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What a difference! Now that x and y are shared by the processes, we can
access them directly, making our code vastly simpler.

Note carefully that we are talking about human efficiency here, not machine
efficiency. Use of shared memory can greatly simplify our code, with far less
clutter, so that we can write and debug our program much faster than we
could in a message-passing environment. That doesn’t mean our program
itself has faster execution speed.

It will turn out, though, that Rdsm can indeed enjoy a speed advantage
over other parallel R libraries for some applications. We’ll return to this
issue in Section 5.5.

5.3 High-Level Introduction to Shared-Memory

Programming: Rdsm Library

Though one sometimes needs to write directly in C/C++ in order to truly
maximize speed, it is highly desirable to stay within R whenever possible, in
order to leverage R’s powerful data manipulation and statistical operations.
This is the philosophy underlying R libraries such as Rmpi and snow.

However, those are message-passing approaches, and as mentioned above,
the inherent simplicity of the shared-memory programming paradigm makes
it highly desirable to have a shared-memory parallel computation library
for R. At the time of this writing, my package Rdsm is the only such
library. You can download it from the R contributed package repository,
CRAN.

R itself is not threaded (or more accurately, R does not make threading
available at the R programming level). But Rdsm brings threads pro-
gramming to R. In addition to Rdsm’s direct value, it is also useful here in
this chapter as a gentle introduction to shared-memory programming. The
fact that R does the heavy lifting in terms of data and statistical operations
means we can focus on learning shared-memory coding.

Rdsm version 2.0.0 is used here, as it has an easy user interface. Ironically,
the shared-memory library Rdsm uses the message-passing software snow
for some infrastructure.
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5.3.1 Use of Shared Memory

Modern operating systems allow the programmer to request that a chunk
of memory be made available on a shared basis by any process that holds a
certain key. The bigmemory library in R’s CRAN code repository enables
this for R programmers. Rdsm builds on this.

Specifically, the Rdsm programmer makes a certain call to set up each
shared variable, and snow is used to distribute the associated keys to the
Rdsm threads, thus enabling the threads to share variables!

The shared variables must take the form of matrices, a bigmemory con-
straint. Note that one must use brackets in referencing them. For instance,
to print the shared matrix, write

print (m[ , ] )

rather than

print (m)

As will be seen below, snow is also used as the mechanism to launch the
threads

Though Rdsm is intended to run on shared-memory machines, bigmem-
ory allows shared storage in the form of files. Thus Rdsm can also be
used to provide the shard-memory world view on a distributed system, e.g.
clusters.

5.4 Example: Matrix Multiplication

The standard “Hello World” example of the parallel processing community
is matrix multiplication. Here is the Rdsm code, along with a small test.

5.4.1 The Code

1 # matrix mu l t i p l i c a t i o n ; the product u %∗% v i s computed
2 # on c l s , and s t o r ed in w; w i s a b i g . matrix o b j e c t
3
4 mmulthread <− function (u , v ,w) {
5 require ( p a r a l l e l )
6 myidxs <− s p l i t I n d i c e s (nrow(u ) , myinfo$nwrkrs ) [ [ myinfo$ id ] ]
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7 w[ myidxs , ] <− u [ myidxs , ] %∗% v [ , ]
8 0 # don ’ t do expens i ve re turn o f r e s u l t
9 }
10
11 t e s t <− function ( c l s ) {
12 mgr in i t ( c l s )
13 mgrmakevar ( c l s , ”a” , 6 , 2 )
14 mgrmakevar ( c l s , ”b” , 2 , 6 )
15 mgrmakevar ( c l s , ”c” , 6 , 6 )
16 a [ , ] <− 1 :12
17 b [ , ] <− rep (1 , 12 )
18 c lu s t e rExpor t ( c l s , ”mmulthread” )
19 c lusterEvalQ ( c l s , mmulthread (a , b , c ) )
20 print (c [ , ] )
21 }

Here is a test run:

> l ibrary (Rdsm)
> c2 <− shmcls (2 )
> source ( ”˜/R/Rdsm/examples/MMul.R” )
> t e s t ( c2 )

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ] [ , 6 ]
[ 1 , ] 8 8 8 8 8 8
[ 2 , ] 10 10 10 10 10 10
[ 3 , ] 12 12 12 12 12 12
[ 4 , ] 14 14 14 14 14 14
[ 5 , ] 16 16 16 16 16 16
[ 6 , ] 18 18 18 18 18 18

Here we first set up a two-node snow cluster c2 (remember, this is not
necessarily a physical cluster), by calling the Rdsm convenience function
shmcls(). The code test() is run on the snow manager node.

First, Rdsm’s mgrinit() is called to initialize the Rdsm system, after
which we set up three matrices in shared memory, a, b and c (a and b
could have been nonshared). This action will distribute the necessary keys
to the snow worker nodes.

Then snow’s clusterEvalQ() is used to launch the threads.4 On a quad-
core machine running four Rdsm threads, for example, mmulthread()
will run on all threads at once (though it probably won’t be the case that
all threads are running the same line of code simultaneously).

4Another example of remote procedure call, mentioned in Section 4.3.6.
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Now, how does mmulthread() work? The basic idea is break the rows
of the argument matrix u into chunks, and have each thread work on one
chunk.5 Say there are 1000 rows, and we have a quadcore machine (on
which we’ve set up a four-node snow cluster). Thread 1 would handle
rows 1-250, thread 2 would work on rows 251-500 and so on. The chunks
are assigned in the code

myidxs <− s p l i t I n d i c e s (nrow(u ) , myinfo$nwrkrs ) [ [ myinfo$ id ] ]

calling the snow function splitIndices(). For example, the value ofmyidxs
at thread 2 will be 251:500. The built-in Rdsm variable myinfo is an R
list containing tnwrkrs, the total number of threads, and id, the ID num-
ber of the thread. On thread 2 in our example here, those numbers will be
4 and 2, respectively.

The reader should note the “me, my” point of view that is key to threads
programming. Remember, each of the threads is (more or less) simulta-
neously executing mmulthread(). So, the code in that function must
be written from the point of view of a particular thread. That’s why we
put the “my” in the variable name myidxs. We’re writing the code from
the anthropomorphic view of imagining ourselves executing the code as a
particular thread. That thread is “me,” and so the row indices are “my”
indices, hence the name myidxs.

Each thread multiplies v by the thread’s own chunk of u, placing the result
in the corresponding chunk of w:

w[ myidxs , ] <− u [ myidxs , ] %∗% v [ , ]

Here we are using the property of multiplying partitioned matrices, ex-
plained in Section A.7.

This last line of code is like our y <−x back in Section 5.2. Unlike a
message-passing approach, we had no shipping of object back and forth
among threads; the objects are “already there,” and we access them simply
and directly.

In this small example, the simplicity of shared-memory programming oc-
curs only in this one line of code. But in a complex program, the increase in
simplicity, readability and so on would be quite substantial. Furthermore,
since copying can really slow down a program, the reduction in copying
due to using the shared-memory paradigm can mean substantial speed in-
creases.

5Some parallel algorithms partition both u and v. See Chapter 10.
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Incidentally, the shared-memory nature of our code is also reflected in the
fact that our result, the matrix w, is not returned to the caller. Instead, it
is simply available as a shared variable to all parties who hold the key for
that variable.

Indeed, we can access that variable (c, the actual argument corresponding
to w after our call to mmulthread()) back at the snow manager:

> c [ , ]
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ] [ , 6 ]

[ 1 , ] 8 8 8 8 8 8
[ 2 , ] 10 10 10 10 10 10
[ 3 , ] 12 12 12 12 12 12
[ 4 , ] 14 14 14 14 14 14
[ 5 , ] 16 16 16 16 16 16
[ 6 , ] 18 18 18 18 18 18

In fact, the Rdsm package includes instructions for saving a key to a file
and then loading it from another invocation of R on the same machine.
The latter will then be able to access the shared variable as well.

5.4.2 Timing Comparison

We won’t do extensive timing experiments here, but let’s just check that
the code is indeed providing a speedup:

> n <− 5000
> m <− matrix ( runif (nˆ2) , ncol=n ) ; system . time (m %∗% m)

user system e lapsed
345.077 0 .220 346.356
> c l s <− shmcls (4 )
> mgr in i t ( c l s )
> mgrmakevar ( c l s , ”msh” ,n , n)
> mgrmakevar ( c l s , ”msh2” ,n , n)
> msh [ , ] <− m
> c lu s t e rExpor t ( c l s , ”mmulthread” )
> system . time ( c lusterEvalQ ( c l s , mmulthread (msh ,msh ,msh2 ) ) )

user system e lapsed
0 .004 0 .000 91 .863

So, a fourfold increase in the number of cores yielded almost a fourfold
increase in speed, very good.
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5.4.3 Leveraging R

It was pointed out earlier that a good reason for avoiding C/C++ if possible
is to be able to leverage R’s powerful built-in operations. In this example,
we made use of R’s built-in matrix-multiply capability, in addition to its
ability to extra subsets of matrices.

This is a common strategy. To solve a big problem, we break it into smaller
ones of the same type, apply R’s tools to the small problems, and then
somehow combine to obtain the final result. This of course is a general
parallel processing design pattern, but with a difference in that we need to
find appropriate R tools. R is an interpreted language, thus with a tendency
to be slow, but its basic operations typically make use of functions that are
written in C, which are fast. Matrix multiplication is such an operation, so
our approach here does work well.

5.5 Shared Memory Can Bring A Performance

Advantage

In addition to the tendency of shared-memory code to be clearer and more
concise, in many applications we can reap a significantly performance gain
as well. Message-passing systems by definition do a lot of copying of data,
sometimes very large amounts of data, that is often unnecessary. With
shared memory, we can read and write our needed data directly, as you’ll
see concretely below.

Note first, though, that shared-memory access may involve hidden data
copying. Each cache coherency transaction involves copying of data, and if
such transactions occur frequently, it can add up to large amounts. Indeed,
some of that copying may be unnecessary, say when a cache block is brought
in but never used much afterward. Thus shared-memory programming is
not necessarily a “win,” but it will become clear below that it can be much
faster for some applications, relative to other R parallel libraries such as
snow, multicore, foreach and even Rmpi.

To see why, here is a version of mmulthread() using the snow library:

snowmmul <− function ( c l s , u , v ) {
require ( p a r a l l e l )
idxs <− s p l i t I n d i c e s (nrow(u ) , length ( c l s ) )
mmulchunk <− function ( idxchunk ) u [ idxchunk , ] %∗% v
r e s <− c lus te rApp ly ( c l s , idxs , mmulchunk)
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n # cores Rdsm time Snow time
2000 8 4.640 6.398
3000 16 10.892 18.010
3000 24 8.778 19.001

Table 5.1: Rdsm vs. snow

Reduce ( rbind , r e s )
}

This test code was used:

testcmp <− function ( c l s , n ) {
require ( p a r a l l e l )
mgr in i t ( c l s )
mgrmakevar ( c l s , ”a” ,n , n )
mgrmakevar ( c l s , ”c” ,n , n )
amat <− matrix ( runif (nˆ2) , ncol=n)
a [ , ] <− amat
c lu s t e rExpor t ( c l s , ”mmulthread” )
print (system . time ( c lusterEvalQ ( c l s ,mmul( a , a , c ) ) ) )
print (system . time ( cmat <− snowmmul( c l s , amat , amat ) ) )

}

It turns out to be considerably slower than the Rdsm implementation, as
seen in Table 5.1.

The results are for various sizes of nxn matrices, and various numbers of
cores.

One of the culprits is the line

Reduce ( rbind , r e s )

in the snow version. This involves a lot of copying of data, and possibly
worse, multiple allocation of large matrices, greatly sapping speed. This is
in stark contrast to the Rdsm case, in which the threads directly wrote
their chunked-multiplication results to the desired output matrix. Note
that the Reduce() operation itself is done serially, and though we might
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try to parallelize that too, that itself would require lots of copying, and
thus may be difficult to make work well.

This of course was not a problem especially with snow. The same Re-
duce() operation or equivalent would be needed with multicore, foreach
(using the .combine option), Rmpi and so on.6 Rdsm, by writing the
results directly to the desired output, avoids that problem.

It is clear that there are many applications with similar situations, in which
tools like snow etc. do a lot of serial data manipulation following the
parallel phase. In addition, iterative algorithms, such as k-means cluster-
ing (Section 5.8) involve repeated alternating between a serial and parallel
phase. Rdsm should typically give faster speed than do the others in these
applications.

We should not overlook Rmpi. Its mpi.gather() and mpi.gatherv()
functions deposit items directly into their ultimate intended destination, as
we saw in Chapter 4. But we would still need to spend time copying the
two multiplicands to the workers.

The shared-memory vs. message-passing debate is a long-running one in
the parallel processing community. It has been traditional to argue that the
shared-memory paradigm doesn’t scale well (Section 2.5), but the advent
of modern multicore systems, especially GPUs, has done much to counter
that argument.

5.6 Locks and Barriers

These are two central concepts in shared-memory programming.

5.6.1 Race Conditions and Critical Sections

Consider software to manage online airline reservations, and for simplicity,
assume there is no overbooking. At some point in the program, there will
be a section consisting of one or more lines of code whose purpose is to
perform the actual reservation of a seat: The customer’s name and other
data are entered into the database for the given flight on the given day.
That section of code is known as a critical section, for the following reason.

Imagine a scenario in which two customers who want the given flight on the
given day log in to the reservation system at about the same time. Each of

6With multicore, we would have a little less copying, as explained in Section 3.4.1.
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them will be running a separate thread of the program (though of course
they won’t be aware of this). Suppose only one seat is left on the flight.
It could happen that each thread finds that there is a seat remaining on
the flight, and thus each thread enters the critical section—and thus each
thread books its customer for the flight! One of the threads will be slightly
ahead of the other, and the later thread will overwrite what the earlier one
wrote. In other words, the first customer thinks she has successfully booked
the flight, but actually has not.

Now you can see why such a section of code is called “critical.” It is
fraught with danger, with the situation being known as a race condition.
Handling this problem properly is called synchronization. (Sorry, you will
be bombarded with terminology in the next few paragraphs.)

Also, we say that the problem with the flight reservations above stemmed
from a failure to update the reservation records atomically. The Greek
word atom means “indivisible,” and the allusion here is that trouble may
arise if we “divide” the read (checking for availability of a seat) and write
(committing the seat to the customer) phases in the critical section, as op-
posed to doing both phases in one indivisible action. Doing that atomically
would mean that a thread does the read and write as an indivisible pair,
without having any other thread being able to act between the two phases.

5.6.2 Locks

What we need to avoid race conditions is a mechanism that will limit access
to the critical section to only one thread at a time, i.e. mutual exclusion.
A common mechanism is a lock variable or mutex. Most thread systems
include functions lock() and unlock(), applied to a lock variable. Just
before a critical section, one inserts a call to lock(), execution of which
will work as follows.

Supppose the lock variable is already locked, due to some other thread
currently being inside the critical section. Then the thread making the call
to lock() will block, meaning that it will just freeze up for the time being,
not returning yet. When the thread currently in the critical section finally
exits, it will call unlock(), and the blocked thread will now unblock: This
thread will enter the critical section, and relock the lock, so that any other
thread trying to get in will block.

To make this concrete, consider this toy example, in Rdsm. We’ve initial-
ized Rdsm as a two-thread system, c2, and set up a 1x1 shared variable
tot.
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# t h i s f unc t i on i s not r e l i a b l e ; i f 2 th reads both t r y to
# increment the t o t a l a t about the same time , they cou ld
# i n t e r f e r e wi th each o ther

s <− function (n) {
for ( i in 1 : n ) {

to t [ 1 , 1 ] <− to t [ 1 , 1 ] + 1
}

}

l ibrary ( p a r a l l e l )
c lu s t e rExpor t ( c2 , ” s ” )
to t [ 1 , 1 ] <− 0
c lusterEvalQ ( c2 , s (1000) )
to t [ 1 , 1 ] # shou ld be 2000 , but l i k e l y f a r from i t

I did two runs of this. On the first one, the final value of tot[1,1] was 1021,
while the second time it was 1017. Neither time did it come out 2000 as it
“should.” Moreover, the result was random.

The problem here is that the action

to t [ 1 , 1 ] <− to t [ 1 , 1 ] + 1

is not atomic. We could have the following sequence of events:

thread 1 reads tot[1,1], finds it to be 227

thread 2 reads tot[1,1], finds it to be 227

thread 1 writes 228 to tot[1,1]

thread 2 writes 228 to tot[1,1]

Here, tot[1,1] should be 229, but is only 228.

But with locks, everything works fine:

# here i s the r e l i a b l e vers ion , surrounding the
# increment by l o c k and unlock , so on ly 1 thread
# can execu te i t a t once
s1 <− function (n) {

for ( i in 1 : n ) {
r ea l rdsmlock ( ” t o t l o c k ” )
to t [ 1 , 1 ] <− to t [ 1 , 1 ] + 1
rea l rdsmunlock ( ” t o t l o c k ” )
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}
}

mgrmakelock ( c2 , ” t o t l o c k ” )

to t [ 1 , 1 ] <− 0
c lu s t e rExpor t ( c2 , ” s1 ” )
c lusterEvalQ ( c2 , s1 (1000) )
to t [ 1 , 1 ] # w i l l p r i n t out 2000 , the co r r e c t number

5.6.3 Barriers

Another key structure is that of a barrier, which is used to synchronize
all the threads. Suppose for instance that we need one thread to perform
some special action, but that we need to have the other threads wait for
that action to be performed. The threads system will provide a function to
call that accomplishes this. In Rdsm, this function is named barr(), and
when a thread calls it, the thread will block until all threads have called it.
Afterward, they all proceed to the next line of code.

Note that internally a barrier needs to be implemented with a lock. You,
the application programmer, won’t see the lock (unless you’re curious), but
you do need to be aware that it is there, as locks affect performance. Which
brings us to the next section...

5.6.4 Lockfree Synchronization

Bear in mind that locks and barriers are “necessary evils.” We do need them
to ensure correct execution of our program, but they slow things down. For
instance, we say that lock variables serialize a program in the section they
are used, i.e. they change its parallel character to serial. And contention
for locks can cause lots of cache coherency transactions, definitely putting
a damper on performance. Thus one should always try to find clever ways
to avoid locks and barriers if possible.

One way to do this is to take advantage of the hardware. Modern processors
typically include a variety of hardware assists to make synchronization more
efficient.

For example, Intel machines allow a machine instruction to be prefixed by
a special byte called a lock prefix. It orders the hardware to lock up the
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system bus while the given instruction is executing—so that the execution
is atomic. (The fact that this prefix, a hardware operation, is named lock
should not be confused with lock variables in software.)

Under the critical section approach, code to do an atomic add to y would
look something like this:

lock the lock
add operand to y
unlock the lock

By contrast, we could do all this with a single machine instruction:

lock add %edx, tot

if say the instruction uses the EDX register.

The OpenMP threaded programming framework, which we’ll discuss later
in this chapter, includes a keyword named atomic. It instructs the compiler
to try to find a hardware construct like the above to implement mutual
exclusion, rather than taking the less efficient critical section route. Details
later.

Also, the C++ Standard Template Library contains related constructs,
such as the function fetch add(), which again instructs the compiler to
attempt to find an atomic hardware solution to the update-total example
above.

5.7 Example: Transformation of an Adjacency

Matrix

Say we have a graph with an adjacency matrix









0 1 0 0
1 0 0 1
0 1 0 1
1 1 1 0









(5.1)

For example, there is an edge from vertex 1 to vertex 2, but not one from
vertex 3 to 1. We’d like to transform this to a two-column matrix that
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displays the links, in this case

























1 2
2 1
2 4
3 2
3 4
4 1
4 2
4 3

























(5.2)

For instance, the (4,3) in the last row means there is an edge from vertex
4 to 3, corresponding to the 1 in row 4, column 3 of the adjacency matrix.

5.7.1 The Code

Here is Rdsm code for this:

1 # inpu t s a graph adjacency matrix , and ou tpu t s a two−column matrix
2 # l i s t i n g the edges emanating from each node
3
4 l ibrary (Rdsm)
5
6 # arguments :
7 # a : adjacency matrix
8 # lnk s : edges matrix ; shared , nrow(a )ˆ2 rows and 2 columns
9 # counts : numbers o f edges found by each thread ; shared
10
11 # in t h i s vers ion , the matrix l n k s must be crea t ed ahead o f time ; s ince
12 # the number o f rows i s uknown a pr i o r i , one must a l l ow f o r the worst
13 # case , nrow(a)ˆ2 rows ; a f t e r the run , the number o f a c t ua l rows w i l l be
14 # in counts [ 1 , l e n g t h ( c l s ) ]
15
16 g e t l i n k s t h r e ad <− function ( a , lnks , counts ) {
17 require ( p a r a l l e l )
18 nr <− nrow( a )
19 # ge t my ass i gned por t i on o f a
20 myidxs <− ge t i dx s ( nr )
21 myout <− apply ( a [ myidxs , ] , 1 , function ( rw) which( rw==1))
22 # myout [ [ i ] ] now l i s t s the edges from node myidxs [ 1 ] + i − 1
23 nmyedges <− Reduce (sum, lapply (myout , length ) ) # my t o t a l edges
24 me <− myinfo$ id
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25 counts [ 1 ,me ] <− nmyedges
26 barr ( )
27 i f (me == 1) {
28 # use cumsum() to determine where each node w i l l s t o r e i t s r e s u l t s
29 # in ln k s
30 counts [ 1 , ] <− cumsum( counts [ 1 , ] )
31 }
32 barr ( )
33 # ln k s i d x w i l l be the next row to wr i t e w i th in l n k s
34 lnk s idx <− i f (me == 1) 1 else counts [ 1 ,me−1] + 1
35 for ( idx in myidxs ) {
36 # corresponding index to idx w i th in myout
37 jdx <− idx − myidxs [ 1 ] + 1
38 myoj <− myout [ [ jdx ] ]
39 endwrite <− l nk s idx + length (myoj ) − 1
40 i f ( ! i s . null (myoj ) ) {
41 lnks [ l nk s idx : endwrite , ] <− cbind ( idx , myoj )
42 }
43 lnk s idx <− endwrite + 1
44 }
45 0 # don ’ t do expens i ve re turn o f r e s u l t
46 }
47
48 t e s t <− function ( c l s ) {
49 mgr in i t ( c l s )
50 mgrmakevar ( c l s , ”x” , 6 , 6 )
51 mgrmakevar ( c l s , ” lnks ” ,36 ,2 )
52 mgrmakevar ( c l s , ” counts ” ,1 , length ( c l s ) )
53 x [ , ] <− matrix (sample ( 0 : 1 , 3 6 , replace=T) , ncol=6)
54 c lu s t e rExpor t ( c l s , ” g e t l i n k s t h r e ad ” )
55 c lusterEvalQ ( c l s , g e t l i n k s t h r e ad (x , lnks , counts ) )
56 print ( lnks [ 1 , counts [ 1 , length ( c l s ) ] , ] )
57 }

Here we will have our first example of the use of barriers.

As with the earlier examples, the division of labor involves assigning dif-
ferent chunks of rows of the adjacency matrix to different Rdsm threads.
(There definitely are other design patterns in the parallel processing world.
See Section ??.) To determine the chunks, we could call snow’s splitIndices()
as before (as shown in the commented-out code), but actually Rdsm pro-
vides a simpler wrapper for that, getidxs(), which we’ve called here:

myidxs <− ge t i dx s ( nr )
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myout <− apply ( a [ myidxs , ] , 1 , function ( rw) which( rw==1))

The matrix myout will now give a row-by-row listing of the column num-
bers of all the 1s in the rows of this thread’s chunk. Remember, our ultimate
output matrix, lnks, will have one row for each such 1, so the information
in myout will be quite useful.

Indeed, this thread will compute its portion of lnks, and then place it there.
But in order to do so, this thread must know where in lnks to start writing.
And for that, this thread needs to know how many 1s were found by threads
prior to it. If for instance thread 1 finds eight 1s and thread 2 finds three,
then thread 3 must start writing at row 8 + 3 + 1 = 12 in lnks. Thus
we need to find the overall 1s counts (across all rows of a thread) for each
thread,

nmyedges <− Reduce (sum, lapply (myout , length ) ) # my t o t a l edges

and then need to find cumulative sums, and share them. To do this, we’ll
have thread 1 find those sums, and place them in our shared variable
counts:

me <− myinfo$ id
counts [ 1 ,me ] <− nmyedges
barr ( )
i f (me == 1) {

counts [ 1 , ] <− cumsum( counts [ 1 , ] )
}
barr ( )

Note the barrier calls just before and just after thread 1 does this work.
The first call is needed because thread 1 can’t start finding the cumulative
sums before the individual counts are ready. Then we need the second
barrier, because all the threads will be using use of the cumulative sums,
and we need to be sure they’re ready before such use.

Now that our thread knows where in lnks to write its results, it can go
ahead:

l nk s idx <− i f (me == 1) 1 else counts [ 1 ,me−1] + 1
for ( idx in myidxs ) {

jdx <− idx − myidxs [ 1 ] + 1
myoj <− myout [ [ jdx ] ]
endwrite <− l nk s idx + length (myoj ) − 1
i f ( ! i s . null (myoj ) ) {

l nk s [ l nk s idx : endwrite , ] <− cbind ( idx , myoj )
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}
l nk s idx <− endwrite + 1

}

The loop handles each row in this thread’s chunk, converting row numbers
in myidxs to those in the original adjacency matrix.

5.7.2 Overallocation of Memory

A problem is having to allocate the lnks matrix to handle the worst case,
thus wasting space and execution time. The problem is that we don’t know
in advance the size of our “output,” in this case the argument lnks. In
our little example above, the adjacency matrix was of size 4x4, while the
edges matrix was 7x2. We know the number of columns will be 2, but the
number of rows is unknown a priori.

The above version of our code solves the problem simply by insisting that
the user allow for the worst case. For an nxn adjacency matrix, the edges
matrix could have as many as n2 rows. If n is large, this could be a major
performance issue.

Before discussing an alternate approach, note that the user can determine
the number of “real” rows in lnks by inspecting counts[1,length(cls)]
after the call returns, as seen in the test code.

One approach would be to postpone allocation until we know how big the
lnks matrix needs to be, which we will know after the cumulative sums are
calculated. We could have thread 1 then create the shared matrix lnks,
by calling bigmemory directly rather than using mgrmakevar(). To
distribute the shared-memory key for this matrix, thread 1 would save the
bigmemory descriptor to a file, then have the other threads get access to
lnks by loading from the file.

Actually, this problem is common in parallel processing applications. We
will return to it in Section 5.14.2.

5.7.3 Timing Experiment

For comparison, here is a serial version of the code:

1 > ge t l i nk snonpar
2 function ( a , lnks ) {
3 nr <− nrow( a )
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4 myout <− apply ( a [ , ] , 1 , function ( rw) which( rw==1))
5 nmyedges <− Reduce (sum, lapply (myout , length ) )
6 lnk s idx <− 1
7 for ( idx in 1 : nr ) {
8 jdx <− idx
9 myoj <− myout [ [ jdx ] ]
10 endwrite <− l nk s idx + length (myoj ) − 1
11 i f ( ! i s . null (myoj ) ) {
12 lnks [ l nk s idx : endwrite , ] <− cbind ( idx , myoj )
13 }
14 lnk s idx <− endwrite + 1
15 }
16 0
17 }

> n <− 10000
> system . time ( ge t l i nk snonpar (x , lnks ) )

user system e lapsed
26 .170 1 .224 27 .516

(For convenience, we are still using Rdsm to set up the shared variables,
though we run in non-Rdsm code.)

Now try the parallel version:

> c l s <− shmcls (4 )
> mgr in i t ( c l s )
> mgrmakevar ( c l s , ” counts ” ,1 , length ( c l s ) )
> mgrmakevar ( c l s , ”x” ,n , n )
> mgrmakevar ( c l s , ” lnks ” ,nˆ2 ,2)
> x [ , ] <− matrix (sample ( 0 : 1 , nˆ2 , replace=T) , ncol=n)
> c lu s t e rExpor t ( c l s , ” g e t l i n k s t h r e ad ” )
> system . time ( c lusterEvalQ ( c l s , g e t l i n k s t h r e ad (x , lnks , counts ) ) )

user system e lapsed
0 .000 0 .000 7 .783

So, the parallel code did indeed speed things up.

5.8 Example: K-Means Clustering

In discussion of parallel computation for data science, an example appli-
cation almost as common as matrix multiplication is k-means clustering.
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The goal is to form k groups from our data matrix, hopefully in a way that
makes visual (or other) sense. Let’s see how that can be implemented in
Rdsm.

The general k-means method itself is quite simple, using an iterative algo-
rithm. At any step during the iteration process, the k groups are summa-
rized by their centroids.7 We iterate the following:

1. For each data point, i.e. each row of our data matrix, determine
which centroid this point is closest to.

2. Add this data point to the group corresponding to that centroid.

3. After all data points are processed in this manner, update the cen-
troids to reflect the current group memberships.

4. Next iteration.

This example will bring in a concept in shared-memory work that didn’t
arise in our matrix multiplication example, related to the phrase, “After all
data points are processed...” in step 3. Some other new concepts will come
up as well, all to be explained below.

5.8.1 The Code

So, here is the code, again with a small test function:

1 # k−means c l u s t e r i n g on the data matrix x , wi th k c l u s t e r s and ni
2 # i t e r a t i o n s ; f i n a l c l u s t e r c en t r o i d s p laced in cn t rds
3
4 # i n i t i a l c en t r o i d s taken to be k randomly chosen rows o f x ; i f a
5 # c l u s t e r becomes empty , i t s new cen t ro i d w i l l be a random row of
6 # x
7
8 l ibrary (Rdsm)
9
10 # arguments :
11 # x : data matrix x ; shared
12 # k : number o f c l u s t e r s
13 # ni : number o f i t e r a t i o n s
14 # cntrds : c en t r o i d s matrix ; row i i s c en t ro i d i ; shared , k by nco l ( x )

7If we have m variables, then the centroid of a group is the m-element vector of means

of those variables within this group.
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15 # c i n i t : o p t i ona l i n i t i a l v a l u e s f o r the c en t r o i d s ; k by nco l ( x )
16 # sums : s c ra t ch matrix ; sums [ j , ] con ta ins the count
17 # and sum fo r c l u s t e r j ; shared , k by 1+nco l ( x )
18 # l c k : l o c k v a r i a b l e ; shared
19
20 kmeans <− function (x , k , ni , cntrds , sums , lck , c i n i t=NULL) {
21 require ( p a r a l l e l )
22 require ( pd i s t )
23 nx <− nrow( x )
24 # ge t my ass i gned por t i on o f x
25 # myidxs <− s p l i t I n d i c e s (nx , myinfo$nwrkrs ) [ [ myinfo$ i d ] ]
26 myidxs <− ge t i dx s (nx )
27 myx <− x [ myidxs , ]
28 # random i n i t i a l c en t r o i d s i f none s p e c i f i e d
29 i f ( i s . null ( c i n i t ) ) {
30 i f ( myinfo$ id == 1)
31 cntrds [ , ] <− x [ sample ( 1 : nx , k , replace=F) , ]
32 barr ( )
33 } else cnt rds [ , ] <− c i n i t
34
35 # mysum() sums the rows in myx corresponding to the i n d i c e s i d x s ; we
36 # a l s o produce a count o f those rows
37 mysum <− function ( idxs ,myx) {
38 c ( length ( idxs ) , colSums (myx [ idxs , ,drop=F ] ) )
39 }
40 for ( i in 1 : n i ) { # ni i t e r a t i o n s
41 # node 1 i s sometimes asked to do some ” housekeep ing ”
42 i f ( myinfo$ id == 1) {
43 sums [ ] <− 0
44 }
45 barr ( ) # other nodes wai t f o r node 1 to do i t s work
46 # f ind d i s t an c e s from my rows o f x to the cen t ro id s , then
47 # f ind which cen t ro i d i s c l o s e s t to each such row
48 ds t s <− matrix ( pd i s t (myx , cnt rds [ , ] ) @dist , ncol=nrow(myx) )
49 nr s t <− apply ( dsts , 2 ,which .min)
50 # nrs t [ i ] con ta ins the index o f the neare s t c en t ro i d to row i in
51 # myx
52 tmp <− tapply ( 1 :nrow(myx) , nrst ,mysum,myx)
53 # in the above , we ga ther the o b s e r va t i on s in myx whose c l o s e s t
54 # cen t ro i d i s c en t ro i d j , and f i nd t h e i r sum , p l a c i n g i t in
55 # tmp [ j ] ; the l a t t e r w i l l a l s o have the count o f such ob s e r va t i on s
56 # in i t s l e ad in g component
57 # next , we need to add t ha t to sums [ j , ] , as an atomic opera t ion
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58 rea l rdsmlock ( l ck )
59 # the j va l u e s in tmp w i l l be s t r i n g s , so conver t
60 for ( j in as . integer (names(tmp ) ) ) {
61 sums [ j , ] <− sums [ j , ] + tmp [ [ j ] ]
62 }
63 rea l rdsmunlock ( l ck )
64 barr ( ) # wait from sums [ , ] to be ready
65 i f ( myinfo$ id == 1) {
66 # update cen t ro id s , us ing a random data po in t i f a c l u s t e r
67 # becomes empty
68 for ( j in 1 : k ) {
69 # update c en t ro i d f o r c l u s t e r j
70 i f ( sums [ j , 1 ] > 0) {
71 cntrds [ j , ] <− sums [ j ,−1] / sums [ j , 1 ]
72 } else cnt rds [ j ] <<− x [ sample ( 1 : nx , 1 ) , ]
73 }
74 }
75 }
76 0 # don ’ t do expens i ve re turn o f r e s u l t
77 }
78
79 t e s t <− function ( c l s ) {
80 l ibrary ( p a r a l l e l )
81 mgr in i t ( c l s )
82 mgrmakevar ( c l s , ”x” , 6 , 2 )
83 mgrmakevar ( c l s , ” cnt rds ” , 2 , 2 )
84 mgrmakevar ( c l s , ”sms” ,2 , 3 )
85 mgrmakelock ( c l s , ” l c k ” )
86 x [ , ] <− matrix (sample ( 1 : 2 0 , 1 2 ) , ncol=2)
87 c lu s t e rExpor t ( c l s , ”kmeans” )
88 c lusterEvalQ ( c l s , kmeans (x , 2 , 1 , cntrds , sms , ” l ck ” ,
89 c i n i t=rbind (c ( 5 , 5 ) , c ( 1 5 , 1 5 ) ) ) )
90 }
91
92 t e s t 1 <− function ( c l s ) {
93 mgr in i t ( c l s )
94 mgrmakevar ( c l s , ”x” ,10000 ,3)
95 mgrmakevar ( c l s , ” cnt rds ” , 3 , 3 )
96 mgrmakevar ( c l s , ”sms” ,3 , 4 )
97 mgrmakelock ( c l s , ” l c k ” )
98 x [ , ] <− matrix (rnorm(30000) , ncol=3)
99 r i <− sample (1 : 10000 ,3000)
100 x [ r i , 1 ] <− x [ r i , 1 ] + 5
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101 r i <− sample (1 : 10000 ,3000)
102 x [ r i , 2 ] <− x [ r i , 2 ] + 5
103 c lu s t e rExpor t ( c l s , ”kmeans” )
104 c lusterEvalQ ( c l s , kmeans (x , 3 , 5 0 , cntrds , sms , ” l ck ” ) )
105 }

Let’s first discuss the arguments of kmeans(). Our data matrix is x, which
is described in the comments as a shared variable (on the assumption that
it will often be such) but actually need not be.

By contrast, cntrds needs to be shared, as the threads repeatedly use it as
the iterations progress. We have thread 1 writing to this variable,

i f ( myinfo$ id == 1) {
for ( j in 1 : k ) {

i f ( sums [ j , 1 ] > 0) {
cnt rds [ j , ] <<− sums [ j ,−1] / sums [ j , 1 ]

} else cnt rds [ j ] <<− x [ sample ( 1 : nx , 1 ) , ]
}

}

at the end of each iteration, and all threads reading it:

d s t s <− matrix ( pd i s t (myx , cnt rds [ , ] ) @dist , ncol=nrow(myx) )

If cntrds were not shared, the whole thing would fall apart. When thread
1 would write to it, it would become a local variable for that thread, and
the new value would not become visible to the other threads. Note that as
in our previous examples, we store our function’s final result, in this case
cntrds, in a shared variable, rather than as a return value.

The argument sums is also shared by necessity. It is only used to store
intermediate results, but again this variable is written to by some threads
and subsequently read by others, hence must be shared.

Another argument to kmeans() that is shared is lck, a lock variable, to
be discussed below.

So, let’s look at the actual code, starting with

# ge t my ass i gned por t i on o f x
# myidxs <− s p l i t I n d i c e s (nx , myinfo$nwrkrs ) [ [ myinfo$ i d ] ]
myidxs <− ge t i dx s (nx )
myx <− x [ myidxs , ]
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Once again our approach will be to break the data matrix into chunks of
rows. Each thread will handle one chunk, finding distances from rows in its
chunk to the current centroids. How is the above code preparing for this?

Note again the “me, my” point of view here, pointed out in Section 5.4 and
present in almost any threads function. The code here is written from the
point of view of a particular thread. So, the code first needs to determine
this thread’s rows chunk.

Why have this separate variable, myx? Why not just use x[myidxs,]?
First, having the separate variable results in less cluttered code. But sec-
ondly, repeated access to x could cause a lot of costly cache misses and
cache coherency actions.

Next we see another use of barriers:

i f ( i s . null ( c i n i t ) ) {
i f ( myinfo$ id == 1)

cntrds [ , ] <− x [ sample ( 1 : nx , k , replace=F) , ]
barr ( )

} else cnt rds [ , ] <− c i n i t

We’ve set things up so that if the user does not specify the initial values of
the centroids, they will be set to k random rows of x. We’ve written the
code so that thread 1 performs this task, but we need the other threads
to wait until the task is done. If we didn’t do that, one thread might race
ahead and start accessing cntrds before it is ready. Our call to barr()
ensures that this won’t happen.

We have a similar use of a barrier at the beginning of the main loop:

i f ( myinfo$ id == 1) {
sums [ ] <− 0

}
barr ( ) # other nodes wai t f o r node 1 to do i t s work

We need to compute the distances to the various centroids from all the rows
in this thread’s portion of our data:

d s t s <− matrix ( pd i s t (myx , cnt rds [ , ] ) @dist , ncol=nrow(myx) )

R’s pdist library comes to the rescue! This package, which we saw in
Section 3.6, finds all distances from the rows of one matrix to the rows
of another, exactly what we need. So, here again, we are leveraging R!
(Indeed, an alternate way to parallelize the computation from what we are
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doing here would be to parallelize pdist(), say using Rdsm instead of
snow as before.)

Next, we leverage R’s which.min() function, which finds indices of minima
(not the minima themselves). We use this to determine the new group
memberships for the data points in myx:

n r s t <− apply ( dsts , 2 ,which .min)
# nrs t [ i ] con ta ins the index o f the neare s t c en t ro i d to row i in
# myx

Next, we need to collect the information in nrst into a more usable form,
in which we have, for each centroid, a vector stating the indices of all rows
in myx that now will belong to that centroid’s group. For each centroid,
we’ll also need to sum all such rows, in preparation for later averaging them
to find the new centroids.

Again, we can leverage R to do this quite compactly (albeit needing a bit
of thought):

mysum <− function ( idxs ,myx) {
c ( length ( idxs ) , colSums (myx [ idxs , ,drop=F ] ) )

}
. . .
tmp <− tapply ( 1 :nrow(myx) , nrst ,mysum,myx)

But remember, all the threads are doing this! For instance, thread 1 is
finding the sum of its rows that are now closest to centroid 6, but thread
4 is doing the same. For centroid 6, we will need the sum of all such rows,
across all such threads.

In other words, multiple threads may be writing to the same row of sums
at about the same time. Race condition ahead! So, we need a lock:

l o ck ( l ck )
for ( j in names(tmp ) ) {

j <− as . integer ( j )
sums [ j , ] <− sums [ j , ] + tmp [ [ j ] ]

}
unlock ( l ck )

The for loop here is a critical section. Without the restriction, chaos could
result. Say for example two threads want to add 3 and 8 to a certain total,
respectively, and that the current total is 29. What could happen is that
they both see the 29, and compute 32 and 37, respectively, and then write
those numbers back to the shared total. The result might be that the new
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total is either 32 or 37, when it actually should be 40. The locks prevent
such a calamity.

A refinement would be to set up k locks, one for each row of sums. As noted
earlier, locks sap performance, by temporarily serializing the execution of
the threads. Having k locks instead of one might ameliorate the problem
here.

After all the threads are done with this work, we can have thread 1 compute
the new averages, i.e. the new centroids. But the key word in the last
sentence is “after.” We can’t let thread 1 do that computation until we are
sure that all the threads are done. This calls for using a barrier:

barr ( )
i f ( myinfo$ id == 1) {

for ( j in 1 : k ) {
i f ( sums [ j , 1 ] > 0) {

cnt rds [ j , ] <<− sums [ j ,−1] / sums [ j , 1 ]
} else cnt rds [ j ] <<− x [ sample ( 1 : nx , 1 ) , ]

}
}

As noted earlier, the shared variable sums serves as storage for intermediate
results, not only sums of the data points in a group, but also their counts.
We can now use that information to compute the new centroids:

i f ( myinfo$ id == 1) {
for ( j in 1 : k ) {
# update c en t ro i d f o r c l u s t e r j
i f ( sums [ j , 1 ] > 0) {

cnt rds [ j , ] <− sums [ j ,−1] / sums [ j , 1 ]
} else cnt rds [ j ] <<− x [ sample ( 1 : nx , 1 ) , ]

}
}

5.8.2 Timing Experiment

Let n denote the number of rows in our data matrix. With k clusters, we
have to compute nk distances per iteration, and then take n minima. So
the time complexity is O(nk).

This is not very promising for parallelization. In many cases O(n) (fixing
k here) does not provide enough computation to overcome overhead issues.
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However, with our code here, there really isn’t much overhead. We copy
the data matrix just once,

myx <− x [ myidxs , ]

and thus avoid problems of contention for shared memory and so on.

It appears that we can indeed get a speedup from our parallel version some
cases:

> x <− matrix ( runif (100000∗25) , ncol=25)
> system . time ( kmeans (x , 1 0 ) ) # kmeans () f unc t i on in base R, k = 10

user system e lapsed
8 .972 0 .056 9 .051

> c l s <− shmcls (4 )
> mgr in i t ( c l s )
> mgrmakevar ( c l s , ” cnt rds ” ,10 ,25)
> mgrmakevar ( c l s , ”sms” ,10 ,26)
> c lu s t e rExpor t ( c l s , ”kmeans” )
> mgrmakevar ( c l s , ”x” ,100000 ,25)
> x [ , ] <− x
> system . time ( c lusterEvalQ ( c l s , kmeans (x , 10 , 10 , cntrds , sms , l c k ) ) )

user system e lapsed
0 .000 0 .000 4 .086

A bit more than 2X speedup for four cores, fairly good in view of the above
considerations.

5.9 Example: Bucket Sort with Sampling

Here we develop an Rdsm version of our earlier Rmpi example. Again,
the strategy to sort a vector x using r threads is quite simple:

• Take a small sample from x to obtain estimates of its quantiles.

• Use the quantiles to partition the real number line into r intervals,
such that approximately the same number of elements of x will fall
into each interval. (This will give us load balance.)

• Each thread finds the elements of x that fall into its interval.

• Each thread applies R’s sort() function to its own data.

• Each thread places its sorted numbers in the proper place in x.
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The vector x will be sorted in-place.

5.9.1 The Code

1 # bucke t s o r t wi th sampl ing
2
3 # vec to r x i s broken in t o chunks accord ing to cut po in t s ; t h i s imp l i e s
4 # tha t a l l t he numbers in chunks i are <= a l l t hose in chunk j > i ; thus
5 # each chunk can be so r t ed and then p laced in to i t s proper p l ace in x
6
7 # the cu t s are ob ta ined by f i r s t s o r t i n g a sample o f x and then
8 # computing r − 1 quan t i l e s , where r i s the number o f th reads
9
10 # arguments :
11 #
12 # x : vec t o r to be so r t ed ; shared ; s o r t ed in p l ace
13 # counts : in t e rmed ia t e r e s u l t ; shared , l e n g t h = l en g t h ( c l s )
14 # samp : in t e rmed ia t e r e s u l t ; shared ; l e n g t h = nsamp
15 # nsamp : number o f e lements o f x to sample
16
17 bsor t <− function (x , counts , samp , nsamp=1000) {
18 me <− myinfo$ id
19 # make l o c a l copy o f x to avoid cache coherency overhead
20 tmpx <− x [ 1 , ]
21 i f (me == 1) { # sample to ge t q u an t i l e s
22 samp [ 1 , ] <− sort ( tmpx [ sample ( 1 : length ( tmpx ) , nsamp , replace=F) ] )
23 }
24 barr ( )
25 # determine my i n t e r v a l
26 r <− myinfo$nwrkrs
27 k <− f loor (nsamp / r )
28 i f (me > 1) mylo <− samp [ 1 , (me−1) ∗ k ]
29 i f (me < r ) myhi <− samp [ 1 ,me ∗ k ]
30 # ge t my chunk and s o r t i t
31 i f (me == 1) myx <− tmpx [ tmpx <= myhi ] else
32 i f (me == r ) myx <− tmpx [ tmpx > mylo ] else
33 myx <− tmpx [ tmpx > mylo & tmpx <= myhi ]
34 myx <− sort (myx)
35 # need to dec ide where in x to p l ace myx
36 lx <− length (myx)
37 counts [ 1 ,me ] <− l x
38 barr ( )
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39 i f (me == 1) counts [ 1 , ] <− cumsum( counts [ 1 , ] )
40 barr ( )
41 # place my sor t ed chunk back in x
42 i f (me == 1) x [ 1 , 1 : l x ] <− myx else {
43 start <− counts [ 1 ,me−1] + 1
44 f i n <− start + lx − 1
45 x [ 1 , start : f i n ] <− myx
46 }
47 }
48
49 t e s t <− function ( c l s ) {
50 mgr in i t ( c l s )
51 mgrmakevar ( c l s , ”a” ,1 , 25 )
52 mgrmakevar ( c l s , ” counts ” ,1 , length ( c l s ) )
53 mgrmakevar ( c l s , ”smp” ,1 ,10 )
54 a [ 1 , ] <− runif (25)
55 print ( a [ 1 , ] )
56 c lu s t e rExpor t ( c l s , ” bsor t ” )
57 c lusterEvalQ ( c l s , b so r t ( a , counts , smp , nsamp=10))
58 print ( a [ 1 , ] )
59 }

So, let’s see how the code works, starting with this:

tmpx <− x [ 1 , ]

Here each thread makes its own local copy of x. This seems innocuous,
but it is quite important. If all the threads were to repeatedly access x
itself, there would be lots of cache coherency actions, sapping performance.
Indeed, I ran a version of the code that did not make a local copy, and
found it to be about 20% slower.

Next, we do the sampling:

i f (me == 1) { # sample to ge t q u an t i l e s
samp [ 1 , ] <− sort ( tmpx [ sample ( 1 : length ( tmpx ) , nsamp , replace=F) ] )

}
barr ( )

Again, a barrier is needed to ensure that samp is ready before the other
threads start using it.

We then leverage R’s subsetting capabilities to determine which elements
of x fall into this thread’s interval, and then sort those elements:



5.9. EXAMPLE: BUCKET SORT WITH SAMPLING 109

r <− myinfo$nwrkrs
k <− f loor (nsamp / r )
i f (me > 1) mylo <− samp [ 1 , (me−1) ∗ k ]
i f (me < r ) myhi <− samp [ 1 ,me ∗ k ]
i f (me == 1) myx <− tmpx [ tmpx <= myhi ] else

i f (me == r ) myx <− tmpx [ tmpx > mylo ] else
myx <− tmpx [ tmpx > mylo & tmpx <= myhi ]

myx <− sort (myx)

Next, we have a pattern similar to that seen in the example in Section 5.7.1.
There, each thread worked on a set of items whose size became known only
during the midst of execution. This information was necessary in order to
know where a thread needed to write its results back to a certain shared
vector, lnks. We have the same situation here; each thread needs to know
where in x to write the sorted chunk that the thread has computed. As with
the previous example, this is done by having each thread report its chunk
size in a shared vector, counts, and then computing cumulative sums:

l x <− length (myx)
counts [ 1 ,me ] <− l x
barr ( )
i f (me == 1) counts [ 1 , ] <− cumsum( counts [ 1 , ] )
barr ( )
i f (me == 1) x [ 1 , 1 : l x ] <− myx else {

start <− counts [ 1 ,me−1] + 1
f i n <− start + lx − 1
x [ 1 , start : f i n ] <− myx

}

5.9.2 Timing Experiment

Serial sorting of n numbers has an optimal time complexity of O(n log n).
Since the logarithm function grows slowly with n (in fact, the larger n is,
the flatter the curve at that point), a complexity of O(n log n) is not that
much larger than O(n). For that reason, gaining speed via parallelism may
be an uphill battle.

In such situations, overhead issues can be paramount. As mentioned earlier,
our making a local copy of x

tmpx <− x [ 1 , ]

can significantly reduce overhead in the form of cache coherency actions.
Nevertheless, even the above line may generate some such actions, and in
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any case, for large n that is a lot of copying, which itself takes time.

To investigate, I ran simulations, using the code

t e s t 1 <− function ( c l s , n ) {
mgr in i t ( c l s )
mgrmakevar ( c l s , ”a” ,1 , n )
mgrmakevar ( c l s , ” counts ” ,1 , length ( c l s ) )
mgrmakevar ( c l s , ”smp” ,1 ,1000)
a [ 1 , ] <− runif (n)
c lu s t e rExpor t ( c l s , ” bsor t ” )
print (system . time ( c lusterEvalQ ( c l s , b so r t ( a , counts , smp , nsamp=1000))))

}

For the case labeled “r = 1” below, i.e. single-thread, I simply ran R’s
sort():

z <− runif (100000000) ; system . time ( sort ( z ) )

n r time
25000000 1 9.841
25000000 4 10.604
25000000 8 9.055
25000000 16 9.061
100000000 1 44.417
100000000 4 40.013
100000000 8 34.378
100000000 16 34.136

With n = 25000000, even using 16 cores gives us only a slight performance
gain, if any.8 Using 4 cores actually is worse than using just 1.

With the larger problem n = 100000000, we receive only about a 9%
speedup from running 4 threads, and even with 8 threads the speedup
is only around 23%. Moreover, going to 16 threads doesn’t seem to help
any further.

There are of course other sorting algorithms we could try, and if we really
need the speed, we should probably switch to C/C++. But the example
does show that not all problems parallelize well

8All these numbers are subject to some statistical variation.
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5.10 OpenMP

The standard method for programming directly on multicore machines,
is to use threads libraries, which are available for all modern operating
systems. On Unix-family systems, for example, the pthreads library is
quite popular.

The programmer then calls functions in the threads library, such as the
pthread mutex lock() function in the pthreads library to lock a lock
variable. However, this can become very tedious, so higher-level libraries
were developed specifically with parallel computation in mind, such as
OpenMP, Threads Building Blocks and Cilk++. Here we introduce OpenMP.

An OpenMP application still uses threads, but at a higher level of abstrac-
tion. One accesses OpenMP through C, C++ or FORTRAN. R users can
write an OpenMP application in one of those languages, and then call the
application from R, using either the .C() or .Call() functions available in
R for that purpose. To keep things simple, we will stick just to C and.C()
here. (In order to facilitate interface with R, though, we have used double
type instead of float.)

5.11 Example: Finding the Maximal Burst in

a Time Series

Consider a time series of length n. We may be interested in bursts, periods
in which a high average value is sustained. Of course, a period of just two
or three time points, say, would be too short to count, so we might stipulate
that we look only at periods of at least k consecutive points. So, we wish to
find the period of at least k consecutive time points that has the maximal
mean value.

The time complexity of this application is O(n(n − k), which for fixed k
and varying n is the same as O(n2). This growth rate in n suggests that
this is a good candidate for parallelization.

5.11.1 The Code

1 // OpenMP example program, Burst.c; burst() finds period of highest

2 // burst of activity in a time series

3

4 #include <omp.h>


