting the Stage

Let’s first get an overview of the topic and the nature of this book. Keep in mind, this is just
an overview; many questions should come to your mind, hopefully whetting your appetite for the
succeeding chapters!

In this chapter, we will mainly describe collaborative filtering, one of several common approaches
to recommender systems (RTSs).

1.1 What Are Recommender Systems?

What is an RS? We’re all familiar with the obvious ones—Amazon suggesting books for us to buy,
Twitter suggesting whom we may wish to follow, even OK Cupid suggesting potential dates.

But many applications are less obvious. The University of Minnesota, for instance, has developed
an RS to aid its students in selection of courses. The tool not only predicts whether a student
would like a certain course, but also even predicts the grade she would get!

In discussing RS systems, we use the terms users and items, with the numerical outcome being
termed the rating. In the famous MovieLens dataset, which we’ll use a lot, users provide their
ratings of films.

Systems that combine user and item data as above are said to perform collaborative filtering. The
first part of this book will focus on this type of RS. Content-based RS systems work by learning a
user’s tastes, say by text analysis.

Ratings can be on an ordinal scale, e.g. 1-5 in the movie case. Or they can be binary, such as a
user clicking a Like symbol in Twitter, 1 for a click, 0 for no click.

3

4 CHAPTER 1. SETTING THE STAGE

But ratings in RSs are much more than just the question, “How much do you like it?” The
Minnesota grade prediction example above is an instance of this.

In another example, we may wish to try to predict bad reactions to prescription drugs among
patients in a medical organization. Here the user is a patient, the item is a drug, and the rating
may be 1 for reaction, 0 if not.

More generally, any setting suitable for what in statistics is called a crossed heirachical model fits
into RS. The word crossed here means that each user is paired with multiple items, and vice versa.
The hierarchy refers to the fact that we can group users within items or vice versa. There would
be two levels of hierarchy here, but there could be more.

Say we are looking at elementary school students rating story books. We could add more levels to
the analysis, e.g. kids within schools within school districts. It could be, for instance, that kids
in different schools like different books, and we should take that into account in our analysis. The
results may help a school select textbooks that are especially motivational for their students.

Note that in RS data, most users have not rated most items. If we form a matrix of ratings, with
rows representing users and columns indicating items, most of the elements of the matrix will be
unknown. We are trying to predict the missing values. Note carefully that these are not the same
as 0s.

1.2 The “Hello World” of RS: MovieLens

This dataset is the standard introduction to RSs, and indeed is a standard example in RS research
papers. It’s available from the GroupLens project at the University of Minnesota, grouplens.org.
In this book, we will mainly use the 100K version, which contains 100,000 rates in the format

userID movieID rating1to5 timestamp

Let’s take a look:

> download.file(’http://files.grouplens.org/datasets/movielens/ml -100k.zip’,

> ’ml -100k.zip’)

> unzip(’ml -100k.zip’)

> ml100 <- read.csv(’ml -100k/u.data’,header=FALSE ,sep=’\t’)

> head(ml100)

V1 V2 V3 V4

1 196 242 3 881250949

2 186 302 3 891717742

3 22 377 1 878887116

4 244 51 2 880606923

grouplens.org

1.2. THE “HELLO WORLD” OF RS: MOVIELENS 5

5 166 346 1 886397596

6 298 474 4 884182806

(Note that the data comes in TAB-separated fields.)

We see for instance user 22 rated movie 377 as 1. Let’s explore some more:

> length(unique(ml100$V1))

[1] 943

> length(unique(ml100$V2))

[1] 1682

> table(ml100$V3)

1 2 3 4 5

6110 11370 27145 34174 21201

So there were 943 users and 1682 films. Users seemed to be pretty liberal in their ratings, with the
most popular rating being a 4.

We can break that down by user:

> tmp <- tapply(ml100$V3 ,ml100$V1,mean)

> tmp [22]

22

3.351562

Here we grouped ratings according to age, computing the mean rating for each age value.

So for instance user 22 gave an average rating of about 3.35 to the ones he/she rated. And how
many films was that?

> tmp <- tapply(ml100$V3 ,ml100$V1,length)

> tmp [22]

22

128

Did user 22 rate movie 88?

> ml100[ml100$V1 == 22 & ml100$V2 == 88,]

[1] V1 V2 V3 V4

<0 rows > (or 0-length row.names)

No. And that is the essence of RS: How can we predict what rating user 22 would give to that
movie?

6 CHAPTER 1. SETTING THE STAGE

We can represent our data as a matrix. Let’s illustrate that with some functions from the rectools
package, which we will be using in this book:

> ml100UD <- formUserData(ml100 [,1:3])

> ml100A <- asMatrix(ml100UD)

> dim(ml100A)

[1] 943 1682

> ml100A [1:5 ,1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] 5 3 4 3 3

[2,] 4 NA NA NA NA

[3,] NA NA NA NA NA

[4,] NA NA NA NA NA

[5,] 4 3 NA NA NA

The formUserData() function inputs data in the (userID, itemID, rating) format we’ve seen, and
outputs an R list, one element for each distinct user. Then asMatrix() forms the ratings matrix
from that list. Don’t worry about the full call forms now, but just become familiar with the
structure of the matrix. We see, for instance, that user 2 rated item 1 as a 4, but didn’t rated
movies 2-5.

1.3 NA Values Are Not So Inocuous

There are lots of ways to deal with missing values, i.e. NAs. In fact, many full books have been
written. Some terminology has developed over years in terms of modeling how NAs arisew.

The simplest model is Missing Completely at Random, MCAR. As the name implies, this simply
means that nature (or the data collection process) has randomly sprinkled NA values among the
data.

Another, Missing at Random, MAR, is more complicated. Here’s what one of the leading authors
says (https://stefvanbuuren.name/fimd/sec-MCAR.html):

...While convenient, MCAR is often unrealistic for the data at hand.

If the probability of being missing is the same only within groups defined by the observed
data, then the data are missing at random (MAR). MAR is a much broader class than
MCAR. For example, when placed on a soft surface, a weighing scale may produce more
missing values than when placed on a hard surface. Such data are thus not MCAR. If,
however, we know surface type and if we can assume MCAR within the type of surface,
then the data are MAR. Another example of MAR is when we take a sample from

1.4. HOW IS IT DONE? 7

a population, where the probability to be included depends on some known property.
MAR is more general and more realistic than MCAR. Modern missing data methods
generally start from the MAR assumption.

RS data is in fact usually not MCAR. There may be a good reason a user hasn’t rated a movie —
she knows she wouldn’t like it. Handling missing values is hard enough in general, with no easy
answers, but this should be kept in mind.

1.4 How Is It Done?

Putting aside possible privacy issues that arise in some of the above RS applications,1 we ask here,
How do they do this? In this prologue, we’ll discuss a few of the major methods for collaborative
filtering (CF)..

1.4.1 Nearest-Neighbor Methods

This is probably the oldest class of RS methodology, still popular today. It can be explained very
simply.

Say there is a movie spoofing superheroes called Batman Goes Batty (BGB). Maria hasn’t seen it,
and wonders whether she would like it. To form a predicted rating for her, we could search in our
dataset for the k users most similar to Maria in movie ratings and who have rated BGB. We would
then average their ratings in order to derive a predicted rating of BGB for Maria. We’ll treat the
issues of choosing the value of k and defining “similar” later, but this is the overview.

In general, methods like this are called k-NN methods, for “k-nearest neighbor.” (We’ll shorten it
to kNN.) Actually, kNN was one of the earliest methods in machine learning in general.

1.4.2 Latent Factor Approach: Matrix Factorization

This one is less intuitive, but is probably the most popular CF method.

Let A denote the matrix of ratings described earlier, with Aij denoting the rating user i gives to
item j. Keep in mind, as noted, that most of the entries in A are unknown; following R convention,
we’ll refer to them as NA, the R-language notation for missing values. So for our movie example
above, bf{A[22,377] = 1 and A[22,88] = NA.

1I used to be mildy troubled by Amazon’s suggestions, but with the general demise of browsable bricks-and-mortar
bookstores, I now tend to view it as “a feature rather than a bug.”

8 CHAPTER 1. SETTING THE STAGE

Matrix factorization (MF) methods then estimate all of A as follows. Let r and s denote the
numbers of rows and colums of A, respectively. In our data above, for example, r = 943 and
s = 1682. The idea is to find a low-rank approximation to A: Using our known ratings, we find
matrices W and H, of dimensions r ×m and m× s, each of rank m, such that

A ≈WH (1.1)

Typically m << min(r, s). Software libraries typically take 10 as the default.

We will review the concept of matrix rank later, but for now the key is that W and H are known
matrices, no NA values. Thus we can form the product WH, thus obtaining estimates for all the
missing elements of A.

For our example above, our predicted value for user 22’s rating of movie 88 would be

(WH)22,88 (1.2)

1.4.3 Latent Factor Approach: Statistical Models

As noted, collaborative-filtering RS applications form a special case of crossed random-effects mod-
els, a statistical methodology. In that way, a useful model for Yij , the rating user i gives item j,
is

Yij = µ+ αi + βj + εij (1.3)

a sum of an overall mean, an effect for user i, an effect for item j, and an “all other effects” term
(often called the “error term”).

In the MovieLens setting, µ would be the mean rating given to all movies (in the “population”
of all movies, past, present and future), αi would be a measure of the tendency of user i to give
ratings more liberal or harsher than the average user, and βj would a measure of the popularity of
movie j, relative to the average movie.

What assumptions are made here? First, µ is a fixed but unknown constant to be estimated. As to
αi and βj , one could on the one hand treat them as fixed constants to be estimated. On the other
hand, there are some advantages to treating them as random variables, we will be seen in Chapter
??.

It is customary to use the “hat” notation̂to mean “estimate of.” After finding estimates of the

1.5. TUNING PARAMETERS 9

above model quantities from our data, our predicted value for user 22 and movie 88 would then be

Â[22, 88] = µ̂+ α̂22 + β̂88 (1.4)

1.4.4 Variety Is Good

Why so many methods? There is no perfect solution, and each has advantagages and disadvan-
tages. Some methods may do better than others on specific datasets. Some methods take more
computation time than others. Some methods are hard to explain to nontechnical people.

It’s good, therefore, to have a variety of methods in our toolbox.

1.5 Tuning Parameters

The reader is likely familiar with histograms. Recall that the analyst must choose a bin width, or
similarly, the number of bins. Here there is a tradeoff:

� If the width is too small, some bins will have no data points, or very few. We intuitively feel
that small samples are not likely to be accurate, and we will get a histograms that has a very
choppy appearance. For instance,

> tmp <- tapply(ml100$V3 ,ml100$V1,mean)

> hist(tmp ,breaks =15)

> hist(tmp ,breaks =50)

10 CHAPTER 1. SETTING THE STAGE

� But it’s also bad to have too large a width. In the extreme, we have bins so wide that we
have just one or two of them; a 2-bin plot would be of very limited usefulness, and a 1-bin
plot would be totally uninformative:

1.6. COVARIATES/SIDE INFORMATION 11

The bin width is called a tuning parameter or a hyperparameter. In kNN, the number of neighbors
k is the tuning parameter, and in MF applications, it’s the matrix rank m. Most machine learning
algorithms, including most in recommender systems, have tuning parameters, even 10 or more.
Choosing the values of those parameters is not easy, but there are methods for it, as we will see.

Important note: Think of plotting a histogram for datasets A and B, similar but A having only
25 data points and B having 500. With dataset B, can afford to make the bin width smaller than
with dataset A, as the problem of having empty or nearly-empty bins is much less of an issue. Of
course, at a certain point, the number bins will be too large even with B, but the point is that
optimal values of tuning parameters depend on the size of our dataset (as well as various other
factors).

By the way, the latent-variable statistical model we introduced earlier has no tuning parameters.
That may seem tempting, and the model certainly has various advantages. But a tuning parameter
gives an opportunity to tune, to seek the most accurate model possible.

1.6 Covariates/Side Information

In predicting the rating for a given (user,item) pair, we may for example have demographic infor-
mation on the user, such as age and gender. Incorporating such information — called covariates in
statistics and side information in machine learning — may enhance our predictive ability, especially
if this user has not rated many items yet.

However, making good use of side information may not be so easy, for a couple of reasons:

� The exact nature of a relationship may not be very clear. In the movie example, for instance,
we might think that age is an important factor. Let’s take a quick look, using an extended
version of ml100 obtained from others in the downloaded data (details not show for now):

> w <- tapply(ml100kpluscovs$rating ,ml100kpluscovs$age ,mean)

> plot(w)

Yes, there does seem to be an upward age trend. But is it turning downward at the older
ages?

� And that relationship may not even be useful. After all, if some user has rated a large number
of films, this data already tells us a lot about this user’s taste in movies. For that reason,
information about this user’s age may be redundant.

No easy answers in predictive data modeling!

12 CHAPTER 1. SETTING THE STAGE

Figure 1.1: Rating vs. Age

1.7 Overfitting, Holdout Sets and Cross-Validation

A major issue—some would say THE major issue—in predictive data modeling is overfitting. Pro-
fessor Yaser Abu-Mostafa of Caltech, a prominent ML figure, once summed it up: “The ability to
avoid overfitting is what separates professionals from amateurs in ML.”2 And my Google query on
“overfitting” yielded 6,560,000 results!

The concept refers to fitting an overly-complex model to our data. Consider Figure 1.1, for example.
We might fit a straight line, and do fairly well. But noting a possible dip in trend near the right
side, we could fit a parabola, i.e. a quadratic model, And why stop there? We could try polynomials
of degree 3, 4 and so on.

In fact, a polynomial of degree 60 would give an exact fit, with all 61 points lying on the curve.3

But clearly, it would be absurd to do this, as bad as our example above of a histogram with just
one or two bins.

And indeed, the analogy to the histogram case is strong. Our polynomial degree d here is a tuning

2https://www.youtube.com/watch?v=EQWr3GGCdzw
3A degree-60 model has 62 parameters, including the constant term.

1.8. “P-HACKING,” ROUNDOFF ERROR ETC. 13

parameter. Too large a value, or one that is too small, won’t work well.

In prediction applications, the definition of “won’t work well” is that our predictions of new cases
in the future won’t be very accurate. Referring to our dataset as the training data (“train” as in
“learn” in “machine learning”), we say that we overfit our model to the training data.

So, we need some new data. If we had some, we would take each of our candidate models—one
model for each degree we try—and see which one predicts best on the new data.

Well, we often don’t have new data yet, so we create some. Before fitting our models, we set aside
some of our data. We call this the holdout set, and take the rest of our data as the training set. We
fit our various candidate models on this training set, then use each of the fitted models to predict
the holdout set. Whichever candidate model does best will then be our choice for prediction on
further cases in the future.

But...by coincidence, the particular holdout set that we form could be biaed in favor of one model
or another. So, we try many holdout sets, randomly chosen. This of course also means many
training sets. For each training/holdout set pair, we fit all of our candidate models. In the end, we
take as our final choice whichever model does best over all the holdout sets.

1.8 “P-Hacking,” Roundoff Error Etc.

To give a somewhat frivolous example that still will make the point, say we are investigating whether
there is any genetic component to a person’s sense of humor. Is there a Humor gene? There are
many, many genes to consider. Say we have data on 100 people, with some kind of measurement
on “humorosity” of each one, plus genetic data on each person.

There are tons of genes to check. For each gene, we could compare the humorosity of people with the
gene and people not having the gene (say, having a particular mutation). Since we have a random
sample of people, our data is random. The key point is that just be accident, by coincidence, there
may be one gene that seems to separate the humorous people from the dull ones, when in fact there
is no Humor gene. Conducting a statistical study involving very large numbers of variables without
concern regarding the above possible scenario is called p-hacking.4

In the ML context, we (should) worry about p-hacking if we have a large number of potential
predictor variables (textitfeatures, in ML parlance). In order to avoid overfitting, we may wish to
pare down our feature set, e.g. retain age as a predictor but discard gender. Denote the number
of predictors by p. (Standard notation, not related to the first letter in “p-values.”) We have 2p

possible subsets to retain. Even with modest value of p, say 10, that’s a lot of subsets! By accident,

4The etymology need not concern us here, but for the curious: Statistical hypothesis testing—itself methdology
that is the subject of much criticism, rightly so—leads to something called a p-value. In the genetics example, the
analyst would look for small p-values, and declare an important discovery if they find one for some gene.

14 CHAPTER 1. SETTING THE STAGE

one might seem to predict better on the holdout sets.

There is no magic solution to this problem (or lots of other problems in predictive modeling).
Granted, there are techniques called multiple inference or multiple comparison methods, to avoid
p-hacking in performing statistical inference. See for example Multiple Comparisons: Theory and
Methods, Jason Hsu, 1996, CRC. But these are difficult to apply, and generally have retrictive
assumptions.

Similarly, many ML methods involve computations involving huge matrices, with, say, millions of
rows and thousands of columns. Say we wish to find the inverse (or similar entity) of a huge matrix.
Not only will the computation take a long time, but also the cumulative roundoff error could be
quite substantial. Can we trust the result?

Again, there are no magic solutions. However, with experience one will develop ways to assess
possible problems like these, and deal with them. Note that “dealing with them” may simply mean
treating our results as useful but not infallible—a good viewpoint in any case.

Chapter 2

Neighborhood-Based Methods

One of the simplest and yet often most effective recommender system methods is based on this
natural principle:

Say we have a user U, for whom we want to predict the rating of an item I. We find the
users in our existing data D who are most similar to U and who have seen rating I, and
take our predicted value to be the average of those users’ ratings of I.

Note that here the user U might be in D or might be new. As long as I is in D, we are in business.

Of course, we must define “similar.” There are two common ways to do this. Recall our notation p
denoting our number of predctors/features. This would include our user and item IDs, and possible
covariates. Then consider these approaches:

� Define some distance function, and then find the k closest people in D to U.

� Develop a system of rectangles — hyperrectangles in p-dimensional space — and determine
which one U falls in.

The first is basically k-Nearest Neighbor regression (kNN), a classic statistics/machine learning
technique, though note that a major difference here is that we only consider users in D who have
rated the same products as N.

2.1 kNN

Let’s see how kNN works.

15

16 CHAPTER 2. NEIGHBORHOOD-BASED METHODS

2.1.1 Notation

As before, let A denote the ratings matrix. The element aij in row i, column j, is the rating that
user i has given/would give to item j. In the latter case, aij is unknown, and its predicted value
will be denoted by âij . Following R notation, we will refer to the unknown values as NAs.

Note that for large applications, the matrix A is far too large to store in memory. One could resort to
storage schemes for sparse matrices, e.g. Compresed Row Storage, but here we will simply use A to
help explain concepts. In the rectools package,1 the input data is run through formUserData()
and algorithms use that instead of A. This function organizes the data into an R list, one element
per user. Each such element records the ratings made by that user.

Let’s refer to a new case to be predicted as NC, i.e. from above, predicting how a user U would
rate an item I.

2.1.2 User-Based Filtering

In predicting how a given user would rate a given item, we first find all users that have rated the
given item, then determine which of those users are most similar to the given user. Our prediction
is then the average of the ratings of the given item among such “similar” users. A corresponding
approach based on similar items, item-based filtering, is used as well. We focus on such methods in
this chapter.

2.1.3 (One) Implementation

Below is code from rectools (somewhat simplified).2 The arguments are:

� origData: The original dataset, after having been run through formUserData().

� newData: The element of origData for NC.3

� newItem: ID number of the item to be predicted for NC.

� k: The number(s) of nearest neighbors. Can be a vector.

Here is an example of using formUserData() on the MovieLens data:4

1https://github.com/matloff/rectools
2This function was written largely by Vishal Chakraborti.
3If NC is new, not in the database (called cold start), we synthesize a list element for it, assuming NC has rated

at least one item.
4The data have been read from disk without converting to R factors.

2.1. KNN 17

> head(ml)

V1 V2 V3

1 196 242 3

2 186 302 3

3 22 377 1

4 244 51 2

5 166 346 1

6 298 474 4

> mlud <- formUserData(ml)

> mlud [[3]]

$userID

[1] "3"

$itms

[1] 335 245 337 343 323 331 294 332 328 334 350 341 318 300

[15] 345 299 324 348 351 330 327 307 272 354 264 349 321 260

[29] 268 288 355 320 258 339 342 303 329 317 181 338 302 322

[43] 352 271 333 344 326 319 325 347 336 353 340 346

$ratings

335 245 337 343 323 331 294 332 328 334 350 341 318 300 345

1 1 1 3 2 4 2 1 5 3 3 1 4 2 3

299 324 348 351 330 327 307 272 354 264 349 321 260 268 288

3 2 4 3 2 4 3 2 3 2 3 5 4 3 2

355 320 258 339 342 303 329 317 181 338 302 322 352 271 333

3 5 2 3 4 3 4 2 4 2 2 3 2 3 2

344 326 319 325 347 336 353 340 346

4 2 2 1 5 1 1 5 5

attr(,"class")

[1] "usrDatum"

So, for any given user, mlud will show the items rating by this user and the ratings the user has
given to those items. Here we see that user 3 has rated items 335, 245,, 337, 343,..., with ratings
1,1,1,3,...

1 predict.usrData <- function(origData ,newData ,newItem ,k)

2 {

3 # we first need to narrow origData down to the users who

4 # have rated newItem

5

18 CHAPTER 2. NEIGHBORHOOD-BASED METHODS

6 # here oneUsr is one user record in origData; the function will look for a

7 # j such that element j in the items list for this user matches the item

8 # of interest , newItem; (j,rating) will be returned

9
10 checkNewItem <- function(oneUsr) {

11 whichOne <- which(oneUsr$itms == newItem)

12 if (length(whichOne) == 0) {

13 return(c(NA ,NA))

14 } else return(c(whichOne ,oneUsr$ratings[whichOne]))

15 }

16
17 found <- as.matrix(sapply(origData ,checkNewItem))

18 # description of ’found ’:

19 # found is of dimensions 2 by number of users in training set

20 # found[1,i] = j means origData [[i]]$itms[j] = newItem;

21 # found[1,i] = NA means newItem wasn ’t rated by user i

22 # found[2,i] = rating in the non -NA case

23
24 # we need to get rid of the users who didn ’t rate newItem

25 whoHasIt <- which(!is.na(found [1 ,]))

26 origDataRatedNI <- origData[whoHasIt]

27 # now origDataRatedNI only has the relevant users , the ones who

28 # have rated newItem , so select only those columns of the found matrix

29 found <- found[,whoHasIt ,drop=FALSE]

30
31 # find the distance from newData to one user y of origData; defined for

32 # use in sapply () below

33 onecos <- function(y) cosDist(newData ,y,wtcovs ,wtcats)

34 cosines <- sapply(origDataRatedNI ,onecos)

35 # the vector cosines contains the distances from newData to all the

36 # original data points who rated newItem

37
38 # action of findKnghbourRtng (): find the mean rating of newItem in

39 # origDataRatedNI , for ki (= k[i]) neighbors

40 #

41 # if ki > neighbours present in the dataset , then the

42 # number of neighbours is used

43 findKnghbourRtng <- function(ki){

44 ki <- min(ki , length(cosines))

45 # nearby is a vector containing the indices of the ki closest neighbours

2.1. KNN 19

46 nearby <- order(cosines ,decreasing=FALSE)[1:ki]

47 mean(as.numeric(found[2, nearby]))

48 }

49 sapply(k, findKnghbourRtng)

50 }

2.1.4 Not Really a Distance

Note that the distances were computed by the function cosDist(), which computes a “cosine”
similarity:

find cosine distance between x and y, objects

of ’usrData ’ class

#

only items rated in both x and y are used; if none

exist , then return NaN

#

wtcovs: weight to put on covariates; NULL if no covs

wtcats: weight to put on item categories; NULL if no cats

cosDist <- function(x,y,wtcovs=NULL ,wtcats=NULL)

{

rated items in common

commItms <- intersect(x$itms ,y$itms)

if (length(commItms)==0) return(NaN)

where are those common items in x and y?

xwhere <- which(!is.na(match(x$itms ,commItms)))

ywhere <- which(!is.na(match(y$itms ,commItms)))

xvec <- x$ratings[xwhere]

yvec <- y$ratings[ywhere]

if (!is.null(wtcovs)) {

xvec <- c(xvec ,wtcovs*x$cvrs)

yvec <- c(yvec ,wtcovs*y$cvrs)

}

if (!is.null(wtcats)) {

xvec <- c(xvec ,wtcats*x$cats)

yvec <- c(yvec ,wtcats*y$cats)

}

xvec %*% yvec / (l2a(xvec) * l2a(yvec))

20 CHAPTER 2. NEIGHBORHOOD-BASED METHODS

}

l2a <- function(x) sqrt(x %*% x)

Basically, the “distance” between two rows u and v of A is defined by

u′v

||u||2 ||v||2
(2.1)

This not really a distance,5 but it is a common measure of similarity between two vectors in machine
learning. In two or three dimensions, it really is the cosine of the angle between u and v.

Note that larger cosines mean the vectors are more similar. We find the k most similar rows in D
to U, and average their ratings of the given item.

2.1.5 Regression Analog

Recall the method of k-nearest neighbor (kNN) regression estimation from Chapter ??, involving
prediction of weight from height and age:

To estimate E(W |H = 70, A = 28), we could find, say, the 25 people in our sample for
whom (H,A) is closest to (70,28), and average their weights to produce our estimate of
E(W |H = 70, A = 28).

So kNN RS is really the same as kNN regression

2.1.6 Choosing k

As we have already seen with RS, regression and machine learning methods, the typical way to
choose a model is to use cross-validation. This is true for kNN RS as well; we can choose the value
of k via cross-validation.

2.1.7 Item-Based Filtering

Consider again our setting in which we wish to predict the rating user U would give to item I.
We could switch the above procedure, trading rows for columns. We would find the columns
corresponding to items U has rated, then find the closest k of those columns to column I. The
ratings given by U in those closest column would then be averaged to yield our prediction.

5IN math terms, it’s not a metric.

2.1. KNN 21

2.1.8 Covariates

To accommodate covariates, we simply add covariate columns to the input matrix, say now with
columns ’userId’, ’itemId’, ’rating’ and age’. Note that they figure into the distance measure, just
like the user and item I dummies.

22 CHAPTER 2. NEIGHBORHOOD-BASED METHODS

Chapter 3

Some Infrastructure: Linear Algebra

RS methods, as with other machine learning (ML) techniques, often make use of linear algebra,
well beyond mere matrix multiplication. Here we will review/extend some issues of particular
importance.

3.1 Matrix Rank and Vector Linear Independence

Consider the matrix

M =

 1 5 1 −2
8 3 2 8
9 8 3 6

 (3.1)

Note that the third row is the sum of the first two. In many contexts, this would imply that there
are really only two “independent” rows in M in some sense related to the application.

Denote the rows of M by ri, i = 1, 2, 3. Recall that we say they are linearly independent if it
is not possible to find scalars ai, at least one of them nonzero, such that the linear combination
a1r1 + a2r2 + a3r3 is equal to 0. In this case a1 = a2 = 1 and a3 = −1 gives us 0, so the rows of M
are linearly dependent.

Recall that the rank of a matrix is its maximal number of linearly independent rows or columns.
The rank of M above is 2.

The reason we say “rows or columns” above is that it can be shown that the row rank and column
rank are the same. Note that the implies that the rank of a matrix is less than or equal to the

23

24 CHAPTER 3. SOME INFRASTRUCTURE: LINEAR ALGEBRA

minimum of the number of rows and columns: For an r × s matrix W we have

rk(W) ≤ min(r, s) (3.2)

where rk() means “rank of.” In the case of equality, we say the matrix has full rank. A ratings
matrix, such as A in Section 1.4.2, should be of full rank, since there presumably are no exact
dependencies among users or items.

Recall too the notion of the basis of a vector space V. It is a linearly independent set of vectors
whose linear combinations collectively form all of V. And the dimension of V is the number of
vectors in a basis (which can be shown to be the same for all bases).

Here r1 and r2 form a basis for the row space of M . Alternatively, r1 and r3 also form a basis, as
do r2 and r3.

3.2 Partitioned Matrices

It is often helpful to partition a matrix into blocks (often called tiles in the parallel computation
community).

3.2.1 How It Works

Consider matrices A, B and C,

A =

 1 5 12
0 3 6
4 8 2

 (3.3)

and

B =

 0 2 5
0 9 10
1 1 2

 , (3.4)

so that

C = AB =

 12 59 79
6 33 42
2 82 104

 . (3.5)

3.2. PARTITIONED MATRICES 25

We could partition A as, say,

A =

(
A11 A12

A21 A22

)
, (3.6)

where

A11 =

(
1 5
0 3

)
, (3.7)

A12 =

(
12
6

)
, (3.8)

A21 =
(

4 8
)

(3.9)

and

A22 =
(

2
)
. (3.10)

Similarly we would partition B and C into blocks of a compatible size to A,

B =

(
B11 B12

B21 B22

)
(3.11)

C =

(
C11 C12

C21 C22

)
, (3.12)

so that for example

B21 =
(

1 1
)
. (3.13)

The key point is that multiplication still works if we pretend that those submatrices are numbers!
For example, pretending like that would give the relation

C11 = A11B11 +A12B21, (3.14)

which the reader should verify really is correct as matrices, i.e. the computation on the right side
really does yield a matrix equal to C11.

26 CHAPTER 3. SOME INFRASTRUCTURE: LINEAR ALGEBRA

3.2.2 Important Special Case: Matrix Times Vector

Consider the product of a matrix and a vector, Ax. This product is a linear combination of the
columns of A. To see this, write

A = (A1, A2, A3) (3.15)

with Ai being the ith column, and

x =

 x1
x2
x3

 (3.16)

The point is that (3.15) looks like a row vector — it isn’t, but we pretend it is — so that Ax looks
like the “dot product of one vector with another. That would give us

Ax = x1A1 + x2A2 + x3A3 (3.17)

As noted, we then “unpretend,” and find that (3.17) says that

Ax is a linear combination of the columns of A. The coefficients in that linear combi-
nation are the elements of x.

Similarly:

Let y be a row vector of length equal to the number of rows of A. Then yA is a linear
combination of the rows of A, with the coefficients being the elements of y.

Taking this a step further:

Each row of AB is a linear combination of the rows of B, with the coefficients for a
given B row being the elements of the corresponding row of A.

Similarly, each column of AB is a linear combination of the columns of A, with the
coefficients being the elements of the corresponding column of B.

3.2. PARTITIONED MATRICES 27

3.2.2.1 Application of Partitioning: Invertible Square Matrices Must Be of Full Rank

Say Q is less than full rank. Then some linear combination of its columns is 0. (And rows;
remember, the row rank equals the column rank.) So, from Section 3.2.2, we have that Qw = 0 for
some nonzero vector w. If Q were invertible, we could premultiply by its inverse, which would give
us w = 0, a contradiction.

3.2.2.2 Application of Partitioning: Rank of a Matrix Product

Say we have conformable matrices A and B, and set C = AB. We have:

� The quantity rk(C) is the maximal number of linearly independent rows of C, among all
possible coefficients.

� The quantity rk(B) is the maximal number of linearly independent rows of B, among all
possible coefficients.

� Each row of C = AB is a linear combination of rows of B, i.e. each row of C is some linear
combination of the rows of B.

� Thus we see that

rk(B) ≥ rk(C) (3.18)

Similarly,

rk(A) ≥ rk(C) (3.19)

� In other words,

rk(C) ≤ min(rk(A), rk(B)) (3.20)

3.2.3 Application of Partitioning: Approximate Matrix Factorization

Recall the relation

A ≈WH (3.21)

in Section 1.4.2, where A is r × s, W is r ×m and H is m× s.

28 CHAPTER 3. SOME INFRASTRUCTURE: LINEAR ALGEBRA

The material in the last section then says:

� Row i of A is approximately equal to a linear combination of the rows of H.

� Column j of A is approximately equal to a linear combination of the rows of W .

We’ll see in Chapter ?? that this has big implications for the matrix factorization method of RS.
We’ll see that in a sense, W will contain information about “typical” users, and H will contain
information about “typical” items.

3.3 Vector Norms

In math, the lp norm of a vector in n-dimensional space is defined by

||x||p =

(
n∑
i=1

[xi|p
)1/p

(3.22)

This is actually a family of norms, for 1 ≤ p ≤ ∞.1 You are familiar with the Euclidean norm,
p = 2. In statistics and machine learning, we are often minimizing the norm of some vector, usually
with either p = 1 or p = 2.

You will often see the notation Lp instead of lp. However, in math the former is used for function
spaces, while the latter designates n-dimensional vectors, and we use the latter here.

You will also see references to the Frobenius norm of an r × s matrix. That is actually just the l2
norm, treating the matrix as a length-rs vector.

3.4 Handy Facts

� For conformable matrices A and B,

(AB)′ = B′A′ (3.23)

where ′ denotes matrix transpose.

1||x||∞ = maxi |xi|

3.4. HANDY FACTS 29

� For invertible and conformable matrices A and B,

(AB)−1 = B−1A−1 (3.24)

� The R functions t() and solve() find the transpose and inverse of their matrix arguments.
A more numerically stable function for inversion is qr().

30 CHAPTER 3. SOME INFRASTRUCTURE: LINEAR ALGEBRA

Chapter 4

Probability

It is assumed the reader has background in calculus-based probability constructs, e.g. density
functions and distributions involving infinite series. Here we treat some advanced topics used in
the sequel.

4.1 Multivariate Distributions

4.1.1 Multivariate Probability Mass Functions

Recall that for a single discrete random variable X, the distribution of X is defined to be a list of
all the values of X, together with the probabilities of those values. We encapsulate those in the
probability mass function:

pX(i) = P (X = i) (4.1)

Here the argument is i.

So, if X is the number of heads in two flips of a coin, pX(0) = 1/4, pX(1) = 1/2 and pX(2) = 1/4.

This is extended to a pair of discrete random variables U and V as

pU,V (i, j) = P (U = i, V = j) (4.2)

with arguments i and j.

31

32 CHAPTER 4. PROBABILITY

For example, suppose we have a bag containing two yellow marbles, three blue ones and four green
ones. We choose four marbles from the bag at random, without replacement. Let Y and B denote
the number of yellow and blue marbles that we get. Then

pY,B(i, j) = P (Y = i and B = j) =

(
2
i

)(
3
j

)(
4

4−i−j
)(

9
4

) (4.3)

Here is a table displaying all the values of pY,B(i, j)

i ↓, j → 0 1 2 3

0 0.0079 0.0952 0.1429 0.0317

1 0.0635 0.2857 0.1905 0.1587

2 0.0476 0.0952 0.0238 0.000

So in our marble example above, pY,B(1, 2) = 0.048, pY,B(2, 0) = 0.012 and so on.

4.1.2 Multivariate Density Functions

Recall that for a continuous random variable X, we can find probabilities involving X by integrating
its density:

P (X in A) =

∫
A
fX(t) dt (4.4)

for regions A in the real line.

This extends to multiple dimensions. For sets A in the plane,

P [(X,Y) in A] =

∫
A

∫
fX,Y (s, t) ds dt (4.5)

The density for k random variables X1, ..., Xk is likewise a function whose k-fold integrals are
probabilities.

We almost never compute such integrals. Instead, we rely on approximations, including simulation.
The R package mvtnorm can be used for these purposes.

4.2. RELATIONS BETWEEN VARIABLES 33

4.2 Relations Between Variables

4.2.1 Covariance

You have seen the variance of a single random variable before,

V ar(X) = E[(X − EX)2] (4.6)

It is a measure of dispersion, i.e. how much X varies in repeated realizations.1

In the example above in which X is the number of heads obtained in two flips of a coin, one can
show that EX = 1 and V ar(X) = 2(0.5)(1− 0.5) = 0.5. So, if we look at many, many realizations
of X, the long-run average value of X will be 1, and the long-run average of (X − 1)2 will be 1/2.

The standard deviation of X, denoted here by σ(X), is defned at
√
V ar(X). Recall that for a

constant, i.e. a nonrandom quantity, c, we have

σ(cX) = cσ(X) (4.7)

and

σ(X + c) = σ(X) (4.8)

The reader should make sure both of these make intuitive sense. For instance, in the second case,
the reasoning is: Set Y = X + c. In repeated realizations, Y will vary from its mean exactly as X
varies from its mean.

How does this extend? The answer is the covariance:

Cov(X,Y) = E[(X − EX)(Y − EY)] (4.9)

Just as V ar(X) is a measure of how much X varies, the covariance is a measure of how X and Y
vary together. Note that it is a signed quantity.

Think of height and weight in a human population, X and Y . People who are taller than average
tend to be heavier than average, making

(X − EX)(Y − EY) > 0 (4.10)

1If we look at many instances of a random variable X, they are called realizations. By the way, EX means E(X(;
it is customary to drop the parentheses if there is no danger of ambiguiity.

34 CHAPTER 4. PROBABILITY

Shorter people tend to be lighter than average, but again

(X − EX)(Y − EY) > 0 (4.11)

Now,

E[(X − EX)(Y − EY)] (4.12)

is the average value of that product, as we range through various people in the population, so the
covariance will be positive. (X −EX)(Y −EY) won’t be positive for all people, but if the relation
is typical enough, the average will be positive.

Note that Cov(X,X) = V ar(X).

4.2.2 Covariance Matrices

Say we have p random variables X1,..., Xp. Their covariance matrix is p×p, with the (i, j) element
being Cov(Xi, Xj). The diagonal elements are the variances of the individual variables.

4.3 Correlation

Roughly speaking, positively-related variable will have positive covariance, with a similar statement
for negatively-related variables. In fact, correlation is just scaled-down variance:

ρ(X,Y) =
Cov(X,Y)

σ(X) σ(Y)
(4.13)

where ρ and σ are standard symbols for correlation and standard deviation, respectively.

Correlation is unitless. E.g. if X and Y are measured in meters, the meter units cancel. One can
show that

−1 ≤ ρ ≤ 1 (4.14)

4.3.1 Proof of (4.14) by Vector Spaces

Let W be the set of all random variables with mean 0 and finite variance (in some probability
space). We lose no generality in assume mean 0, since replacing a random variable U by U − EU

4.3. CORRELATION 35

makes the mean 0 and does not change the correlation.

Wis clearly closed under linear combinations, and we can define an inner product (“dot product”)
by

< U, V >= Cov(U, V) (4.15)

The vector norm will be

||U || = (< U,U >)0.5 = σ(U) (4.16)

To qualify as an inner product, it must be symmetric and linear in both arguments, and must be
positive definite, i.e. < U,U >≥ 0, with equality if and only if U = 0. Covariance satisfies all these
conditions.

On any inner product space, the Cauchy-Schwarz Inequality says that the absolute value of the
inner product of two vectors, divided by the product of their norms, is at most 1. That gives us
(4.14)!

4.3.2 Is a Correlation Large or Small?

So, is a correlation of, say, 0.4, large or small? It is customary to gauge this by the squared
correlation, which arises in the theory of linear predictors (Chapter 5). The quantity ρ2 can be
shown to be the reduction in mean squared prediction error when we predict V using U (or vice
versa).

Say we want to predict V knowing U . Intutively, the larger ρ(U, V) is, the more accurately I can
predict. This can be quantified.

Let’s consider predictors of the form

V̂ = c1 + c2U (4.17)

V̂ means the predicted value of V

There are optimal choices for the ci, but let’s not get into that for now.

Our mean squared prediction error is then

MSPE1 = E[(V − V̂)2] (4.18)

36 CHAPTER 4. PROBABILITY

But what if we don’t know U? Then we can’t use (4.17). In that case, a reasonable guess for V
would be EV . Then our MSPE would be

MSPE2 = E[(V − EV)2] (4.19)

You’ll recognize the latter as V ar(V), but the main point here is that it turns out that

ρ2(U, V) =
MSPE2 −MSPE1

MSPE2
(4.20)

In other words, the squared correlation can be interpreted as the proportional reduction in MSPE
that we attain by using U to predict V instead of using EV to do so. This is often described as
“The proportion of variation in V that is explainable by U .”

4.3.3 Example: MovieLens

Again, ml100kpluscovs is MovieLens plus some side information:

> head(ml100kpluscovs)

user item rating timestamp age gender occ zip userMean Nuser G1 G2

1 1 1 5 874965758 24 M technician 85711 3.610294 272 0 0

2 117 1 4 880126083 20 M student 16125 3.918605 86 0 0

3 429 1 3 882385785 27 M student 29205 3.393720 414 0 0

4 919 1 4 875289321 25 M other 14216 3.470046 217 0 0

5 457 1 4 882393244 33 F salesman 30011 4.025271 277 0 0

6 468 1 5 875280395 28 M engineer 02341 3.993007 143 0 0

G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 itemMean Nitem

1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3.878319 452

2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3.878319 452

3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3.878319 452

4 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3.878319 452

5 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3.878319 452

6 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3.878319 452

(The G’s are genres.)

Let’s find some correlations:2

2These are only sample correlations. Our data are regarded as a sample from a population of data from all possible
users and all possible movies.

4.3. CORRELATION 37

> cor(ml100kpluscovs[,c(’age’,’userMean ’,’Nuser’)])

age userMean Nuser

age 1.00000000 0.1355457 -0.03908845

userMean 0.13554566 1.0000000 -0.30755257

Nuser -0.03908845 -0.3075526 1.00000000

There seems to be rather little relation betwen age and the mean rating for a user, and between
age and the number of ratings for a user. But the latter two variables seem to have a negative
relation—still rather weak, with each variable explaining about 9% of the variation of the other;
users who give higher ratings rate fewer movies.

We might ask, say, whether any genres are related to each other:

some rows are all NAs

> cc <- complete.cases(ml100kpluscovs[,11:29])

> w <- ml100kpluscovs[cc,]

> cor(w[,11:19])

G11 G12 G13 G14 G15 G16

G11 1.00000000 -0.031493550 -0.030273614 0.232039913 -0.055267116 0.01614678

G12 -0.03149355 1.000000000 -0.054022202 0.001783286 -0.076165496 0.03418726

G13 -0.03027361 -0.054022202 1.000000000 -0.053634780 -0.009765185 -0.08138982

G14 0.23203991 0.001783286 -0.053634780 1.000000000 -0.059997502 -0.03084474

G15 -0.05526712 -0.076165496 -0.009765185 -0.059997502 1.000000000 -0.06345353

G16 0.01614678 0.034187257 -0.081389822 -0.030844736 -0.063453529 1.00000000

G17 0.11025056 0.069788805 -0.111244337 0.230288448 -0.106256128 0.04679552

G18 -0.04280364 -0.076381585 -0.055381372 -0.075833813 0.126545414 0.16727458

G19 -0.01826573 -0.032594547 -0.031331963 -0.032360794 -0.052448355 -0.05253437

G17 G18 G19

G11 0.11025056 -0.04280364 -0.01826573

G12 0.06978881 -0.07638159 -0.03259455

G13 -0.11124434 -0.05538137 -0.03133196

G14 0.23028845 -0.07583381 -0.03236079

G15 -0.10625613 0.12654541 -0.05244835

G16 0.04679552 0.16727458 -0.05253437

G17 1.00000000 -0.10041124 -0.07278201

G18 -0.10041124 1.00000000 -0.02372091

G19 -0.07278201 -0.02372091 1.00000000

There may be some slight relations.

38 CHAPTER 4. PROBABILITY

4.3.4 An Important Matrix Property

Say we have a random vector X, length p, and a k × p nonrandom matrix A. Then AX is a new
random vector, of length k. One can show that

Cov(AX) = A Cov(X) A′ (4.21)

where here Cov() with a single argument means covariance matrix, and ′ denotes transpose.

An important special case is that in which A is a row vector. Then AX is a number, and Cov(AX)
reduces to V ar(AX).

4.4 The Normal (Gaussian) Family of Distributions

4.4.1 Univariate

The density function here is the famous “bell-shaped curve,”

fX(t) =
1√
2πc

exp
(
−0.5 [(t− b)/c]2

)
(4.22)

This is a parametric family of curves. Here b and c are parameters. They also turn out to be the
mean and standard deviation of the distribution. Notation for this distribution is N(a, b2).

This is a very common model, as a histogram of one’s data often looks rather bell-shaped. Here is
one from MovieLens:

4.4. THE NORMAL (GAUSSIAN) FAMILY OF DISTRIBUTIONS 39

There are lots of issues here, e.g. “How close must the histogram be to bell-shaped in order for us
to use it as a model?” More on this in Chapter 7.

One reason that random variables in practice tend to be approximately normal is the Central Limit
Theorem, which says that if a random variable X is a sum of many random variables, then its
distribution is approximately normal even if the individual terms are not normal. An example is
human height. Think of the body as made up of a number of chunks. The person’s height is the
sum of the heights of the chunks. This is a rough analysis, actually based on advanced versions
of the theorem, but in fact human height is approximately normally distributed. (Try running a
histogram on the height column in the mlb dataset that comes with regtools.)

4.4.2 Multivariate

If we have two random variables X and Y , they have a bivariate normal distribution if their density
looks like a “three-dimensional bell.” We will skip the exact density (for p variables).

Below are graphs of example bivariate normal densities, one with ρ = 0.2 and the other with
ρ = 0.8.

40 CHAPTER 4. PROBABILITY

s

−10

−5

0

5

10

t

−10

−5

0

5

10

z

0.005

0.010

0.015

s

−10

−5

0

5

10

t

−10

−5

0

5

10

z
0.000
0.005
0.010
0.015
0.020
0.025

You can see the effect of a higher correlation in the second graph; the bell is hugging a line at the
base, so the two variables tend to be large together or small together.

4.5 Mixture Distributions

4.5.1 Motivating Example

The faithful dataset included in R consists of data from the Old Faithful geyser in Yellowstone
National Park, USA. Let’s take a look at times between eruptions:

> plot(density(faithful$waiting))

Here we are using a more sophisticated density estimator than hist(), density(). It gives smooth
curves.

4.5. MIXTURE DISTRIBUTIONS 41

We might say it’s a “double bell.” What’s at work here?

It looks like a mixture of two normals, meaning that possibly two underground mechanisms are
causing eruptions, sometimes mechanism A and sometimes mechanism B. If the wait times between
events is normal for each mechanism, we would get the “double bell” appearance.

To understand this better, consider this simulation experiment:

> x1 <- rnorm (2500)

> x2 <- rnorm (2500)+5

> i <- sample(c(TRUE ,FALSE),1000, replace=TRUE)

> x <- ifelse(i,x1 ,x2)

> plot(density(x))

Here we generated 2500 random values each from N(0, 1) and N(5, 1), but formed x by randomly
choosing from those two sets of 2500. To put more weight on one than the other, use the prob
argument in sample().

42 CHAPTER 4. PROBABILITY

Sure enough, we got a double bell.

One can use a technique known as the EM algorithm to estimate the parameters of the two normals,
plus the proportion of each. The R package mixtools does the computation.

4.5.2 Clustering Algorithms and Use in RS

Clustering methods are exploratory tools to find mixtures. In the Old Faithful example, it was
rather clear that there was a mixture of two normals, but in general it’s much, much harder, for a
couple of reasons:

� We are usually in a multivariate setting, rather than the univariate one in the Old Faithful
example.

� The number of mixing components, 2 in the above example, is not clear at all.

Various methods have been devised, and have been found useful in RS, such as in market segmen-
tation. We may find that moviegoers, for instance, tend to fall into, say, 5 main groups. We will
return to this later.

Chapter 5

Linear Models

In Section 4.3.2 we made reference to linear models. Directly or indirectly, they form the basis for
much of ML.

5.1 Minimizing MSPE

Suppose we are predicting a random variable Y , based on a random vector X, say predicting weight
from (height,age). Our guess will be some function of X, g(X). What is the best g, in the sense of
minimizing MSPE? In other words, how should we choose g to minimize

E
(
[Y − g(X)]2

)
(5.1)

One can show that:

We get minimum MSPE by taking g(X) to be the conditional mean, E(Y |X).

This should make good intuitive sense: To predict the weight of someone 70 inches tall, we take
our guess to be the mean weight of all 70-inch-tall people.

We will then define the regression function

µ(t) = E(Y |X = t) (5.2)

Note that the argument t = (t1, ..., tp)
′ is a vector. (Note: All vectors will be column vectors if not

otherwise stated.) Also, prepending a 1, we will use the notation t̃ = (1, t′)′.

43

44 CHAPTER 5. LINEAR MODELS

This definition is general ; it does not assume a linear model. Let’s now see where the classical
linear model comes from.

5.2 Motivation for the Classical Linear Model

Say we are predicting a variable Y from p features, X1, ..., Xp. Let X denote the (column) vector
of those features. Sometimes we will also add a constant 1 at the beginning, setting

X̃ = (1, X1, ..., Xp)
′ (5.3)

Here is the main point:

Suppose (X,Y) has a p + 1 dimensional normal distribution. Then the conditional
distribution of Y given X has the following properties:

� Linearity:

µ(t) = β0 + β1t1 + ...+ βptp = β′t̃ (5.4)

for a certain vector β.1

� Conditional normality: For any t, the conditional distribution of Y given X = t
is normal.

� Homoskedasticity: The conditional variance of Y given X = t is the same for
all t.

5.3 Coming Back Down to Earth

For those readers who have some background in linear regression modeling, the above three bullet
items will sound familiar. They are the motivation for the classic assumptions of linear modeling:
linearity, normality and homoskedasticity. However, note the following:

� The normality and homoskedasticity assumptions are used only for statistical inference, i.e.
confidence intervals and tests. We will not be performing statistical inference in this book;
ML is mainly about prediction.2

1One can show that β = E(Y X̃)[E(X̃X̃ ′)]−1.
2Sadly, in ML circles, the situation is confused by using the term inference for prediction.

5.4. ESTIMATING β 45

Even for inference, those assumptions aren’t really necessary. We get normality for our esti-
mated β from the Central Limit Theorem, and we can deal with the lack of homoskedasticity
by using the sandwich estimator, e.g. in the R sandwich package.

� Many regresssion functions in practice are approximately linear. And, as will be seen shortly,
polynomial models, which may provide a good fit in nonlinear situations, are actually linear!

In other words:

� The classic linear model is motivated by settings in (X,Y) has a multivariate
normal distribution.

� This assumption is highly restrictive, but is not necessary for our purposes.

For the remainder of this chapter, we assume

g(t) = β′t̃ (5.5)

for some vector β to be estimated from our data.

5.4 Estimating β

Here we lay groundwork leading up to the famous least-squares estimate.

5.5 Sample vs. Population

Most readers have probably noticed that when the results of a survey are released, say during
elections, a margin of error (MOE) is stated. For instance, “55% of those surveyed say they plan
to vote for Candidate Jones, with a margin of error of 3.2%.” The MOE is recognition of the fact
that only a sample of voters were surveyed, not the entire population of voters.

Let p denote the population proportion, i.e. the proportion of voters across the population who
favor Jones. The value of p is unknown, but our estimate is p̂ = 0.55. The “hat” notation̂means
“estimate of.” (The MOE is the radius of a 95% confidence interval for p, though as noted, we do
not make much use of statistical inference in this book.)

Every ML method is an estimator in some form or other. However, the terms sample and population
are not used in the ML community. Instead, they speak a probabilistic generative process to mean
the same thing as sampling data from a population.

46 CHAPTER 5. LINEAR MODELS

So, β is a population value. Its estimator from the data is denoted β̂.

5.5.1 The Least Squares Estimator

Denote our data by (Xij , Yj), j = 1, ..., n. In other words, we have n data points, and in the jth of
them, Xij and Yj are the valus of Xi and Y , respectively. Also, define

X(j) = (1, X1j , ..., Xpj)
′ (5.6)

To keep a concrete example in mind, again suppose we are predicting human weight Y from height
X1 and age X2. X

(3), for instance, is then the vector (height,age) for the third person in our data
(with a 1 prepended).

Putting together the fact that g minimizes (5.1) and the assumption (5.5), we have that β is the
vector b that minimizes

E
[
(Y − b′X̃)2

]
(5.7)

The sample analog of this quantity is

1

n

n∑
j=1

[
(Yj − b′X(j))2

]
(5.8)

Since b = β minimizes (5.7), it is natural by analogy to take β̂ to be the value of b that minimizes
(5.8).

Just a little bit more notation:

D = (Y1, ..., Yn)′ (5.9)

A =

 X(1)′

...

X(n)′

 (5.10)

Then (5.8) (without the 1/n factor) is

(D −Ab)′(D −Ab) (5.11)

5.6. COMPUTATION 47

To minimize this, we must set the derivative of (5.11) to 0. It can easily be verified that for a vector
u,

d

du
u′u = 2u (5.12)

Applying this and the Chain Rule to (5.11), i.e.

d

db
=

d

du

du

db
(5.13)

we have

0 = A′(D −Ab) (5.14)

Solve for b:

β̂ = (A′A)−1A′D (5.15)

This is the least squares estimator of β.

5.6 Computation

We certainly do not want to do this compution by hand. What are our choices?

5.6.1 lm()

R’s lm() (“linear model”) function does the computation for us. Here is an example using mlb, a
dataset in the regtools package, involving Major League Baseball players:3

> head(mlb) # take a look around

Position Height Weight Age

1 Catcher 74 180 22.99

2 Catcher 74 215 34.69

3 Catcher 72 210 30.78

4 First_Baseman 72 210 35.43

5 First_Baseman 73 188 35.71

3We trimmed down the number of columns here.

48 CHAPTER 5. LINEAR MODELS

6 Second_Baseman 69 176 29.39

> lmout <- lm(Weight ∼ Height + Age ,mlb)

> coef(lmout)

(Intercept) Height Age

-187.6381754 4.9235994 0.9115326

> predict(lmout ,data.frame(Height =73,Age =25))

1

194.

The call says, “Fit a linear model for predicting weight from height and age, using the dataset mlb.”
The coef() function extracts β̂ from the output object. We see that β̂ = (−187.64, 4.92, 0.91)′.

We then predict a new case. If the player whose weight is to be predicted is of height 73 and age
25, we would predict wieght 194 (an integer here just by coincidence).

By the way, coef() and predict() are generic functions in R, meaning that their actions depend
on the class of object they are called on. In this case, lmout is of class ’lm’, so coef() is dispatched
to a function coef.lm() tailored to such objects; predict() is dispatched to predict.lm(). There
are many generic functions in R, notably print() and plot().

5.6.2 qeLin()

In this book, we will use the qeML package. The name stands for “quick and easy machine
learning,” alluding to the goal of making things as quick and convennient as possible:

� The functions have a simple, uniform user interface.

� Cross-validation is automatically taken care of .

Most of the qeML functions are wrappers to functions in other R packages; qeML adds a simple,
uniform interface to them.

Let’s apply it to the above example:

> qeout <- qeLin(mlb[,-1],’Weight ’)

holdout set has 101 rows

The qeML functions all have the user specify the “Y” variable in the second argument, and “X”
in the first argument. It is assumed that all of the “X” columns will be used to predict “Y,” so to
be consistent with the earlier example, we needed to exclude column 1.

We can predict with any of the qeML functions.

5.6. COMPUTATION 49

> predict(qeout ,data.frame(Height =73,Age =25))

11

194.2245

The functions do automatic cross-validation, with the size of the holdout being 10% of the size
of the dataset.4 The prediction accuracy on the holdout set is in the testAcc component of the
return value:

> qeout$testAcc

[1] 14.13652

For continuous “Y,” this is the Mean Absolute Prediction Error (MAPE). On average, our pre-
dictions are about 14 pounds off. Could this be improved by adding Position to our feature
set?

> qeLin(mlb ,’Weight ’)$testAcc

holdout set has 101 rows

[1] 12.16986

Ah, yes. Catchers tend to be stocky, pitchers lanky and so on, so there is valuable extra information
there.

5.6.3 Dumy/One-Hot Variables

By the way, lm() automatically converts R factors to dummy/one-hot form,5 as was the case for
Position here. This is necessary for the matrix operations on which the linear model is based,
which of course are numeric.

So, if we have a categorical variable with k categories (k = 8 here6), we create k − 1 dummies.
We lose no information that way—if a record is not in those k − 1 categories, it must be in the
kth—and it is actually necessary. Here is why:

If we had dummy columns for all k categories, the sum of those columns would be a vector of all
1s. But our matrix A has a column of 1s already. Thus the columns would be linearly dependent.
But then A would not be full rank, and A′A would have the same problem. The later matrix would
then be nonintertible, making (5.15) impossible.

4This is the reason for the slight discrepancy above.
5The term dummy variables is used in statistics, economics and almost all fields of application, but in the machine

learning world, the term is one-ot.
6There are 9 positions in baseball, but the dataset has a slightly different classification, e.g. just one Outfielder

category.

50 CHAPTER 5. LINEAR MODELS

5.6.4 Uniform APIs in qeML

As noted, the qeML functions offer the benefit of a uniform API. Let’s try the kNN (“k-nearest
neighbors” method:

> qeKNN(mlb ,’Weight ’)$testAcc

holdout set has 101 rows

[1] 15.05624

Oh, not as good. If the true regression function is approximately linear, we generally will do better
by exploiting that fact.

As wrappers, the class of a qeML return value is a subclass of the function being wrapped:

> class(qeout)

[1] "qeLin" "lm"

They thus inherit methods:

> coef(qeout)

(Intercept) Height Age

-192.0942868 4.9726027 0.9327504

5.7 The Logistic Model

Say we are predicting a binary“Y.” In the mlb data, say we are predicting whether a player is a
catcher. Say we define Y to be 1 for catcher, 0 if not. In many ML circles, the coding is 1 and
- 1, as opposed to the “statistical” 1,0. The latter has the advantage that its expectation is the
probability of the Y = 1 class, which will be seen below is an integral part of the logistic model

µ(t) = E(Y |X = t) = P (Y = 1|X = t) (5.16)

The model is

P (Y = 1|X = t) =
1

1 + e−β′t
(5.17)

The reader will notice that in that expression we see the expression β′t from the linear model.
Accordingly, the logistic (often called “logit”) is termed a generalized linear model. The R glm()
function implements models such as this. (Another is Poisson regression.) In the logistic case,
qeLogit() serves as a wrapper.

5.7. THE LOGISTIC MODEL 51

5.7.1 Again, a Multivariate Normal Motivation

The right-hand side of (5.17) is in (0,1), and thus a reasonable model for a probability. It is an
increasing function of β′t, thus giving it an appealing quasi-linear nature. If say Y codes having
diabetes, it is reasonable to postulate that the probability of having the disease is an increasing
function of the age of the patient.

As with the linear model, though, there is a multivariate normal motivation:

Suppose the distribution of X, given Y = i, is multivariate normal with mean vector
different for each i but with covariance matrix being the same across values of i, i = 0, 1.
Then (5.17) holds.

Let’s see how this works for p = 1. Consider a short interval in the real line, A = (t, t + ε). We’ll
look at P (Y = 1|X in A), then let ε→ 0 to get P (Y = 1|X = t)

Let q = P (Y = 1), the unconditional probability of class 1. Let wi(t) denote the conditional density
of X, given Y = i (which by assumption is normal). Then by Bayes Rule,

P (Y = 1|X in A)[=
qP (X in A | Y = 1)

qP (X in A | Y = 1) + (1− q)P (X in A | Y = 0)
(5.18)

≈ qεw1(t)

qεw1(t) + (1− q)εw0(t)
(5.19)

=
1

1 + 1−q
a

w0(t)
w1(t)

(5.20)

Now, since the wi are normal, we have

wi(t) =
1√
2πσ

e
−0.5

(
t−µi
σ

)2

(5.21)

Substituting this in (5.20) does indeed simplify to (5.17) for the appropriate β.

5.7.2 Example: Predicting “Catcherness”

> catch <- mlb$Position == ’Catcher ’

> mlb$catch <- as.factor(catch)

> qeo <- qeLogit(mlb[,-1],’catch’)

52 CHAPTER 5. LINEAR MODELS

> predict(qeo ,data.frame(Height =73, Weight =225,Age =25))

$predClasses

[1] "FALSE"

$probs

FALSE TRUE

[1,] 0.8743196 0.1256804

The qeML functions sense that Y is binary (or more generally, categorical) by testing whether it
is an R factor. So we needed to convert the logical vector to a factor. The prediction was FALSE,
i.e. this player is guessed to not be a catcher, and in fact has only about a 13% chance of being a
catcher.

5.7.3 Example: Vertebral Disease

As noted, we can also predict general categorical Y . Here we consider a vertebral dataset from the
UCI Machine Learning Repository.

> head(vert)

V1 V2 V3 V4 V5 V6 V7

1 63.03 22.55 39.61 40.48 98.67 -0.25 DH

2 39.06 10.06 25.02 29.00 114.41 4.56 DH

3 68.83 22.22 50.09 46.61 105.99 -3.53 DH

4 69.30 24.65 44.31 44.64 101.87 11.21 DH

5 49.71 9.65 28.32 40.06 108.17 7.92 DH

6 40.25 13.92 25.12 26.33 130.33 2.23 DH

There are three disease types, NO, DH and SL, where NO means normal. The other columns are
various vertebral meansurements.

Our previous example and discussion concerned binary Y . Here Y as three categories. How does
qeLogit() handle this? It takes the One vs. All approach::

� Create three separate dummy/one-hot variables from Y , one each for NO, DH and SL.

� Fit a logit model for predicting NO from V1,...,V6.

� Fit a logit model for predicting DH from V1,...,V6.

� Fit a logit model for predicting SL from V1,...,V6.

� Then, for any future case, form predictions for it from all three models. Whichever model
gives the highest probability, take our prediciton to be that category.

5.7. THE LOGISTIC MODEL 53

> qel <- qeLogit(vert ,’V7’)

holdout set has 31 rows

As an example of prediction, consider a patient like the one in vert[1,]; but with V 7 = 1.88.

> newPatient <- vert[1,-7]

> newPatient$V6 <- 1.88

> predict(qel ,newPatient)

$predClasses

[1] "DH"

$probs

DH NO SL

[1,] 0.8594815 0.1190561 0.02146242

The prediction would be DH, with a probability of about 86%.

How well does logit predict on this dataset?

> qel$testAcc

[1] 0.1612903

> qel$baseAcc

[1] 0.5053763

For binary/categorical Y , the qeML functions report the overall misclassification rate. Here, we
would predict correctly about 84% of the time.

Are the features very helpful in prediction? Consider this:

> table(vert$V7) / nrow(vert)

DH NO SL

0.1935484 0.3225806 0.4838710

If we did not have the features to use for prediction, we would always guess SL, as it is the most
common cateogory. We would be right 48% of the time, thus wrong 52% of the time. But actually
we didn’t need to make that calculation above; it’s returned by qeLogit():

> qel$baseAcc

[1] 0.5053763

(Again, The small discrepancy is due to using the full dataset versus using just the training set.)

54 CHAPTER 5. LINEAR MODELS

5.8 Polynomial Models

Recall Figure 1.1, reproduced below for convenience:

The trend seemed to be vaguely linear, upward, but maybe even a downward trend near the end.
The latter point suggests there may even be a quadratic trend, with the middle-aged given higher
ratings while the young and old are less generous.

Though it sounds counterintuitive, quadratic models are actually linear! Here is why: The model
is

E(userMean | age = t) = β0 + β1 age + β2 age2 (5.22)

This is quadratic in age but linear in β. For instance, if we were to multiply each βi by 2.4, the
entire sum would grow by that factor.

Indeed, we should just consider age2 as a new feature:

> z <- ml100kpluscovs[,c(’age’,’userMean ’)]

> z$age2 <- z$age^2

> head(z)

age userMean age2

5.8. POLYNOMIAL MODELS 55

1 24 3.610294 576

2 20 3.918605 400

3 27 3.393720 729

4 25 3.470046 625

5 33 4.025271 1089

6 28 3.993007 784

We would then run qeLin() as usual:

> qeLin(z,’userMean ’)$testAcc

holdout set has 1000 rows

[1] 0.3254251

> qeLin(z[,1:2],’userMean ’)$testAcc

holdout set has 1000 rows

[1] 0.3472223

There may be a slight improvement of the quadratic model over the linear one. But we must
remember that since the holdout set is randomly chosen, there is some randomness to the above
numbers. Let’s try 10 replications of each, using the replicMeans() function from the regtools
package:

> replicMeans (10,"qeLin(z[,1:2],’userMean ’)$testAcc")

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

[1] 0.3363623

attr(,"stderr")

[1] 0.003186719

> replicMeans (10,"qeLin(z,’userMean ’)$testAcc")

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

56 CHAPTER 5. LINEAR MODELS

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

holdout set has 1000 rows

[1] 0.3392382

attr(,"stderr")

[1] 0.003183424

(The standard error is the estimated standard deviation of the reported mean.)

The quad model probably is not helpful here.

A better example is the pef dataset from regtools.

> head(pef)

age educ occ sex wageinc wkswrkd

1 50.30082 zzzOther 102 2 75000 52

2 41.10139 zzzOther 101 1 12300 20

3 24.67374 zzzOther 102 2 15400 52

4 50.19951 zzzOther 100 1 0 52

5 51.18112 zzzOther 100 2 160 1

6 57.70413 zzzOther 100 1 0 0

This is data from the 2000 US census, in Silicon Valley, over six different computer-related occu-
pations. Let’s try a linear model:

> qeLin(pef ,’wageinc ’)$testAcc

holdout set has 1000 rows

[1] 25906.99

On average, our prediction is off by almost $26,000. But it’s better than not using the features at
all, i.e. just using mean income as our predictor:

> qeLin(pef ,’wageinc ’)$baseAcc

holdout set has 1000 rows

[1] 30804.21

Let’s try a quadratic model. But it would be harder than (5.22). We would have to add columns
for squares of all the variables (first converting the categorical variables like occ do dummies/one-
hots), and computer “cross-product terms, such as age times sex (representing a difference in effect
of age, between men and wome).

But qeML does all that for us, via qePolyLin(). So, let’s try that:

> replicMeans (50,"qeLin(pef ,’wageinc ’)$testAcc")

5.9. APPLICATION TO COLLABORATIVE FILTERING 57

[1] 25361

attr(,"stderr")

[1] 145.1841

> replicMeans (50,"qePolyLin(pef ,’wageinc ’,deg =2)$testAcc")

[1] 24762.21

attr(,"stderr")

[1] 136.9662

So, a quadratic model yields a small, but likely worthy, improvement.

There is also qePolyLog(), for quadratic features in a logistic model.

5.9 Application to Collaborative Filtering

So, let’s make our first attempt at collaborative filtering, on the MovieLens data. We’ll just use a
linear model, with the small 100K dataset.

> qeLin(ml100kpluscovs[,c(’user’,’item’,’rating ’)],’rating ’)$testAcc

holdout set has 1000 rows

[1] 0.9213201

> qeLin(ml100kpluscovs[,c(’user’,’item’,’rating ’)],’rating ’)$baseAcc

holdout set has 1000 rows

[1] 0.9523251

> qeLin(ml100kpluscovs[,c(’rating ’,’userMean ’,’itemMean ’)],’rating ’)$testAcc

holdout set has 1000 rows

[1] 0.7484943

Remember, lm(), and thus the wrapper qeLin(), will convert the user variable to dummies, and
the same for item. With 943 users and 1682 items, that’s 2624 dummies. A rough rule of thumb is
that one should have at most p <

√
n, i.e. about 300 features. In other words, using the user and

item columns is probably overfitting. Replacing them by the embeddings, i.e. replacing a variable
by its summary or proxy, seems to be a good idea here; replacing 2624 columns by 2 seemed to pay
off.

5.10 Regularization: the LASSO

A number of modern statistical methods “shrink” their classical counterparts. This is true for ML
methods as well. In particular, the principle may be applied in:

58 CHAPTER 5. LINEAR MODELS

� Boosting.

� Linear models.

� Support vector machines.

� Neural networks.

This is also applied to some RS models, such as matrix factorization.

5.10.1 Motivation

Suppose we have sample data on human height, weight and age. Denote the population means of
these quantities by µht, µwt and µage. We estimate them from our sample data as the corresponding
sample means, Xht, Xwt and Xage.

Just a bit more notation, giving names to vectors:

µ = (µht, µwt, µage) (5.23)

and

X = (Xht, Xwt, Xage) (5.24)

Amazingly, James-Stein theory says the best estimate of µ might NOT be X.7 It might be a
shrunken-down version of X, say 0.9X, i.e.

(0.9Xht, 0.9Xwt, 0.9Xage) (5.25)

And the higher the dimension (3 here), the more shrinking needs to be done. (Though for 1 or
2 dimensions, shrinkage brings no improvement.) The intuition is this: For many samples, there
are a few data points that are extreme, on the fringes of the distribution. These points skew our
estimators, in the direction of being too large. So, it is optimal to shrink them.

How much shrinking should be done? In practice this is unclear, and typically decided by our usual
approach, cross-validation.

Putting aside the mathematical theory — it’s quite deep — the implication for us in this book is
that, for instance, the least-squares estimator β̂ of the population coefficient vector β in the linear

7Here “best” means in terms of Mean Square Error. The MSE for the non-shrunken case is E
[
||X − µ||2

]
.

5.10. REGULARIZATION: THE LASSO 59

model is often too large, and should be shrunken. Most interestingly, this turns out to be a
possible remedy for overfitting.

5.10.2 Shrinking β̂ in Linear Regression Models

Instead of finding the value of b that minimizes (5.11), we minimize

(D −Ab)′(D −Ab) + λ||b]]1 (5.26)

The value of the hyperparameter λ > 0 is up to the analyst, but is typically chosen by cross-
validation. The resulting β̂ is called the Least Absolute Shrinkage and Selection Operator, LASSO.

Why does this result in shrinkage? In minimizing (5.11) we are given free rein, choosing any b that
we want. But (5.26) penalizes us for using longer b. Actually, one can show that minimizing (5.26)
is equivalent to minimizing (5.11) under the constraint that

||b||1 ≤ η (5.27)

η is now the hyperparameter.

5.10.3 The Famous LASSO Picture

As mentioned, a key property of the LASSO is that it usually provides a sparse solution for β̂,
meaning the many of the β̂i are 0. In other words, many features are discarded, thus providing
a means of dimension reduction, thus an approach to avoiding overfitting. Figure 5.1 shows why.
Here is how it works.

The figure is for the case of p = 2 predictors, whose coefficients are b1 and b2. (For simplicity,
we assume there is no constant term b0.) Let U and V denote the corresponding features. Write
b = (b1, b2) for the vector of the bi.

Without shrinkage, we would choose b to minimize the sum of squared errors,

SSE = (Y1 − b1U1 − b2V1)2 + ...+ (Yn − b1Un − b2Vn)2 (5.28)

Recalling that the non-shrunken b is called the Ordinary Least Squares estimator, let’s name that
bOLS , and name the corresponding SSE value SSEOLS .

The horizontal and vertical axes are for b1 and b2, as shown. There is one ellipse for each possible
value of SSE. For SSE equal to, say 16.8, the corresponding ellipse is the set of all points b that

60 CHAPTER 5. LINEAR MODELS

Figure 5.1: Feature subsetting nature of the LASSO

have SSE = 16.8. As we vary the SSE value, we get various concentric ellipses, two of which are
shown in the picture. The smaller the ellipse, the smaller the value of SSE.

The OLS estimate is unique, so the ellipse for SSE = SSEOLS is degenerate, consisting of the single
point bOLS .

The corners of the diamond are at (η, 0), (0, η) and so on. Due to the constraint (5.27), our LASSO
estimator bLASSO must be somewhere within the diamond.

Remember, we want SSE — the sum of square prediction errors — to be as small as possible, but
at the same time we must stay within the diamond. So the solution is to choose our ellipse to just
barely touch the diamond, as we see with the outer ellipse in the picture. The touchpoint is then
our LASSO solution, bLASSO.

But that touchpoint is sparse — b2 = 0! And you can see that, for almost any orientation and
position of the ellipses, the eventual touchpoint will be one of the corners of the diamond, thus a
sparse solution. Thus the LASSO will usually be sparse, which is the major reason for its popularity.

If we were to use the L2 norm in (5.26), that diamond would be a circle. The resulting β̂ is called
the ridge estimator. It also shrinks, but is not sparse, since the touchpoint can be anywhere.

5.10. REGULARIZATION: THE LASSO 61

5.10.4 The qeLASSO Function

This wraps the glmnet package, which chooses λ through its own internal cross-validation.

62 CHAPTER 5. LINEAR MODELS

Chapter 6

Matrix Factorization Methods

Note: The reader may find it useful to review Section 3.2 before continuing.

This chapter covers one of the more popular RS methods, matrix factorization. The overall theme
will be low-rank approximation: given a matrix M1, find a matrix M2 for which

rk(M2) << rk(M1) (6.1)

and

M2 ≈M1 (6.2)

This is important for dimension reduction. In RS, our ratings matrix may have hundreds of millions
of rows and millions of columns, which presents both computational and overfitting problems.

To set the stage, we start with a more basic matrix operation, PCA.

6.1 An Approach to Approximate Rank: Principal Components
Analysis

Suppose the matrix in (3.1) had been

M =

 1 5 1 −2
8.02 2.99 2 8.2

9 8 3 6

 (6.3)

63

64 CHAPTER 6. MATRIX FACTORIZATION METHODS

Intuitively, we still might say that the rank of M is “approximately” 2. So row 3 still seems
redundant, Let’s formalize that, leading to one of the most common techniques in statistics/machine
learning.

The reason this is of interest is dimension reduction. We would like to reduce our feature set from
p variables to s, with s << p, with the goal of avoiding overfitting.

6.1.1 Exploiting Correlations

Statistically, the issue is one of correlation. In (6.3), the third row is highly correlated with (the
sum of) the first two rows. To explore the correlation idea further, recall our two graphs of bivariate
normal densities from Section 4.4.2:

s

−10

−5

0

5

10

t

−10

−5

0

5

10

z

0.005

0.010

0.015

s

−10

−5

0

5

10

t

−10

−5

0

5

10

z

0.000
0.005
0.010
0.015
0.020
0.025

The two plots were for a low-correlation (0.2) distribution and a high-correlation (0.8) one. As we
said at the time about the latter:

The probability that X2 ≈ X1 is high. So, to a large extent, there is only one variable
here, X1 (or other choices, e.g. X2), not two.

In the case of correlation 0.2, the two variables are more separate. The probability that X2 ≈ −X1

is lower here.

Note one more time, though, the approximate nature of the approach we are developing. There

6.1. AN APPROACH TO APPROXIMATE RANK: PRINCIPAL COMPONENTS ANALYSIS65

really are two variables even in that correlation 0.8 example. By using only one of them, we are
relinquishing some information. But with the need to avoid overfitting, use of the
approximation may be a net win for us.

Well then, how can we determine a set of near-redundant variables, so that we can consider omitting
them from our analysis? Let’s look at those graphs a little more closely.

Any level set in the above graphs, i.e. a curve one obtains by slicing the bells parallel to the (t1, t2)
plane, can be shown to be an ellipse. As noted, the major axis of the ellipse will be the line
t1 + t2 = 0. The minor axis will be the line perpendicular to that, t1 − t2 = 0. That suggests
forming new variables,

W1 = X1 +X2 (6.4)

and

W2 = X1 −X2 (6.5)

In fact, taking

A =

(
1 1
1 −1

)
(6.6)

in (4.21) shows that ρ(W1,W2) = 0.

Here is the point so far:

� The high value of ρ(X1, X2) suggests that for this dataset, “one variable is enough.” Thus
we might consider using just X1 rather than X1 and X2.

� Or, we might consider using W1 for our one variable.

Now suppose we have p variables, X1, X2, ..., Xp, not just two. If our data is on people, these
variables may be height, weight, age, blood glucose level, and so on, i.e. X = (height, weight, age,
blood glucose level,...)’.

X is different for each person, so it is a random vector. Let C denote the p× p covariance matrix
of X.

Note: In our data, we will have n people, each of which has a different value of the vector X. Our
data is then a matrix (or data frame) of p columns, with the value of X for person i in column i.
If we call the R function cov() on that matrix, we get Ĉ, the estimate of C.

66 CHAPTER 6. MATRIX FACTORIZATION METHODS

We want to create a new 4-dimensional random vector W = (W1,W2,W3,W4)
′, with each Wi being

some linear combination of X1, X2, X3 and X4.

We can no longer visualize in higher dimensions, but one can show that the level sets will be p-
dimensional ellipsoids. These now have p axes rather than just two, and we can define our Wi is
such a way that

(a) The Wi are uncorrelated.

(b) They are ordered in terms of variance:

V ar(W1) ≥ V ar(W2) ≥ ... ≥ V ar(Wp) (6.7)

Now we have a promising solution to our dimension reduction problem. In (b) above, we can choose
to use just the first few of the Wi, omitting the ones with small variance since they are essentially
constants, uninformative. And again, since the Wi will be uncorrelated, we are eliminating a source
of possible redundancy among them; after all, we are doing dimension reduction, i.e. we wish to
reduce the number of variables, so we don’t want any redundant ones.

PCA won’t be a perfect solution — there is no such thing — as might be the case if the relations
between variables is nonmonotonic. A common example is age and income, with mean income given
age tending to be a quadratic (or higher degree) polynomial relation. But PCA is a very common
“go to” method for dimension reduction, and may work well even in (mildly) nonmonotonic settings.

Note too that although we’ve motivated things here with multivariate normal distributions, we
haven’t assumed it. We are merely talking about finding a set of uncorrelated variables that are
linear functions of our original ones.

Now, how do we find these Wi?

6.1.2 Eigenanalysis

So, we are interested in finding new variables that are linear combinations of our original ones.
Let’s look at the first one. We want to choose u to maximize

V ar(u′X) = u′Cu (6.8)

where we have used (4.21) with A = u′.

Of course, this maximization problem doesn’t make sense in the form stated, since we can just
make u larger and larger to make V ar(u′X) large. We need a constraint, say norm 1, u′u = 1.

6.1. AN APPROACH TO APPROXIMATE RANK: PRINCIPAL COMPONENTS ANALYSIS67

This calls for the method of Lagrange multipliers. We redefine that problem as maximizing

u′Cu− ω(u′u− 1) (6.9)

where ω is an artificial variable that enforces the constraint. Then

d

du
[u′Cu− ω(u′u− 1)] = 2Cu+ 2ωu (6.10)

Setting this to 0, we have

0 = (C − ωI)u (6.11)

In other words,

Cu = ωu (6.12)

Aha! The vector u would have to be an eigenvector of C.

Let’s call that vector u1. Then what about the second linear combination, u2? Again we would
find u to maximize

V ar(u′X) = u′Cu (6.13)

with the constraintt

u′u = 1 (6.14)

but now with the additional constraint that we want u2 to be uncorrelated with u1. Using (4.21),
that means

u′u1 = 0 (6.15)

Using two-variable Lagrange, we would find that u2 is also an eigenvector of C.

Say we have a sample of n observations on p variables, say p measurements on each of n people.
The measurements are X1, ..., Xp. For example, we might have p = 3, with X1, X2, and X3 being
height, weight and age.

68 CHAPTER 6. MATRIX FACTORIZATION METHODS

Let C denote the covariance matrix of X1, ..., Xp. Note that since Cov(Xi, Xj) = Cov(Xj , Xi), the
matrix C is symmetric,

C ′ = C (6.16)

Another way of looking at the above derivation:

It can be shown1 that any symmetric matrix has real (not complex) eigenvalues, and that the
corresponding eigenvectors U1, ..., Up are orthogonal,

U ′iUj = 0, i 6= j (6.17)

We always take the Ui to have length 1: Just divide the vector by its length, so it now has length
1, and is still an eigenvector.

Let U denote the p × p matrix whose ith column is Ui. Then from the orthogonality of the
eigenvectors, we have

U ′U = I (6.18)

so

U−1 = U ′ (6.19)

where Iis the p× p identity matrix. We also refer to U as orthogonal, for this property.

It also can be shown that

UCU ′ = D (6.20)

where D is a diagonal matrix with the eigenvalues of C on the diagonal.

X = (X1, ..., Xp)
′ is a random vector, i.e. different for each person or other entity in the population.

Now, form a new random vector from X:

W = UX (6.21)

1Here and below, “can be shown” means that the assertion is proved in any standard textbook on linear algebra.

6.1. AN APPROACH TO APPROXIMATE RANK: PRINCIPAL COMPONENTS ANALYSIS69

Let’s find its covariance matrix, again using (4.21):

Cov(W) = UCU ′ = D (6.22)

Aha! The components of this new random vector are uncorrelated! Just what we need. And that
gives us PCA:

6.1.3 PCA

� Find the (sample) covariance matrix of X in our data.

� Diagonalize as above, yielding U and D.

� Reorder D so that the eigenvalues are in nonincreasing order. Reorder the rows of U accord-
ingly.

� We are doing dimension reduction, reducing from p. Decide the new dimension s.

� Replace U by its first s rows.

� We’ve created a new random vector W = UX, with the new U . W will have length s, thus
achieving dimension reduction.

So for example, denote the kth value of X in our original dataset, i.e. column k, by X(k). The
corresponding new vector is W (k) = UX(k). When dealing with a new case X(new) in the future,
premultiply by U to get the W value.

6.1.4 Choosing the Number of Principal Components

The number of components we use, s, is a hyperparameter. So, how do we choose s?

First one must ask what the goal of PCA is in the given application. It might be simply descriptive;
if we can reduce some complex set of variables down to a few while losing only a small amount
of information, those remaining variables may give us insight into the underlying workings of the
process being studied.

For this goal, the (rather) standard approach is “proportion of total variance”; s is chosen so that

s∑
j=1

λj (6.23)

70 CHAPTER 6. MATRIX FACTORIZATION METHODS

is “most” of total variance (that total is the above expression with p instead of s), but even this is
usually done informally.

In ML/RS settings, though, s is typically chosen by cross validation. Say we are predicting Y from
X = (X1, ..., Xp)

′, using a linear model. We fit such a model, predicting Y from W1 alone; then
we predict Y from only W1 and W2, use then s = 3, then 4 and so on. In each case, we look at
our prediction accuracy in our holdout set. In the end, we use the value of s that gives the best
accuracy. The qePCA() function does this.

6.1.5 Software and UCI Repository Example

The most commonly used R function for PCA is prcomp(). As with many R functions, it has
many optional arguments; we’ll take the default values here.

For our example, let’s use the Turkish Teaching Evaluation data, available from the UC Irvine
Machine Learning Data Repository. It consists of 5820 student evaluations of university instructors.
Each student evaluation consists of answers to 28 questions, each calling for a rating of 1-5, plus
some other variables we won’t consider here.

> turk <- read.csv(’turkiye -student -evaluation.csv’,header=T)

> head(turk)

instr class nb.repeat attendance difficulty Q1 Q2 Q3 Q4

1 1 2 1 0 4 3 3 3 3

2 1 2 1 1 3 3 3 3 3

3 1 2 1 2 4 5 5 5 5

4 1 2 1 1 3 3 3 3 3

5 1 2 1 0 1 1 1 1 1

6 1 2 1 3 3 4 4 4 4

Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19

1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28

1 3 3 3 3 3 3 3 3 3

2 3 3 3 3 3 3 3 3 3

3 5 5 5 5 5 5 5 5 5

4 3 3 3 3 3 3 3 3 3

5 1 1 1 1 1 1 1 1 1

6.1. AN APPROACH TO APPROXIMATE RANK: PRINCIPAL COMPONENTS ANALYSIS71

6 4 4 4 4 4 4 4 4 4

> tpca <- prcomp(turk [, -(1:5)]

Let’s explore the output. First, the standard deviations of the new variables:

> tpca$sdev

[1] 6.1294752 1.4366581 0.8169210 0.7663429 0.6881709

[6] 0.6528149 0.5776757 0.5460676 0.5270327 0.4827412

[11] 0.4776421 0.4714887 0.4449105 0.4364215 0.4327540

[16] 0.4236855 0.4182859 0.4053242 0.3937768 0.3895587

[21] 0.3707312 0.3674430 0.3618074 0.3527829 0.3379096

[26] 0.3312691 0.2979928 0.2888057

> tmp <- cumsum(tpca$sdev ^2)

> tmp / tmp [28]

[1] 0.8219815 0.8671382 0.8817389 0.8945877 0.9049489

[6] 0.9142727 0.9215737 0.9280977 0.9341747 0.9392732

[11] 0.9442646 0.9491282 0.9534589 0.9576259 0.9617232

[16] 0.9656506 0.9694785 0.9730729 0.9764653 0.9797855

[21] 0.9827925 0.9857464 0.9886104 0.9913333 0.9938314

[26] 0.9962324 0.9981752 1.0000000

This is striking. The first principal component (PC) already accounts for 82% of the total variance
among all 28 questions. The first five PCs cover over 90%. This suggests that the designer of the
evaluation survey could have written a much more concise survey instrument with almost the same
utility.

Now keep in mind that each PC here is essentially a “super-question” capturing student opinion
via a weighted sum of the original 28 questions. Let’s look at the first two PCs’ weights:

> tpca$rotation [,1]

Q1 Q2 Q3 Q4 Q5

-0.1787291 -0.1869604 -0.1821853 -0.1841701 -0.1902141

Q6 Q7 Q8 Q9 Q10

-0.1870812 -0.1878324 -0.1867865 -0.1823915 -0.1923626

Q11 Q12 Q13 Q14 Q15

-0.1866948 -0.1862382 -0.1922729 -0.1911814 -0.1902380

Q16 Q17 Q18 Q19 Q20

-0.1962885 -0.1808833 -0.1935788 -0.1927359 -0.1931985

Q21 Q22 Q23 Q24 Q25

-0.1911060 -0.1908591 -0.1948393 -0.1931334 -0.1888957

Q26 Q27 Q28

-0.1908694 -0.1897555 -0.1886699

72 CHAPTER 6. MATRIX FACTORIZATION METHODS

> tpca$rotation [,2]

Q1 Q2 Q3 Q4 Q5

0.35645673 0.23223504 0.11551155 0.24533527 0.20717759

Q6 Q7 Q8 Q9 Q10

0.20075314 0.24290761 0.24901577 0.12919618 0.18911720

Q11 Q12 Q13 Q14 Q15

0.11051480 0.21203229 -0.10616030 -0.15629705 -0.15533847

Q16 Q17 Q18 Q19 Q20

-0.04865706 -0.26259518 -0.12905840 -0.15363392 -0.19670071

Q21 Q22 Q23 Q24 Q25

-0.22007368 -0.22347198 -0.10278122 -0.06210583 -0.20787213

Q26 Q27 Q28

-0.12045026 -0.07204024 -0.21401477

The first PC turned out to place approximately equal weights on all 28 questions. The second PC,
though, placed its heaviest weight on Q1, with substantially varying weights on the other questions.

While we are here, let’s check that the columns of U are orthogonal.

> t(tpca$rotation [,1]) %*% tpca$rotation [,2]

[,1]

[1,] -2.012279e-16

Yes, 0 (with roundoff error). As an exercise in matrix partitioning, the reader should run

t(tpca$rotation) %*% tpca$rotation

then check that it produces the identity matrix I, then ponder why this should be the case.

6.1.6 Scaling

Some analysts prefer to scale the data before applying PCA. For each column, we would subtract
the column mean and divide by the column standard deviation. The column would now have mean
0.0 and variance 1.0.

The rationale for doing this is that if PCA is applied to the original data, variables with large
variance will dominate. And then units would play a role; e.g. a distance variable would have more
impact if it were measured in kilometers than miles.

Scaling does solve this problem, but its propriety is questionable. Consider a setting with two
features, A and B, independent, with variances 500 and 2, respectively, and with mean 100 for
both. Let A′ and B′ denote these features after centering and scaling.

6.2. SVD 73

As noted, PCA is all about removing features with small variance, as they are essentially constant.
If we work with A and B, we would of course use only A. But if we work with A′ and B′, we would
use both of them, as they both have variance 1.0.

So, dealing with the disparate-variance problem (e.g. miles vs. kilometers) shouldn’t generally be
solved by ordinary scaling, i.e. by dividing by the standard deviation. An alternative is to divide
each column by its mean. This addresses the miles-vs.-kilometers problem, and makes sense in that
a variance is large or small in relation to its mean.

6.1.7 Role of PCA in RS

If in an RS application we have a very large number of covariates, one possible remedy is to use
PCA for dimension reduction. A second role is to lead us into related operation, SVD, next.

6.2 SVD

The Singular Value Decomposition (SVD) is a generalization of PCA. It has many applications,
but will be especially valuable for us in RS, as it can factor our ratings matrix into the product of
a user matrix and an item matrix.

6.2.1 The Decomposition

Let A be any matrix, not necesarily square. In fact, it is nonsquare in typical applications, RS
being a case in point. Let n and m denote the numbers of rows and columns of A. Then there
exist matrices U , D and V such that

A = UDV ′ (6.24)

where:

� The dimensions of U , D and V are n× n, n×m and m×m.

� U and V are orthogonal matrices, so that UU ′ = I and V ′V = I.

� D is a diagonal matrix in the sense that Dij = 0 whenever i 6= j. The diagonal elements are
the singular values. Let di denote the ith diagonal element in D, i = 1, 2, ...,min(n,m). One
can construct the matrices so that the singular values are nonnegative.

74 CHAPTER 6. MATRIX FACTORIZATION METHODS

By permuting the rows and columns of A, e.g. in MovieLens, permuting the order of the users, and
that of the movies, we can arrange things so that the singular values appear in descending order.
We’ll assume that here.

Let ui and vi denote the ith columns in U and V , respectively. By expanding the multiplication in
(6.24), we have

A =

min(n,m)∑
i=1

diuiv
′
i (6.25)

6.2.2 Low-Rank Approximation

Equation (6.25) then suggests how to accomplish dimension reduction. Remember, the di are
decreasing.2 The last few may be really tiny, so we can delete those terms, just as we deleted the
principal components with small variances.

Say we retain the first r terms, with r < min(n,m). That is equivalent to

� Retaining the r × r “northwest corner” of D.

� Retaining the first r columns of U .

� Retaining the first r columns of V .

Result:

� The new U , D and V will now be of dimensions n× r, r × r and m× r.

� The new product UDV ′ will still have dimensions n ×m, the same as A. But, whereas we
had

A = UDV ′ (6.26)

before, we now have

A ≈ UDV ′ (6.27)

2Technically, nonincreasing, but typically there are no cases of equality.

6.3. GENERAL ISSUES WITH MATRIX FACTORIZATION METHODS 75

� The new UDV ′ will have rank r, hence the term low-rank approximation. In fact, it can
be shown to be the best rank-r approximation to A, in the sense that the Frobenius norm
(Section 3.3) of the difference is minimized:

UDV ′ = arg min
Q
‖A−Q‖F (6.28)

over all n×m matrices Q having rank r.

Note that ALS is not guaranteed to converge. It is simply a heuristic, ad hoc method. But it has
been found to work well, and is quite popular.

6.2.3 Back to RS

Since D is a diagonal matrix with nonnegative diagonal entries, it has a square root, which we will
denote as D0.5—to obtain the square root matrix, take the square of each diagonal value. Then

A ≈ (UD0.5)(D0.5V ′) (6.29)

So to obtain our desired factorization A ≈WH, we simply set

W = UD0.5, H = D0.5V ′ (6.30)

In our RS context, the ratings matrix A has missing values. How can we find U , D and V ?

If the proportion of missing values is low, as in our House Voting data, we can apply SVD to the
intact rows of A, then treat the remaining rows as new cases to be predicted (Section 6.3.5 below).

Otherwise, the answer is that numeric methods exist to find the approximate SVD, based on
the non-NA elements of A. They involve optimization of certain complicated quantities, using a
nonlinear optimization technique. One such technique is Stochastic Gradient Descent (SGD), an
iterative workhorse method in machine learning. It essentially sets derivatives to 0 and solves, but
with various refinements. Of course, U , D and V will then turn out to be different from what they
would be if A were intact.

6.3 General Issues with Matrix Factorization Methods

There are many refinements of the SVD approach described above, and indeed many other ways
to achieve approximate factorization. We’ll discuss other methods, later in this chapter.

76 CHAPTER 6. MATRIX FACTORIZATION METHODS

In all methods, we have

A ≈WH (6.31)

where W is of dimensions n× r, H is of dimensions r×m, and both matrices are of rank r. There
are several issues to discuss.

6.3.1 Bias, Variance and Overfitting

There are nr numbers in W , and rm in H. Treating our data as a sample from a conceptual
population—e.g. all moviegoers and all movies—estimating only r(n + m) values is much better
than estimating the much larger nm ones.

But this depends on r, which is our tuning parameter/hyperparameter for this method. We have
a classical tradeoff:

As r grows, the variance increases, due to estimating more parameters, but the bias decrases. As
usual, typically r is chosen by cross-validation.

6.3.2 Regularization

To some analysts, “If it’s random, then shrink it.” Matrix factorization is no exception. In the
context here, that means shrinking both W and H, and we choose them to minimize

‖A−WH‖F + γ1‖W‖2F + γ2‖H‖2F (6.32)

6.3.3 “Bias” Removal

In machine learning circles, the term bias as a second, unrelated meaning beyond the “bias-variance
tradeoff” context. This second meaning refers to the β0 term in (5.4). Recall that if we have no
covariates, i.e. p = 0 in that equation, β0 reduces to EY , the unconditional mean of Y .

We will discuss covariates shortly, but for now the point is that it is customary to center the A
ratings matrix by subtracting means. Let m, mi·, and m·j denote the overall mean rating, the
mean for user i and the mean for item j, respectively. Then the recommended approach is to first
make the adjustment

Aij ← Aij − (mi· +m·j −m) (6.33)

6.3. GENERAL ISSUES WITH MATRIX FACTORIZATION METHODS 77

Then the factorizaiton is performed, and finally the adjustment is “undone”:

Aij ← Aij + (mi· +m·j −m) (6.34)

What is going on here? First, the expression

mi· +m·j −m (6.35)

is motivated by the equivalent

m+ (mi· −m) + (m·j −m) (6.36)

which models the ratings as

overall mean + effect due to user i + effect due to item j

(Readers who are familiar with the analysis of variance should recognize this.) The idea is then to
do our matrix factorization on the residual, i.e. what is “left over” after prediction by the model
(6.36).

6.3.4 Dealing with Covariates

Why stop with just removing “biases”? We can go a step further and account for user or item
covariates.

The easiest approach to handling covariates is again to subtract (and later add back) certain values,
in this case those arising from a linear or other regression model. One would first put the data in
(user ID, iterm ID, rating, covariates) format, then run lm() or whatever. Each element of A, or
better, each rating in the input data, is then adjusted by subtracting the predicted value for that
element. One would then perform matrix factorization to fill in the ratings matrix, then finally add
the predicted values back to the result.

Another way used by some analysts would be to append user covariates as new columns in the A
matrix, or item covariates as new rows.

6.3.5 Predicting New Cases

One drawback of matrix factorization methods is that there generally is no direct method to handle
new users or new items not in the original data. One must compute the entire factorization all over

78 CHAPTER 6. MATRIX FACTORIZATION METHODS

again. This may not be too problematic, though, as most numerical methods are easy to update,
rather than fitting from scratch.

One solution is to use a k-Nearest Neighbors analysis on the completed matrix aComp. Say we
have a new case with ratings for a set of items, A, R and Q, and we want to predict this case’s
rating of item W. Suppose R, Q and W were in the original dataset, and thus have columns in
aComp. We look at the R, Q and W columns of that matrix, restricting attention to rows in which
there is a rating for W. We now find the k rows closest to the R and Q values of our new case, and
average the corresponding W rating. That will be our predicted rating for the new user. Of course,
if the new user only has rated item A, there is not much we can do except predict from covariates.

find the k rows closest to the new case, and average their ratings.

6.4 Interpretation of W and H

One of the big advantages of matrix factorization methods is interpretability.

For any matrix Q, let Qi·, Q·j , and Qij denote row i, column j, and element (i, j), respectively.
Note the key relation, using the material in Section 3.2:

(WH)i· =
k∑

m=1

WimHm· (6.37)

In other words, in (6.37), we see that:

� The entire vector of predicted ratings by user i can be expressed as a linear combination of
the rows of H.

� The rows of H can thus be thought of as synthetic “users” who are representative of users in
general. Hrs is the rating that synthetic user r gives item s.

� Row i of W then tells us information about User in that sense. Indeed, we might use this
information as a set of covariates in predicting ratings.

Of course, interchanging the roles of rows and columns above, we have that the columns of W
serve as an approximate basis for the columns of A. In other words, the latter become synthetic,
representative items, e.g. representative movies in the MovieLens data.

6.5. ALTERNATING LEAST SQUARES (ALS) 79

6.5 Alternating Least Squares (ALS)

Again, a general approach to finding W and H is to minimize the Frobenius norm of the approxi-
mation error:

W,H = arg min
w,h
‖A− wh‖F (6.38)

Of course, minimizing that quantity is equivalent to minimizing its square, setting up a least-squares
approach that we’ll describe here. So, we wish to minimize

W,H = arg min
w,h
‖A− wh‖2F (6.39)

As noted, we could use SGD for this. But the old saying, “Easier said than done” applies. SGD
works really well for minimization of convex functions. Roughly, convexity means that a function is
concave-up in one dimension (i.e. the function has one argument), “bowl-shaped” in two dimensions
(two arguments), and the un-visualizable equivalent in multiple dimensions. Unfortunately, the
function

f(w, h) = ‖A− wh‖2F (6.40)

which has nr + rm arguments, is not convex. And it generally will have multiple local minima,
causing possible convergence problems.

6.5.1 A Non-SGD Approach, ALS

For fixed h, the function f(w, h) is convex. In fact, we will see below that it’s our old friend from
the linear model, which not only has a unique minimum but in fact has a closed-form solution for
the minimum! The same is true if we fix w and allow h to vary.

The alternating least squares approach to minimizing (6.40) exploits the fact that f(w, h) is sepa-
rately convex in w and h, holding one of them fixed. The algorithm is then

(1) Set an initial guess w0 for the solution. (We won’t need an initial guess for h.)

(2) Minimize f(w0, h) with respect to h, yielding our next guess, h1.

(3) Minimize f(w, h1) with respect to w, yielding our next guess, w1.

(4) Minimize f(w1, h) with respect to h, yielding our next guess, h2.

80 CHAPTER 6. MATRIX FACTORIZATION METHODS

(5) Repeat until convergence.

Here is more detail: In step (2) above, first write

f(w0, h) =
n∑
j=1

‖A·j − w0 h·j‖2F (6.41)

where h0·j means column j of h0. If we can find h to minimize the j term in (6.41) for each j, then
we will have minimized (6.41) with respect to h, achieving our goal.

But luckily this is exactly the structure we had in minimizing (5.11):

� The matrix A there is our w0 here, known.

� The vector D there is our A·j here, known.

� The vector b there is our h·j here, unknown and to be solved for.

So we have

(h1)·j = (w′0w0)
−1w′0A·j (6.42)

And again, via matrix partitioning,

(h1) = (w′0w0)
−1w′0A (6.43)

for each j. In later steps, w0 is replaced by wi.

On the other hand, what about step (3)?. We could take transposes,

A′ ≈ h′w′ (6.44)

and then just interchange the roles of w and h above. Then (6.43) becomes something like

(w1)i. = (hh′)−1hAi. (6.45)

One problem arises, though, in that the matrices may become of less than full rank (or close enough
to it that R will declare them singular). What can be done?

6.5. ALTERNATING LEAST SQUARES (ALS) 81

� Again, some analysts feel, “If it’s random, shrink it.” In this context, it means that in
“predicting” A from w, we use using ridge regression instead of the ordinary linear model. It
can be shown that this means adding λ to the diagonal of w′w before taking the inverse. So,
we get shrinkage and invertibility, and everyone is happy.

� One can use what is called a generalized inverse, or pseudoinverste. This can be used not only
to “invert” noninvertible matrices, but also even to “invert” non-square ones And in (6.43),
it turns out (details not shown) that the w factor “cancel,” giving us

(hi+1)·j = w+
i A·j (6.46)

where for any matrix Q, the notation Q+ means the generalized inverse of q.

The R function MASS::ginv() does generalized inverse. The body of the iterative loop then,
will look something like this (for the matrix m to be factored):

gw <- ginv(w)

for (j in 1:ncol(m)) {

h[,j] <- gw %*% m[,j]

}

gh <- ginv(t(h))

for (i in 1:nrow(m)) {

w[i,] <- t(gh %*% m[i,])

}

6.5.2 Back to Recommender Systems: Dealing with the Missing Values

In our recommender systems setting, of course, much of A is missing. But we can easily adapt to
that. Roughly speaking, in (6.41), do these replacements:

� replace A.j by the known portion of A.j

� replace w0 by the corresponding rows of w0

Note that w0 will still have the same number of columns as before, and thus there is no problem
with conformability in multiplying h.j .

Then proceed as before.

82 CHAPTER 6. MATRIX FACTORIZATION METHODS

6.5.3 Convergence and Uniqueness Issues

There are no panaceas for applications considered here. Every solution has potential problems. I
like to call this the Pillow Theorem — pound down on one fluffy part and another part pops up.

One issue with finding W and H by minimizing (6.38) is uniqueness — there might not be a unique
pair (W,H) that minimizes (6.38). In fact, one can see this immediately: Doubling W while halving
H leaves the product WH unchanged. Of course, the product is all that really counts, but in turn,
this may result in convergence problems. Software documentation (see below) recommends running
the computation multiple times; it will use a different seed for the random initial values each time.

Actually, the Alternating Least Squares method used here is considered by some to have better
convergence properties, since the solution at each iteration is unique. This may come at the expense
of slower convergence.

6.6 Nonnegative Matrix Factorization (NMF)

In most RS applications, the ratings are nonnegative. So, we might require that W and H be
nonnegative.

6.6.1 Computation

In ALS, for instance, we might just truncate to 0 any elements in wi and hi that stray into negative
territory.

Another popular approach is multiplicative update, due to Lee and Seung. Here are the update
formulas for W given H and vice versa:

W ←W ◦ AH ′

WHH ′
(6.47)

H ← H ◦ W ′A

W ′WH
(6.48)

where Q ◦ R and Q
R represent elementwise multiplication and division with conformable matrices

Q and R, and the juxtaposition QR means ordinary matrix multiplication.

6.7. SOFTWARE 83

6.6.2 Why Nonnegative?

NMF makes sense since the ratings are nonnegative, and also there is hope that the resulting W
and H are more likely to be sparse.

A second motivation is as follows: Matrix factorization methods have also been applied to image
and text classification. Consider a facial image recognition case, say. There is hope that the nonzero
elements of W·1, say, correspond to eyes, W·2 correspond to noses, and so on with other parts of
the face. We are then “summing” to form a complete face. This may enable effective parts-based
recognition, with helpful interpretations.

In our recommender systems setting, this parts-based effect, NMF would give us crisper distinction
among the various synthetic users. This may reveal clusters of user behavior, which could be quite
helpful to the analyst.

6.7 Software

Given that matrix factorization plays a major role in RS and many other applications, it’s not
surprising that many libraries have been developed for it.

6.7.1 The svd() Function

This is a general (i.e. not RS-specific) function to perform SVD. The function is part of base-R,
and does not handle missing values. Here is an example:

> m

[,1] [,2] [,3] [,4]

[1,] 15 18 5 11

[2,] 1 16 26 4

[3,] 5 12 13 5

> z <- svd(m)

> z

$d

[1] 40.9655903 18.1306964 0.3134599

$u

[,1] [,2] [,3]

[1,] 0.5361629 0.80414164 -0.2566818

[2,] 0.7045689 -0.59380206 -0.3885637

[3,] 0.4648785 -0.02748343 0.8849478

84 CHAPTER 6. MATRIX FACTORIZATION METHODS

$v

[,1] [,2] [,3]

[1,] 0.2702611 0.6249570 0.5932112

[2,] 0.6469473 0.2561355 -0.6952051

[3,] 0.6601400 -0.6494748 0.3772584

[4,] 0.2695057 0.3492934 0.1498884

> z$u %*% diag(z$d) %*% t(z$v)

[,1] [,2] [,3] [,4]

[1,] 15 18 5 11

[2,] 1 16 26 4

[3,] 5 12 13 5

6.7.2 The recosystem Package

The recosystem package does matrix factorization specifically for recommender systems, i.e.
specifically for settings in which the matrix A has many missing values. It’s written by experts in
numerical matrix factorization, and features a number of useful options.

The recosystem authors recognized that RS systems tend to be large, with many rows and columns
in a ratings matrix. Accordingly, the package does the following:

� It takes its input in the usual (user ID, item ID, rating) format, not the ratings matrix, which
could be huge.

� As an option, it will stores the resulting W and H matrices as disk files, rather than writing
them to memory.

The package uses R’s R6 class system. This is transparent if one uses the wrapper rectools::trainReco(),
but let’s take a close look, calling the function directly.

Below is a recosystem session using the small MovieLens data, in the ml100 data frame we’ve
analyzed before.

Let’s suppose we’ve decided on rank k = 20.

> library(recosystem)

> r <- Reco()

> class(r)

[1] "RecoSys"

6.7. SOFTWARE 85

attr(,"package")

[1] "recosystem"

all action will take place within this R6 class instance; typically the

output of a function will be stored back as a new component in r

need to create an object of class ’DataSource ’, specifying which

columns are user IDs , item IDs and ratings; here we will have the data

in memory; see below

> ml.dm <- data_memory(ml100[,1],ml100[,2],ml100[,3],index1=TRUE)

do the factorization , with rank 20; use NMF not SGD

> r$train(ml.dm ,opts=list(dim=20,nmf=TRUE))

iter tr_rmse obj

0 2.0381 5.0056e+05

1 1.0296 1.7402e+05

2 0.9529 1.6028e+05

3 0.9449 1.5868e+05

4 0.9418 1.5811e+05

5 0.9397 1.5774e+05

6 0.9382 1.5749e+05

7 0.9371 1.5729e+05

8 0.9362 1.5713e+05

9 0.9355 1.5701e+05

10 0.9348 1.5690e+05

11 0.9343 1.5681e+05

12 0.9338 1.5673e+05

13 0.9334 1.5666e+05

14 0.9330 1.5660e+05

15 0.9327 1.5654e+05

16 0.9324 1.5649e+05

17 0.9321 1.5645e+05

18 0.9318 1.5641e+05

19 0.9316 1.5637e+05

training went for 20 iterations; RMSE is the square root

of MSPE

for large data , write to disk; here we store in memory

> result <- r$output(out_memory(),out_memory ())

> str(result)

List of 2

$ P: num [1:943 , 1:20] 0.676 0.677 0.574 0.836 0.574 ...

86 CHAPTER 6. MATRIX FACTORIZATION METHODS

$ Q: num [1:1682 , 1:20] 0.712 0.614 0.568 0.645 0.612 ...

P and Q are W and H’

> w <- result$P

> h <- t(result$Q)

let ’s try a prediction , with a known rating; we can do the

matrix multiply ourselves if we wish

> head(ml)

V1 V2 V3 V4

1 196 242 3 881250949

2 186 302 3 891717742

3 22 377 1 878887116

...

> w[22,] %*% h[,377]

[,1]

[1,] 2.196976

there is a predict () method , not shown here

Various options are available, such as regularization parameters.

6.8 The softImpute Package

In the literature on missing values, we often sees the term impute, which is a fancy form of “guess.”
Hence the name of this package.

The package works directly on the ratings matrix A. If that matrix is too large for memory, there
is an option to use the Spark system, which has an R interface sparkr. Spark is a highly complex
system which may be difficult to install. We do not pursue that here.

The user has a choice of ALS or SVD, default value of ALS, though in both cases the algorithms
used are refinements of what we see here.

Again, let’s use MovieLens as an example:

> mlm <- rectools :: buildMatrix(ml100[,-4],NAval=NA)

> library(softImpute)

> z <- softImpute(mlm ,rank.max =10) # rank 10

> mlmest <- z$u %*% diag(z$d) %*% t(z$v)

try a known rating

> head(ml100)

V1 V2 V3 V4

1 196 242 3 881250949

6.8. THE SOFTIMPUTE PACKAGE 87

2 186 302 3 891717742

3 22 377 1 878887116

4 244 51 2 880606923

5 166 346 1 886397596

6 298 474 4 884182806

> mlm [22 ,377]

[1] 1

> mlmest [22 ,377]

[1] 1.156759

88 CHAPTER 6. MATRIX FACTORIZATION METHODS

Chapter 7

Statistics

It is assumed here that the reader has background in basic statistical inference, i.e. hypothesis
testing and confidence intervals.

7.1 Sample vs. Population

Most readers have probably noticed that when the results of a survey are released, say during
elections, a margin of error (MOE) is stated. For instance, “55% of those surveyed say they plan
to vote for Candidate Jones, with a margin of error of 3.2%.” The MOE is recognition of the fact
that only a sample of voters were surveyed, not the entire population of voters.

Let p denote the population proportion, i.e. the proportion of voters across the population who
favor Jones. The value of p is unknown, but our estimate is p̂ = 0.55.

Assuming the voters were polled at random, p̂ is a random variable. As such, it has a standard
deviation, which can be shown to be

[p(1− p)/n]0.5 (7.1)

which we in turn estimate as

[p̂(1− p̂)/n]0.5 (7.2)

where n is th number of people polled. This is the standard error of p̂, and is a measure of how
accurate p̂ is as an estimate of p.

89

90 CHAPTER 7. STATISTICS

What about the MOE? This is 1.96 times the standard error, and is the radius of an approximate
95% confidence interval for p.

Every ML method is an estimator in some form or other. However, the terms sample and population
are not used in the ML community. Instead, they speak a generative process to mean the same
thing as sampling data from a population.

7.2 How Do We Select an Estimator?

7.2.1 Sample Analogs

In our survey example above, our estimate p̂ is the sample analog of the population value p; the
former is the proportion in our sample data and the latter is the proportion in the population.

Similarly, say we wish to estimate a population variance, say the variance of blood pressure V ar(B)
in some patient population. The sample analog is

s2 =
1

n

n∑
i=1

(Bi −B)2 (7.3)

where the Bi are the blood pressures in our sample, and B is the average pressure in our sample.
This is analogous to the population value,

V ar(B) = E[(B − EB)] (7.4)

How about estimating a covariance matrix? Again, an extension of (7.3). Say our sample consists
of n vectors U1, ..., Un. Then

Ĉov(U) =
1

n

n∑
i=1

(Ui − U)(Ui − U)′ (7.5)

where here U is the average of the vectors Ui.

In many cases, the choice of estimator is less straightforward. For instance, say we wish to esti-
mate the probability density of B, fB(). Actually, you already know such an estimator—a his-
togram! As long as one scales to histogram to have total area 1.0 (in R’s hist() function, set
probability=TRUE), this provides an estimate of fB(). Let’s call the histogram f̂B().

7.2. HOW DO WE SELECT AN ESTIMATOR? 91

7.2.2 Consistency of Estimators

What do we mean in saying that an estimator is an estimate of something? At the very least, we
should require consistent, meaning that the estimator converges to the population quantity as the
sample size grows.

For example, in the survey example, we have

lim
n→∞

p̂ = p (7.6)

But what about the histogram case? For the estimator to be consistent, we need not only n→∞
but also h→ 0, where h is the bin width.1

7.2.3 Unbiasedness of Estimators

Another classical criterion for goodness of an estimator is that it be unbiasded, which means the
expected value of the estimator is the population quantity. In the survey example above, this
criterion would ask that

Ep̂ = p (7.7)

which in fact can be shown to be true.

But s2 is more complicated. Books typically divide by n − 1 instead of n in (7.3), as a “fudge
factor” to make

E(s2) = σ2 (7.8)

where the right-hand side denotes the population variance. But actually even with the fudge factor
s (without the power 2) is biased:

0 < V ar(s) = E(s2)− (Es)2 = σ2 − (Es)2 (7.9)

so

Es < σ (7.10)

1Technically, we cannot allow h to go to 0 “too quickly,” but this issue is beyond the scope of this book.

92 CHAPTER 7. STATISTICS

rather than

Es = σ (7.11)

At the time basic statistics was being developed—about 100 years ago—not much was known, so
unbiasedness was considered important. It in fact is still useful in some settings, but today it’s
understood that we should not emphasize it so much.

Indeed, a big issue in ML is the Bias-Variance Tradeoff. In the above context, dividing by 1/n
instead of 1/(n − 1) reduces variance, i.e. reduces V ar(s2), which is good, at a cost of increasing
bias, a tradeoff.

Actually, it can be shown that the best mean squared error for s2 comes from dividing by 1/(n+1).
We’ll use n here to keep the analogy tight. Of course, for large n, the difference is negligible.

7.2.4 Fitting Parametric Models

It is often the case that one may try to fit a parametric family of densities to one’s datat. Let’s use
MovieLens as an example.

> nu <- ml100kpluscovs$Nuser

> hist(nu)

7.2. HOW DO WE SELECT AN ESTIMATOR? 93

That shape seems to suggest a good fit from the gamma family of densities,

fW (t) =
1

(r − 1)!
λrtr−1e−λt, t > 0 (7.12)

A typical curve looks something like this:

94 CHAPTER 7. STATISTICS

The family has parameters r and λ.2 For each value of the latter two quantities, we get a different
curve, some flatter, some more peaked.

The question at hand is:

Is there some (r, λ) pair such such that the curve (7.12) fits the data well?

The task is then to:

� Estimate r and λ from our data.

� Check the fit.

How do we do the estimation? Two standard methods are the Method of Moments (MM) and
Method of Maximum Likelihood (MLE).

7.2.4.1 The Method of Moments

The idea is simple, at least in concept. Here’s how it works in the gamma example above.

First, some terminology: For a random variable X, the kth moment is E(Xk), k = 1, 2, 3, A
variant is the kth central moment, E[(X −EX)k]. Either the ordinary or central moments are fine.

Let N denote the number of ratings. Then for the gamma family,

EN = r/λ (7.13)

and

V ar(N) = r/λ2 (7.14)

Then replace everything by sample analogues:

X = r̂/λ̂ (7.15)

and

s2 = r̂/λ̂2 (7.16)

2Technically this is a subset of the gamma family, called Erlang, but the only restriction is that r be an integer.

7.2. HOW DO WE SELECT AN ESTIMATOR? 95

Dividing the first equation by the second, we obtain

λ̂ = N/s2 (7.17)

and thus from the first equation,

r̂ = Nλ̂ = N
2
/s2 (7.18)

where N and s2 are the sample mean and variance of N1, ..., Nn for n users.

Now, what about assessing the fit? A classic method is a goodness of fit test, but these days
hypothesis testing is frowned upon, for good reason. Here’s why:

96 CHAPTER 7. STATISTICS

Chapter 8

Nonparametric Machine Learning
Methods in Recommender Systems

Here we will introduce some famous machine learning (ML) methods, and apply them to recomender
systems (RS). In fact, many of the complex RS methods used in industry are hybrid, typically
combining an ML method such as neural networks with matrix factorization; see for instance an
article on the hybrid system used as Netflix.1

8.1 K-Nearest Neighbor

We’ve seen this method, extremely simple. Say we wish to predict the weight of a person 70 inches
tall and 25 years old, given data on people with known height, weight and age. We find k people
in our data whose height and age are near 70 and 25, and average their weights. This will be the
predicted weight for the new person. The value k is a hyperparameter.

While k-NN is very useful in RS, its application is a bit less straightforward than in that height-
weight-age example. Let’s see why.

Recall that in Section 5.9, we found that predicting rating from just user and item IDs did not work
well. The IDs needed to be converted to dummy variables, resulting in a large number of features p
and possible overfitting. If we instead predicted from the embeddings user and item mean ratings,
we get better accuracy.

The same large-p problem occurs if we try to use k-NN to predict rating from user and item IDs.
Again, using the embeddings is a better bet:

1https://ojs.aaai.org/index.php/aimagazine/article/view/18140

97

98CHAPTER 8. NONPARAMETRICMACHINE LEARNINGMETHODS IN RECOMMENDER SYSTEMS

> qeKNN(ml100kpluscovs[,c(’rating ’,’userMean ’,’itemMean ’)],’rating ’)$testAcc

holdout set has 1000 rows

[1] 0.75036

8.1.1 K-NN in RS Has Special Issues

There are also problems with using k-NN just on the IDs. Think of what happens in the process
of finding neighbors. To predict the rating that, say, User 12 would give Item 88, we would first
look at that user’s vector of dummy variables (1 for rated, 0 for not). The closest rows to this user
will have rated mostly the same items as this user. That may be worth something, but it would
be better if we could compare the ratings themselves: Among the items that User 12 has rated,
which rows (a) have ratings for the same items, and (b) having ratings similar to those of User 12
for those items?

8.1.2 Implementation in rectools

The relevant functions are formUserData() and predict.usrData(). True to its name, the latter
does do prediction. The former works on the training set, but in a very different way from what
we’ve seen so far.

For instance, our first step with the MovieLens data would be:

> udata <- formUserData(ml100 [,-4])

> class(udata)

[1] "usrData"

> udata [[88]]

$userID

[1] "88"

$itms

[1] 750 302 321 881 301 315 261 690 904 886 308 311 300 1191

319

[16] 313 880 898 354 286 326

$ratings

750 302 321 881 301 315 261 690 904 886 308 311 300 1191

319 313

2 3 1 5 4 4 5 4 5 5 4 5 3 5

3 3

880 898 354 286 326

8.1. K-NEAREST NEIGHBOR 99

3 4 5 5 5

attr(,"class")

[1] "usrDatum"

So, formUserData() returns an object of class ’usrData’, which is an R list. Each element of
the list represents the data on one user; we see that user 88, for instance, has rated movies 750,
302, 321 and so on, and with ratings 2, 3, 1 etc.

This allows an efficient structure for searching for neighbors of a user for whom we wish to form a
prediction. The latter operation is then performed using the second function:

predict the rating that User 12 would give to Item 15, using k = 8

> predict.usrData(udata ,udata [[12]] ,25 ,8)

[1] 3.625

8.1.3 Assesment of Predictive Ability

Note that, unlike the case for other methods, we do not need to split into training and test sets.
Recall that such a split is needed in general to avoid having the same data used for both model
fitting and prediction. With k-NN, though, as long as we don’t treat a data point as its own
“neighbor,” it is fine.

Here is an assessment of k-NN for the MovieLens data:

> predOneRow

function(rw)

{

user <- rw[1]

item <- rw[2]

predict.usrData(udata ,udata[[user]],item ,5)

}

> preds <- apply(mvl[,-3],1, predOneRow)

> mean(abs(mvl[,3] - preds))

[1] 0.5706778

8.1.4 Not Really a Distance

In many ML algorithms, the “distance” computed between two objects does not use the ordinary
Euclidean metric. In fact, it’s not a metric, but rather a “similarity.”

100CHAPTER 8. NONPARAMETRICMACHINE LEARNINGMETHODS IN RECOMMENDER SYSTEMS

The similarity between two rows u and v in the ratings matrix is defined by

u′v

||u||2 ||v||2
(8.1)

In two or three dimensions, this actually is the cosine between the two vectors. Note too that if u
and v were centered, i.e. had their means subtracted, this would be the definition of correlation.
In other words, two users are considered similar to each other if their ratings are highly correlated.
That makes this similar measure intuitively reasonable, though only if they had similar means to
begin with. If, say, v = 2u, their similarity would have the maximum value, +1, yet we would want
to scale v down if we wish to predict u from it.

8.2 Decision Trees and Random Forests

A decision tree is a set of prediction rules formed in a flow chart. (Example below.) The idea was
developed by many, but first became popular with the algorithm Classicification and Regression
Trees (CART), by famous statistician Leo Breiman, Jerry Friedman, Richard Olshen and Chuck
Stone. (Stone’s theoretical work on k-NN also helped to popularize that method.)

Credit for the invention of random forests is generally given to Breiman, but actually the earliest
proposal seems to have been by Tin Kam Ho. She called the method random decision forests.
What is all this about?

We first must discuss individual “trees

8.2.1 Decision Trees

Many have worked in the area of decision trees, which are essentially flow charts. As an example,
here is an example from the party package,2 run on the dataset airquality built in to R.

> head(airquality)

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

2A pun on the word “partitioning”; a tree partitions the dataset.

8.2. DECISION TREES AND RANDOM FORESTS 101

We are predicting Ozone. Here is the tree that is produced (picture from the party package’s
plot() function):

Temp
p < 0.001

1

≤ 82 > 82

Wind
p = 0.002

2

≤ 6.9 > 6.9

Node 3 (n = 10)

0

50

100

150

Temp
p = 0.003

4

≤ 77 > 77

Node 5 (n = 48)

0

50

100

150

Node 6 (n = 21)

0

50

100

150

Wind
p = 0.003

7

≤ 10.3 > 10.3

Node 8 (n = 30)

0

50

100

150

Node 9 (n = 7)

0

50

100

150

To predict Ozone level on a particular day, we start at the root of the tree, looking at Temp. If
it is less than 82, we next go left, otherwise to the right. In the latter case, we next look at Wind.
Say it’s greater than 10.3. Then we end up in Node 8, predicting Ozone to be about 50. More
precise predictions are also provided (not shown in the plot).

The final predicted value for a new case is determined as follows: We first note that leaf nodes that
each of the data points in the training set fall into. Then for a new case, its predicted value is the
average of all the Ozone values for the training set data points in the node in which the new case
falls.

There are various hyperparameters. For instance, note that here Node 6 has only 2 training set
data points. Taking an average of a sample of 2 numbers is not going to be very accurate. So the
software gives the user the option of specifying a minimum number of points in each node. If we
were to increase that here, we would probably have fewer levels in the tree. We can also specify

102CHAPTER 8. NONPARAMETRICMACHINE LEARNINGMETHODS IN RECOMMENDER SYSTEMS

that number. Of course, this dataset is very small, only 153 rows, so there is not much room for
trying different hyperparameter values.

8.2.2 Splitting Criteria

So, how is the tree derived? We start with all the training data in the root node. We then decide
whether to split the node, using our first feature, Temp in the above example. If we do split it, we
now have three nodes, and decide whether to split them. This is then continued recursively until
no more splits are done.

What criteria should we use to decide whether to split a node? Splitting criteria tend to be complex,
and different implementations of decision trees and random forests use different criteria.

In the party package, a hypothesis testing approach is used. It considers all possible split points,
such as 82 in the example. For each split point, we tentatively split into two groups, We then
do a hypothesis test for mean “Y” (ozone here) being the same in the two groups. We look at
the smallest p-value coming from the various splits; if it is below our specified threshold (another
hyperparameter), we do that split. If no p-value is below our threshold, we do not split. So, in the
picture above, Nodes 8 and 9 were not split, and became leaf nodes.

8.2.3 Sets of Many Trees

For want of a nail, a horse was lost
For want of a horse, the battle was lost
For want of the battle, the war was lost — old proverb

In the tree shown above, look at the output of Node 7. Depending on whether Wind is below or
above 10.3, we get very different predictions. If wind speed is, say, 10.28, very close to the threshold,
we may be wary, especially since the wind speed itself may not be measured very accurately.

To overcome problems arising from this discrete nature of decision trees, we generate many of them,
randomizing the order in which we make nodes from the features, thus creating random forests.

To predict a new case, we run it through each tree, thus generating a predicting value from each
tree. Those values are then averaged to determine the final predicted Ozone level.

The number of trees to generate is—you guessed it!–yet another hyperparameter.

8.2.4 Example: Baseball Data

Recall our data on major league baseball players:

8.2. DECISION TREES AND RANDOM FORESTS 103

> library(regtools)

> data(mlb)

> mlb <- mlb [,3:6]

> head(mlb)

Position Height Weight Age

1 Catcher 74 180 22.99

2 Catcher 74 215 34.69

3 Catcher 72 210 30.78

4 First_Baseman 72 210 35.43

5 First_Baseman 73 188 35.71

6 Second_Baseman 69 176 29.39

Let’s try predicting Weight:

> qeRF(mlb ,’Weight ’)$testAcc

[1] 14.43367

On average, our prediction is off by about 14 pounds, about the same accuracy as we got with a
linear model in Section 5.6.2. Let’s try a minimum node size of 25, instead of the default 10:

> qeRF(mlb ,’Weight ’,minNodeSize =25)$testAcc

[1] 13.10866

Seems better, though we should use replicMeans(), try other hyperparameter combinations, and
so on.

8.2.5 Example: MovieLens

In collaborative filtering contexts, most ML methods encounter the problem cited earlier if we
predict rating from user and item IDs—too many dummy variables. But once again, we can use
embeddings. We’ll try grf, a faster, more advanced implementation:

> mluimeans <- ml100kpluscovs[,c(’rating ’,’userMean ’,’itemMean ’)]

> qeRFgrf(mluimeans ,’rating ’)$testAcc

[1] 0.7319664

This is about the same as we obtained with a linear model, not as good as k-NN, though again
there are hyperparameters to vary.

104CHAPTER 8. NONPARAMETRICMACHINE LEARNINGMETHODS IN RECOMMENDER SYSTEMS

8.3 Gradient Boosting: Repeatedly Tweaking a Tree

Boosting methods, of which gradient boosting is one type, are sometimes described as “Making
a strong learner as the sum of weak learners.” I am not a fan of that interpretation, but it will
become clear as we go through the details.

8.3.1 Basic Idea

The idea of gradient boosting is extremely simple:

(a) Fit a tree to the data.

(b) Find the prediction errors, the residuals, for that tree (on the same data,).

(c) Fit a tree to the residuals, producing new residuals.

(d) Go to step (b).

One keeps up this process until one acquires a desired number of trees (a hyperparameter).

To predict a new case, use its features to get a predicted value for each tree. Then since the first
tree was fitted to the Yi, and the others were fitted to the residuals, the residuals of residuals and
so on, then our overall predicted value for the new case is the sum of the predicted values from the
individual trees.

8.3.2 Role of the Gradient

At each step, we try to fit the optimal tree, minimizing Mean Squared Prediction Error. To do so,
we could set the derivative (in p dimensions, the gradient), to 0. But with the MSPE objective
function, the partial derivative with respect to data point i is essentially the residual i. So, in Step
(c) above, we are essentially fit a tree to the gradient values at each data point.

8.3.3 The Learning Rate

One typically sets a learning rate α (another hyperparameter). So, each time a new tree is generated,
instead of adding its residuals to our running total, we only add α times those residuals.

Note that this has the effect that the residuals in tree i will have an impact of only αi of the
first set of residuals. This sets up convergence of the overall tree. The larger α is, the faster the

8.4. SUPPORT VECTOR MACHINES 105

convergence—but at a risk of converging to the wrong value, a local rather than global minimum.
Of course, this is the usual tradeoff of learning rates.

8.3.4 Variants

The above description is for tree-based gradient boosting, with MSPE is the loss function. Of
course there are many other possibilities, though this one is probably the most common..

8.3.5 Rec Sys Example

Gradient boosting gives us similar values to the other (non-k-NN) methods on the MovieLens data:

> qeGBoost(ml100kpluscovs[,c(’rating ’,’userMean ’,’itemMean ’)],’rating ’)$testAcc

[1] 0.7389659

8.4 Support Vector Machines

SVM is used primarily for the cases of binary or categorical Y . Consider the binary case, Y = 1, 0
(coding Has Disease, Does Not have Disease).

8.4.1 Overview

Here is a summary, for given training data, p predictor variables/features (e.g. p = 2 with features
Blood Pressure and Glucose):

� We try to find a straight line (p = 2 case), a plane (p = 3) or a hyperplane (p > 3) that fully
separates our training points having Y = 1 from those having Y = 0. This can be shown to
be equivalent to minimizing a sum of a loss function (more complicated than squared-error
loss, not shown here3).

� If we find such a line/plane/hyperplane, then for any new case, we simply determine which
side of the line/plane/hyperplane the new point falls on, and predict the Y for the new point
accordingly

� If we can’t find a fully separating line/plane/hyperplane, we do one or both of the following:

3Look up the term hinge loss in Wikipedia if you are interested.

106CHAPTER 8. NONPARAMETRICMACHINE LEARNINGMETHODS IN RECOMMENDER SYSTEMS

– Apply a tranformation to the features, e.g. running them through a polynomial, in
the hope that the tranformed data can be cleanly separated by Y class, with some
line/plane/hyperplane. The degree of the polynomial is a hyperparameter.

– In minimizing the summed loss, allow some exceptions to cleanly separating the two
classes, with each exceptional point penalizing us with a cost C, again a hyperparameter.

Though we can picture the boundary geometrically, it’s important to also understand the algebraic
representation:

w′x = c (8.2)

where x is the vector of features. In the above example, for instance, this is

c = w′x = (w1, w2)
′(bp, glucose) = w1 bp + w2 glucose (8.3)

which indeed is the form of a straight line.

We minimize

n∑
i=1

lossi (8.4)

with respect to w and c, just like we minimized (5.8) with respect to b. (The c quantity here is
essentially like the constant term b0.)

In predicting a new case xnew, we look to see whether w′x is greater than or less than c. This tells
us which side of the line/plane/hyperplane we are on, and thus what our prediction will be.

If Y has more than two categories, we use the One vs. All or All vs. All method.

8.4.2 Example: Anderson Iris Data

This is a very famous dataset, built into R and used as an example in numerous textbooks, was
compiled by Edgar Anderson and later popularized by Sir Ronald Fisher, a pioneering statistician.4

There are three classes, setosa, versicolor and virginica. It turns out that the setosa data points
are linearly separable from the other two classes, so this is a good place to start. Thus, our two

4A few years ago, Fisher was “canceled” by some social activists, who wanted other data to be used an example,
rather than use his name. But the data should be named after Anderson anwyay.

8.4. SUPPORT VECTOR MACHINES 107

classes will be setosa and non-setosa. As before, in order to graph things in two dimensions, let’s
use only two of the features, sepal width and petal length:

Let’s take a look:

> i2 <- iris[,c(2,3,5)]

> i2[,3] <- as.integer(i2[,3] == ’setosa ’)

> head(i2)

Sepal.Width Petal.Length Species

1 3.5 1.4 1

2 3.0 1.4 1

3 3.2 1.3 1

4 3.1 1.5 1

5 3.6 1.4 1

6 3.9 1.7 1

> plot(i2[,1:2],pch=3*i2[,3],xlim=c(0,7),ylim=c(0,7))

Clearly the data are linearly separable — we can draw a straight line completely separating the
setosas (pluses) from the non-setosas (squares). In fact, we can draw lots and lots of such lines.

Which line should we use? One can show that if we draw the convex hull of the Y = 1 data, and
one for the Y = 0 data, minimal loss line is the perpendicular bisector between the closest points
of the two sets:

108CHAPTER 8. NONPARAMETRICMACHINE LEARNINGMETHODS IN RECOMMENDER SYSTEMS

The actual computation for the separating line/plane/hyperplane does not use this convex hull
property, but it gives us an intutive view.

Note that there are two other lines in the above figure, parallel to the boundary line midway
between the two convex hulls. They define a “no man’s land” in which there are no data points;
that region is called the margin. The data points that barely touch the margin are the support
vectors; here, there is one support vector in the “squares” data and there are two in the “pluses”
data.

The boundary is defined to be the one that has the widest margin.

8.4.3 Example: House Voting Data

> hv <- getHouseVoting ()

> hv <- hv[,-17]

> hvsyn <- toUserItemRatings(hv)

> ums <- tapply(hvsyn$ratings ,hvsyn$userID ,mean)

> hvsyn$uMean <- ums[hvsyn$userID]

> ims <- tapply(hvsyn$ratings ,hvsyn$itemID ,mean)

> hvsyn$iMean <- ims[hvsyn$itemID]

> hvsyn$ratings <- as.factor(hvsyn$ratings)

> z <- qeSVM(hvsyn [,3:5],’ratings ’)

> z$testAcc

[1] 0.3963415

> z$baseAcc

8.4. SUPPORT VECTOR MACHINES 109

[1] 0.4807172

Using the user and item mean embeddings worked pretty well. (Here and below, again keep in
mind that we should use replicMeans(), try different hyperparameter values and so on.)

But a logit model worked just as well, if not better:

> z <- qeLogit(hvsyn [,3:5],’ratings ’)

> z$testAcc

[1] 0.3704268

By the way, would it help to add in the party? After adding it:

> qeSVM(hvsyn [,3:6],’ratings ’)$testAcc

[1] 0.3734756

> qeLogit(hvsyn [,3:6],’ratings ’)$testAcc

[1] 0.4192073

No, it doesn’t seem to help, maybe even hurting. The underlying cause is likely that, once we know
the politician’s voting record, even with an NA or two, we have a good idea of what her party is.
The actual party status is then redundant, maybe even overfitting.

8.4.4 Predicted Probabilities

One drawback of SVM is that the model does not inherently provide probabilities. For instance,
recall our vertebral disease dataset (Section 5.7.3). There qeLogit() not only predicted the disease
state of a patient, DH, NO or SL, but also provided the probabilities of each state.

The logit model gives us these probabilities; the model itself is defined in terms of them. Tree
models can do so too: Find the leaf node that the new case falls into, then look at the proportions
of the various Y classes in this node—they are then our estimated probabilities.

SVM by itself cannot compute probabilities, as all it does is define a bounday—predict Y = 1
on one side of the boundary, Y = 0 on the other. However, one can use calibration methods to
model such probabilities as functions of the new cases score, which essentially is its distance to the
boundary. So, qeSVM() does return the probabilities, not just the predicted classes.

With the House Voting data, say:

> w <- qeSVM(hvsyn [,3:5],’ratings ’)

> predict(w,hvsyn [1 ,4:5]) # "predict 1st case , actually known"

$predClasses

[1] "0"

110CHAPTER 8. NONPARAMETRICMACHINE LEARNINGMETHODS IN RECOMMENDER SYSTEMS

$probs

0 1

2 0.5051594 0.4948406

8.5 Neural Networks

Let’s start with an example, predicting weight from height and age in the mlb data. Here we are
using the neuralnet package, a rather basic implementation but with nice plots:

z <- neuralnet(Weight ∼ .,data=mlb ,hidden =2)

plot(z)

8.5. NEURAL NETWORKS 111

0.26835

0.
22

68
5

Age

0.52727

0.56885Height

67.28773

66.33869

Weight

1.72832

1.09242

1

67.72236

1

Error: 219836.26798 Steps: 711

We have two hidden layers here, represented by columns of nodes, represented by circles. Going
from left to right, top to bottom, let’s speak of the node row i, column j

Each node finds some linear combination of its inputs, with the “β” values—weights—shown on
the edges emanating to the right from the node. So, for example, node (1,1) outputs 0.59 times
height to node (1,2), and 0.53 to node (2,2). The constant terms (recall, often termed biases) are
the ones coming from the top, with nodes labeled “1.”

Each node is known as a neuron. Typically networks in practice are far larger than what we see
above, say hundreds of neurons per layer, and dozens of layers. The number of layers, and the
number of neurons per layer, are hyperparameters.

The weights are computed by minimizing the sum of squared prediction errors, as in the linear
model. But there is one point we haven’t mentioned yet: activation functions.

112CHAPTER 8. NONPARAMETRICMACHINE LEARNINGMETHODS IN RECOMMENDER SYSTEMS

If things were exactly as above, each layer would be computing linear combinations of previous
layers. So, in moving to the right, we would be computing linear combinations of linear combina-
tions...of linear combinations of height and age—which are still linear combinations of height and
age! In other words, we would have the ordinary linear model.

Instead, the outputs of a given layer are fed through a nonlinear function, so the logistic f(t) =
1/(1 + exp(−t)), to induce nonlinear modeling capability.5 The activtion function used here is the
default, the logistic, though many if not most analysts prefer ReLU(t) = max(0, t). The activation
function is a hyperparameter.

Of course, nonlinearity means that the sum of squares is now nonlinear, and iterative methods must
be used to determine the optimal weights. Neural networks are notorious for having convergence
problems, and various techniques are used to try to avoid that, such as choosing a learning rate, a
hyperparameter. Another hyperparameter is the number of iterations (epochs.

There is a severe risk of overfitting. Even in the simple example above, we have 6 weights for only
two input features. There are various ways to try to counter this, notably shrinkage similar to the
LASSO and dropout—randomly setting a certain proportion of the weights to 0. The proportion
is yet another hyperparameter.

In prediction, the next case is fed through the various layers, subject to the weights found in the
training set.

> compute(z,data.frame(Height =70,Age =25))

$neurons

$neurons [[1]]

Height Age

[1,] 1 70 25

$neurons [[2]]

[,1] [,2] [,3]

[1,] 1 1 1

$net.result

[,1]

[1,] 201.3488

We predict this player’s weight to be 201.35 pounds.

5Note that this is just for the purpose of allowing nonlinearity; we are not fitting a logistic regression model.

8.5. NEURAL NETWORKS 113

8.5.1 Example: MovieLens

> m1 <- ml100kpluscovs[,c(’rating ’,’userMean ’,’itemMean ’)]

> z <- qeNeural(m1,’rating ’)

Loading required package: keras

holdout set has 1000 rows

2022 -03 -08 16:52:52.589474: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library ’libcudart.so .11.0’; dlerror: libcudart.so .11.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/lib/R/lib:/usr/local/lib:/usr/lib/jvm/java -14-openjdk -amd64/lib/server:/usr/local/lib

...

...

Epoch 29/30

619/619 [==============================] - 1s 1ms/step - loss: 0.0541 - mae: 0.1840

619/619 [==============================] - 1s 1ms/step - loss: 0.0541 - mae: 0.1840 - val_loss: 0.0577 - val_mae: 0.1943

Epoch 30/30

619/619 [==============================] - 1s 1ms/step - loss: 0.0541 - mae: 0.1842

619/619 [==============================] - 1s 1ms/step - loss: 0.0541 - mae: 0.1842 - val_loss: 0.0559 - val_mae: 0.1901

Most ardent advocates of neural networks are Python users, and they have developed very elaborate
Python packages. Our qeNeural() function uses the R package keras, which is an interface to the
Python package of the same name, which in turn is an interface to a Python library, tensorflow.

So, after all that commotion, how did we do?

> z$testAcc

[1] 0.7340965

Of course, we could try playing with various hyperparameters, but at least here, neural networks
had about the same performance as all our other methods, with the interesting exception of k-NN.

8.5.2 View as Polynomial Regression

Suppose we were to use f(t) = t2 as our activation function. Not a common choice at all, but let’s
see what would happen.

The output of the first layer would be quadratic combinations of height and weight. Then the
output of the second layer would be quadratic combinations of the inputs, thus quartic (degree
4) combinations, and so on. In other words, the fitted neural network would be essentially be
polynomial regression.

Now from calculus we know that we can expand common functions, so the logistic, in a Taylor series.
Taking a finite number of terms, it becomes a polynomial. And even ReLU, not differentiable, still
can be approximated by a polynomial. In other words:

Neural networks would seem to be approximately doing polynomial regression.

114CHAPTER 8. NONPARAMETRICMACHINE LEARNINGMETHODS IN RECOMMENDER SYSTEMS

Of course, with all the tricks, e.g. dropout, we may be departing from that polynomial approxima-
tion somewhat, but again we have something to guide our intuition.

8.5.3 “Black Box” Nature

Why do neural networks work (when indeed they do)? And in particular, how do they get away
with overfitting? No one knows, and this fact bothers many analysts. Current research, especially
on double decent, is attempting to find answers.

8.6 Hybrid Approaches to Recommender Systems

A number of methods have been developed in which one first applied a non-NN method for col-
laborative filtering, and then treats the output as an embedding, feeding it into a neural network.
Some are claimed to work quite well, but they are beyond the scope of this book.

8.7 Machine Learning Rumors and Folklore

There is rather little theory to support most of these methods, especially SVM and neural networks.
So a lot of what is “known” is of the “I tried such-and-such on my data and it seemed to work well.

If such statements come from a prominent person, they become treated as “fact.” Needless to say,
such proclamations should be “taken with a grain of salt.”

Currently one of the most common “facts” is:

For tabular data, use gradient boosting. For image or text classification, use convolu-
tional neural networks.

There is a grain of truth to such claims, but they are exaggerated, and greatly oversimplify the
situation.

Also: Note that when NNs are applied to images, they have a special pre-processing convolutional
layer, which is the “secret sauce.” Presumaby one could do well with images using a convolutional
front end and, say, a gradient boosting back end. In fact, some research has shown success with
an SVM back end. In other words, there is nothing inherently appropriate of NNs themselves for
images. Similar statements could be made for text.

Chapter 9

Clustering

115

116 CHAPTER 9. CLUSTERING

Chapter 10

Neighborhood-Based Methods

One of the simplest and yet often most effective recommender system methods is based on this
natural principle:

Say we have a user U, for whom we want to predict the rating of an item I. We find the
users in our existing data D who are most similar to U and who have seen rating I, and
take our predicted value to be the average of those users’ ratings of I.

Note that here the user U might be in D or might be new. As long as I is in D, we are in business.

Of course, we must define “similar.” There are two common ways to do this. Recall our notation p
denoting our number of predctors/features. This would include our user and item IDs, and possible
covariates. Then consider these approaches:

� Define some distance function, and then find the k closest people in D to U.

� Develop a system of rectangles — hyperrectangles in p-dimensional space — and determine
which one U falls in.

The first is basically k-Nearest Neighbor regression (kNN), a classic statistics/machine learning
technique, though note that a major difference here is that we only consider users in D who have
rated the same products as N.

10.1 kNN

Let’s see how kNN works.

117

118 CHAPTER 10. NEIGHBORHOOD-BASED METHODS

10.1.1 Notation

As before, let A denote the ratings matrix. The element aij in row i, column j, is the rating that
user i has given/would give to item j. In the latter case, aij is unknown, and its predicted value
will be denoted by âij . Following R notation, we will refer to the unknown values as NAs.

Note that for large applications, the matrix A is far too large to store in memory. One could resort to
storage schemes for sparse matrices, e.g. Compresed Row Storage, but here we will simply use A to
help explain concepts. In the rectools package,1 the input data is run through formUserData()
and algorithms use that instead of A. This function organizes the data into an R list, one element
per user. Each such element records the ratings made by that user.

Let’s refer to a new case to be predicted as NC, i.e. from above, predicting how a user U would
rate an item I.

10.1.2 User-Based Filtering

In predicting how a given user would rate a given item, we first find all users that have rated the
given item, then determine which of those users are most similar to the given user. Our prediction
is then the average of the ratings of the given item among such “similar” users. A corresponding
approach based on similar items, item-based filtering, is used as well. We focus on such methods in
this chapter.

10.1.3 (One) Implementation

Below is code from rectools (somewhat simplified).2 The arguments are:

� origData: The original dataset, after having been run through formUserData().

� newData: The element of origData for NC.3

� newItem: ID number of the item to be predicted for NC.

� k: The number(s) of nearest neighbors. Can be a vector.

Here is an example of using formUserData() on the MovieLens data:4

1https://github.com/matloff/rectools
2This function was written largely by Vishal Chakraborti.
3If NC is new, not in the database (called cold start), we synthesize a list element for it, assuming NC has rated

at least one item.
4The data have been read from disk without converting to R factors.

10.1. KNN 119

> head(ml)

V1 V2 V3

1 196 242 3

2 186 302 3

3 22 377 1

4 244 51 2

5 166 346 1

6 298 474 4

> mlud <- formUserData(ml)

> mlud [[3]]

$userID

[1] "3"

$itms

[1] 335 245 337 343 323 331 294 332 328 334 350 341 318 300

[15] 345 299 324 348 351 330 327 307 272 354 264 349 321 260

[29] 268 288 355 320 258 339 342 303 329 317 181 338 302 322

[43] 352 271 333 344 326 319 325 347 336 353 340 346

$ratings

335 245 337 343 323 331 294 332 328 334 350 341 318 300 345

1 1 1 3 2 4 2 1 5 3 3 1 4 2 3

299 324 348 351 330 327 307 272 354 264 349 321 260 268 288

3 2 4 3 2 4 3 2 3 2 3 5 4 3 2

355 320 258 339 342 303 329 317 181 338 302 322 352 271 333

3 5 2 3 4 3 4 2 4 2 2 3 2 3 2

344 326 319 325 347 336 353 340 346

4 2 2 1 5 1 1 5 5

attr(,"class")

[1] "usrDatum"

So, for any given user, mlud will show the items rating by this user and the ratings the user has
given to those items. Here we see that user 3 has rated items 335, 245,, 337, 343,..., with ratings
1,1,1,3,...

1 predict.usrData <- function(origData ,newData ,newItem ,k)

2 {

3 # we first need to narrow origData down to the users who

4 # have rated newItem

5

120 CHAPTER 10. NEIGHBORHOOD-BASED METHODS

6 # here oneUsr is one user record in origData; the function will look for a

7 # j such that element j in the items list for this user matches the item

8 # of interest , newItem; (j,rating) will be returned

9
10 checkNewItem <- function(oneUsr) {

11 whichOne <- which(oneUsr$itms == newItem)

12 if (length(whichOne) == 0) {

13 return(c(NA ,NA))

14 } else return(c(whichOne ,oneUsr$ratings[whichOne]))

15 }

16
17 found <- as.matrix(sapply(origData ,checkNewItem))

18 # description of ’found ’:

19 # found is of dimensions 2 by number of users in training set

20 # found[1,i] = j means origData [[i]]$itms[j] = newItem;

21 # found[1,i] = NA means newItem wasn ’t rated by user i

22 # found[2,i] = rating in the non -NA case

23
24 # we need to get rid of the users who didn ’t rate newItem

25 whoHasIt <- which(!is.na(found [1 ,]))

26 origDataRatedNI <- origData[whoHasIt]

27 # now origDataRatedNI only has the relevant users , the ones who

28 # have rated newItem , so select only those columns of the found matrix

29 found <- found[,whoHasIt ,drop=FALSE]

30
31 # find the distance from newData to one user y of origData; defined for

32 # use in sapply () below

33 onecos <- function(y) cosDist(newData ,y,wtcovs ,wtcats)

34 cosines <- sapply(origDataRatedNI ,onecos)

35 # the vector cosines contains the distances from newData to all the

36 # original data points who rated newItem

37
38 # action of findKnghbourRtng (): find the mean rating of newItem in

39 # origDataRatedNI , for ki (= k[i]) neighbors

40 #

41 # if ki > neighbours present in the dataset , then the

42 # number of neighbours is used

43 findKnghbourRtng <- function(ki){

44 ki <- min(ki , length(cosines))

45 # nearby is a vector containing the indices of the ki closest neighbours

10.1. KNN 121

46 nearby <- order(cosines ,decreasing=FALSE)[1:ki]

47 mean(as.numeric(found[2, nearby]))

48 }

49 sapply(k, findKnghbourRtng)

50 }

10.1.4 Not Really a Distance

Note that the distances were computed by the function cosDist(), which computes a “cosine”
similarity:

find cosine distance between x and y, objects

of ’usrData ’ class

#

only items rated in both x and y are used; if none

exist , then return NaN

#

wtcovs: weight to put on covariates; NULL if no covs

wtcats: weight to put on item categories; NULL if no cats

cosDist <- function(x,y,wtcovs=NULL ,wtcats=NULL)

{

rated items in common

commItms <- intersect(x$itms ,y$itms)

if (length(commItms)==0) return(NaN)

where are those common items in x and y?

xwhere <- which(!is.na(match(x$itms ,commItms)))

ywhere <- which(!is.na(match(y$itms ,commItms)))

xvec <- x$ratings[xwhere]

yvec <- y$ratings[ywhere]

if (!is.null(wtcovs)) {

xvec <- c(xvec ,wtcovs*x$cvrs)

yvec <- c(yvec ,wtcovs*y$cvrs)

}

if (!is.null(wtcats)) {

xvec <- c(xvec ,wtcats*x$cats)

yvec <- c(yvec ,wtcats*y$cats)

}

xvec %*% yvec / (l2a(xvec) * l2a(yvec))

122 CHAPTER 10. NEIGHBORHOOD-BASED METHODS

}

l2a <- function(x) sqrt(x %*% x)

Basically, the “distance” between two rows u and v of A is defined by

u′v

||u||2 ||v||2
(10.1)

This not really a distance,5 but it is a common measure of similarity between two vectors in machine
learning. In two or three dimensions, it really is the cosine of the angle between u and v.

Note that larger cosines mean the vectors are more similar. We find the k most similar rows in D
to U, and average their ratings of the given item.

10.1.5 Regression Analog

Recall the method of k-nearest neighbor (kNN) regression estimation from Chapter ??, involving
prediction of weight from height and age:

To estimate E(W |H = 70, A = 28), we could find, say, the 25 people in our sample for
whom (H,A) is closest to (70,28), and average their weights to produce our estimate of
E(W |H = 70, A = 28).

So kNN RS is really the same as kNN regression

10.1.6 Choosing k

As we have already seen with RS, regression and machine learning methods, the typical way to
choose a model is to use cross-validation. This is true for kNN RS as well; we can choose the value
of k via cross-validation.

10.1.7 Item-Based Filtering

Consider again our setting in which we wish to predict the rating user U would give to item I.
We could switch the above procedure, trading rows for columns. We would find the columns
corresponding to items U has rated, then find the closest k of those columns to column I. The
ratings given by U in those closest column would then be averaged to yield our prediction.

5IN math terms, it’s not a metric.

10.1. KNN 123

10.1.8 Covariates

To accommodate covariates, we simply add covariate columns to the input matrix, say now with
columns ’userId’, ’itemId’, ’rating’ and age’. Note that they figure into the distance measure, just
like the user and item I dummies.

124 CHAPTER 10. NEIGHBORHOOD-BASED METHODS

Chapter 11

Statistical Models

Recommender systems is inherently statistical. Indeed, the very fact that we discuss the bias-
variance tradeoff recognizes the fact that our data are subject to sampling variation, a core statistical
notion. In this chapter, we will apply classical statistical estimation methods to a certain latent
variables model.

11.1 The Basic Model

Again, for concreteness, we’ll speak in terms of user ratings of movies. Let (U, I) denote a random
(user ID, movie ID) pair. Let u and m denote the numbers of users and movies. Denote the user’s
rating by YIJ . The model is additive, postulating that

YIJ = µ+ αI + βJ + εIJ (11.1)

Here µ is an unknown constant, the overall population mean over all users and all movies. The
numbers α1, α2, ..., αu and β1, β2, ..., βm are also unknown constants; think of αi to be the tendency
of user i to give harsher (αi < 0) or more generous (αi > 0) ratings, relative to the general
population of users, with a similar situation for the βj and movies. The ε term is thought of as the
combination of all other affects.

Note that what makes, e.g., αI random above is that I is random, and similarly for the βJ and εIJ .
The α, β and ε terms are assumed to be statistically independent, each with mean 0.

So, we model a user’s rating of a movie as the sum of latent additive user and movie terms, plus a
catch-all “everything else” term.1 The question then becomes how to estimate µ, and α1, α2, ..., αu

1What does the word latent here mean? Why is µ not “latent”? The answer is that it is a tangible quantity;

125

126 CHAPTER 11. STATISTICAL MODELS

and β1, β2, ..., βm, where u and m are the numbers of users and movies in our data. We will present
two methods.

11.2 Two General Statistical Methods for Parameter Estimation

We’ll be using two famous estimation tools from statistics, the Method of Moments and Maximum
Likelihood Estimation. We’ll introduce those in this section.

11.2.1 Example: Guessing the Number of Coin Tosses

To aovid distracting complexity, consider the following game. I toss a coin until I accumulate a
total of r heads. I don’t tell you the value of r that I used, only informing you of K, the number
of tosses I needed.

It can be shown that

P (K = u) =

(
u− 1

r − 1

)
0.5u, u = r, r + 1, ... (11.2)

Say I play the game 3 times, and I tell you K = 7, 10 and 9. What could you do to try to guess r?

Notation: We play the game n times, always with the same r, yielding K1,K2, ...,Kn.

11.2.2 The Method of Moments

The moments of a random variable X are the expected values of the powers. E.g. E(X3) is called
the third moment of X.

If we are trying to estimate s parameters, θ1, ..., θs, we need s moments. We find population
expressions for the θi in terms of the first s moments of the random variable at hand, setting up
s equations that match those expressions to the estimated parameters, θ̂1, ..., θ̂s, then solve for the
latter, then solve for the latter

Here we have just one parameter, r. It can be shown that in the game example,

E(K) =
r

0.5
= 2r (11.3)

we all can imagine finding the overall mean for all users and movies, given enough data. By contrast, the α values’
existence depend on the validity of the model. It’s similar to the NMF situation, where the postulate postulates
existence of a set of “typical” users.

11.2. TWO GENERAL STATISTICAL METHODS FOR PARAMETER ESTIMATION 127

MM involves replacing both sides of an equation like (??) by sample estimates, in this case

K = 2r̂ (11.4)

where

K =
K1 + ...+Kn

n
(11.5)

and r̂ is our estimate of r.2

So the idea of MM is:

1. Find theoretical (i.e. population-level) equations for various expected values, enough to cover
the number of parameters being estimated.

2. In those equations, replace expected values and parameters by sample estimates.

3. Solve for the sample estimates.

11.2.2.1 The Method of Maximum Likelihood

To guess r in the game, you might ask, “What value of r would make it most likely to need 7 tosses
to get r heads?” You would then find the value of w that maximizes the likelihood, defined to be
the probability of our observed data under a given value of the parameter(s), in this case

Πn
i=1

(
Ki

w − 1

)
0.5Ki (11.6)

In this discrete case you could not use calculus, and simply would use trial-and-error to find the
maximizing value of w, which will be our r̂.

11.2.2.2 Comparison: MM vs. MLE

If these two methods were nervous academics, MM would be quite envious of MLE:

� MLE is by far the more widely-used method.

2It is standard to use the “hat” symbol to mean “estimate of.”

128 CHAPTER 11. STATISTICAL MODELS

� MLE can be shown to be optimal in a certain sense. (Roughly, it has the smallest possible
variance of all estimators, when n is large.)

� Various aspects of MLE and related topics are famous enough to be named after people, e.g.
Fisher information (yes, the significance testing Fisher) and the Cramer-Rao lower bound.

On the other hand:

� Often MM makes fewer assumptions than MLE. That will be the case for us in the RS
application below, a major point.

� MM is easier to explain. MLE has the same “What if...?” basis that p-values have, rather
confusing.

� MM is actually the basis for the 2013 Nobel Prize in Economics! Lars Peter Hansen won the
prize for his development of the Generalized Method of Moments estimation tool.

11.3 MM Applied to (??)

As you’ll see, MM is arguably the more useful of the two methods in this particular setting.

11.3.1 Derivation of the Estimates

The expected values in Section ?? can be conditional. So, from (??), write

E(YIJ | I = k) = µ+ αk + E(βJ |I = k), k = 1, 2, ..., u (11.7)

But since I and J are independent, we have

E(βJ |I = k) = E(βJ) = 0, k = 1, 2, ..., u (11.8)

so

E(YIJ | I = k) = µ+ αk, k = 1, 2, ..., u (11.9)

Now we must find our sample estimate of the left-hand side, and equate it to µ+ αk.

11.4. MLE APPLIED TO (??) 129

But the natural estimate of E(YIJ | I = k) is simply the mean rating user k gave to all movies she
rated.

Moreover, the natural estimate of µ is the average rating given to all movies in our data.

So we now have our α̂k. The derivation of the β̂l is similar.

11.3.2 Relation to Linear Model

For simplicity, consider the call

lm(rating ∼ userID -1)

omitting the movies. Think of what will happen with the matrix A and the vector D in Section
??.

Recall that the -1 in the above call means we do not want an intercept term. In that case, lm()
will produce u dummy variables rather than u− 1. This will help clarify the situation.

So, in the matrix A, column i will be the vector of 1s and 0s in the dummy for user i, i = 1, ..., u.
Now consider the (i, i) element in A′A. It’s the dot product of row i in A′ and column i in A, thus
the dot product of column i in A and column i in A. That will in turn be the sum of some 1s —
actually, ni 1s, where ni is the number of ratings user i has made.

Meanwhile, the same reasoning says that for i 6= j, element (i, j) in A′A is 0, since two dummy
vectors coming from the same categorical variable will never have a 1 in the same position.

Putting all that together, we have that

(A′A)−1 = diag(
1

n1
, ..., (

1

nu
) (11.10)

a diagonal matrix with the indicated elements.

What about A′D in (??)? Similar reasoning shows that its mth element is the sum of all the ratings
given by user m.

Putting this all together, we find that the mth estimated coefficient returned by lm() will be the
average rating given by user m — exactly the same as MM gave us!

11.4 MLE Applied to (??)

130 CHAPTER 11. STATISTICAL MODELS

Chapter 12

PageRank

Many attribute the early success of Google to its superior search engine, based on an algorithm
they called PageRank. It was assigned US Patent US6285999B1, with the sole inventor listed as
Larry Page, one of the two founders of the firm. However, Page credited co-founder Sergei Brin
as contributing in conversations about the idea, as well as some Stanford University faculty and
some previous researchers who had done related work. The patent belongs to Stanford. The name,
PageRank, is a pun on both the inventor’s surname and the fact that it indexes Web pages.

The goal is to rank all the pages of thw World Wide Web in order of importance. The key is
defining that latter term.

12.1 Markov Model

The method models Web “surfing” as following a Markov chain, a very widely-used approach to
stochastic modeling in many fields. Its main assumption is rather strict, but in this case that is
not very important, as we are merely putting together a rough measure of the importance of each
Web page.

12.1.1 Structure

One observes some process at times 1,2,3,... The state at time m, a random variable, is denoted
by Xm. Different applications have different state spaces; it could be queue length in a network
buffer, for instance.

The main assumption is that the system follows the Markov property, which in rough terms can be
described as:

131

132 CHAPTER 12. PAGERANK

The probabilities of future states, given the present state and the past states, depends
only on the present state; the past is irrelevant.

We sometimes say the system is “memoryless” — in looking to the future, knowing the present,
the past is “forgotten.”

A famous example is random walk. Say at time 0 we are at position 0 on the real number line. We
flip a coin, then go 1 step left or right, depending on whether the outcome is head or tails. Then
we do that again, repeatedly. Xm is our position at time m. Clearly this system is Markovian.

In formal terms:

P (Xt+1 = st+1|Xt = st, Xt−1 = st−1, . . . , X0 = s0) = P (Xt+1 = st+1|Xt = st) (12.1)

12.1.2 Matrix Formulation

We define pij to be the probability of going from state i to state j in one time step; note that this
is a conditional probability, i.e. P (Xn+1 = j | Xn = i). These quantities form a matrix, denoted
by P .

So, this matrix gives the probabilites of going from state i to state j in one time step:

P (Xn+1 = s | Xn = r) = Prs = prs (12.2)

And the Markov property can be used to show that P 2 gives the probabilities of the various 2-time
step transitions, i.e.

P (Xn+2 = s | Xn = r) = (P 2)rs (12.3)

Similarly, P k gives the k-step probabilities,

P (Xn+k = s | Xn = r) = (P k)rs (12.4)

12.1.3 Long-Run Behavior

Suppose the chain is irreducible, meaning that one can reach every state from every other, in a
finite number of steps.1 Suppose also that the state space is finite, and aperiodic. The latter term

1Computer scientists, true to form, have their own separate term for this, strongly connected.

12.1. MARKOV MODEL 133

means that the GCD of return times to any state is 1; the random walk is periodic, since that
number is 2. Then

πr = lim
m→∞

P (Xm = r) (12.5)

exists, and is independent of the starting position X0.

Note that π is a vector, with element r defined as above.

12.1.4 Finding π

(??) and (??), and our by-now well-honed skill at using partitioned matrices imply that

lim
m→∞

Pm =


π′

π′

...
π′

 (12.6)

Note that the fact the rows are identical here reflects the independence of (??) of the starting
position X0.

This gives us a way to find π: Simply raise P to a high power, and then each row is approximately
π′. In fact, we could the get an even better approximation by averaging those rows. (Of course,
this is for chains with finite state spaces.)

Alternatively, one can view the whole thing as an eigenvalue problem. The above material can be
used to show that

π′ = πP (12.7)

so that

π′ = P ′π′ (12.8)

which makes π′ an eigenvector of P ′ with eigenvalue 1. It’s also possible to show that the other
eigenvalues are between 0 and 1. So an alternate way to find π is to find the eigenvectors of P ′.
And in turn one way to do that is to use the famous Power Method for finding the eigenvector
corresponding to the largest eigenvalue of a matrix. That method involves powers of P as well, so
in the end it’s similar to the above.

134 CHAPTER 12. PAGERANK

12.2 The PageRank Model

Here the state space consists of one state for every page on the Web, and “time” is hops from one
page to another. X3, say, is the third page you visit during a Web surfing session. What Page
had to do was devise some clever formulation of the matrix P that would reasonably model Web
surfing.

12.2.1 Details

The Markov property is questionable here, but again, we don’t care much about that. It’s just a
mechanism for devising an importance measure.

Now, what is the matrix P here? For each Web page i, let ni denote the number of outlinks from
that page. The model is that after a visit to that page, the Web surfer will choose one of those
links, with uniform probability among them, i.e. 1/ni each. The π vector then becomes the vector
of importance scores for the various pages.

Google also adds a damping factor to the model, which we will not go into here.

12.2.2 Computation of π

All of the above is fine, but there are literally billions of Web pages. Thus the matrix P has billions
of rows and columns. Fortunately, though, it is a very sparse matrix, lots of 0s, so we can exploit
that property to reduce computation.

Note too that there is a shortcut to find the matrix powers: We first square P , then square the
result, yielding P 4, then square that result, yielding P 8 and so on.

There are many refinements of all this, of course.

12.3 Then What?

Clearly there is a lot more to what Google does to provide users with recommended Web page.
What we saw here is only a first step.

	Setting the Stage
	What Are Recommender Systems?
	The ``Hello World'' of RS: MovieLens
	NA Values Are Not So Inocuous
	How Is It Done?
	Nearest-Neighbor Methods
	Latent Factor Approach: Matrix Factorization
	Latent Factor Approach: Statistical Models
	Variety Is Good

	Tuning Parameters
	Covariates/Side Information
	Overfitting, Holdout Sets and Cross-Validation
	``P-Hacking,'' Roundoff Error Etc.

	Neighborhood-Based Methods
	kNN
	Notation
	User-Based Filtering
	(One) Implementation
	Not Really a Distance
	Regression Analog
	Choosing k
	Item-Based Filtering
	Covariates

	Some Infrastructure: Linear Algebra
	Matrix Rank and Vector Linear Independence
	Partitioned Matrices
	How It Works
	Important Special Case: Matrix Times Vector
	Application of Partitioning: Invertible Square Matrices Must Be of Full Rank
	Application of Partitioning: Rank of a Matrix Product

	Application of Partitioning: Approximate Matrix Factorization

	Vector Norms
	Handy Facts

	Probability
	Multivariate Distributions
	Multivariate Probability Mass Functions
	Multivariate Density Functions

	Relations Between Variables
	Covariance
	Covariance Matrices

	Correlation
	Proof of (4.14) by Vector Spaces
	Is a Correlation Large or Small?
	Example: MovieLens
	An Important Matrix Property

	The Normal (Gaussian) Family of Distributions
	Univariate
	Multivariate

	Mixture Distributions
	Motivating Example
	Clustering Algorithms and Use in RS

	Linear Models
	Minimizing MSPE
	Motivation for the Classical Linear Model
	Coming Back Down to Earth
	Estimating
	Sample vs. Population
	The Least Squares Estimator

	Computation
	lm()
	qeLin()
	Dumy/One-Hot Variables
	Uniform APIs in qeML

	The Logistic Model
	Again, a Multivariate Normal Motivation
	Example: Predicting ``Catcherness''
	Example: Vertebral Disease

	Polynomial Models
	Application to Collaborative Filtering
	Regularization: the LASSO
	Motivation
	Shrinking "0362 in Linear Regression Models
	The Famous LASSO Picture
	The qeLASSO Function

	Matrix Factorization Methods
	An Approach to Approximate Rank: Principal Components Analysis
	Exploiting Correlations
	Eigenanalysis
	PCA
	Choosing the Number of Principal Components
	Software and UCI Repository Example
	Scaling
	Role of PCA in RS

	SVD
	The Decomposition
	Low-Rank Approximation
	Back to RS

	General Issues with Matrix Factorization Methods
	Bias, Variance and Overfitting
	Regularization
	``Bias'' Removal
	Dealing with Covariates
	Predicting New Cases

	Interpretation of W and H
	Alternating Least Squares (ALS)
	A Non-SGD Approach, ALS
	Back to Recommender Systems: Dealing with the Missing Values
	Convergence and Uniqueness Issues

	Nonnegative Matrix Factorization (NMF)
	Computation
	Why Nonnegative?

	Software
	The svd() Function
	The recosystem Package

	The softImpute Package

	Statistics
	Sample vs. Population
	How Do We Select an Estimator?
	Sample Analogs
	Consistency of Estimators
	Unbiasedness of Estimators
	Fitting Parametric Models
	The Method of Moments

	Nonparametric Machine Learning Methods in Recommender Systems
	K-Nearest Neighbor
	K-NN in RS Has Special Issues
	Implementation in rectools
	Assesment of Predictive Ability
	Not Really a Distance

	Decision Trees and Random Forests
	Decision Trees
	Splitting Criteria
	Sets of Many Trees
	Example: Baseball Data
	Example: MovieLens

	Gradient Boosting: Repeatedly Tweaking a Tree
	Basic Idea
	Role of the Gradient
	The Learning Rate
	Variants
	Rec Sys Example

	Support Vector Machines
	Overview

