
Introduction to Parallel Processing

Norman Matloff
Department of Computer Science
University of California at Davis

c©1995-2006, N. Matloff

March 28, 2006

Contents

1 Overview 3

2 Programming Paradigms 4

2.1 World Views . 4

2.1.1 Shared-Memory . 4

2.1.2 Message Passing . 5

2.1.3 SIMD . 5

2.2 Shared-Memory Example . 6

2.2.1 How Threads Work on Multiprocessor Systems . 6

2.2.2 Example . 7

2.3 Message-Passing Example . 10

3 Message-Passing Mechanisms 14

3.1 Message-Passing Hardware . 14

3.1.1 Hypercubes . 14

3.1.2 Networks of Workstations (NOWs) . 16

3.1.3 Hardware Issues . 17

3.1.4 Message Passing on Shared-Memory Machines . 18

1

CONTENTS CONTENTS

3.2 Message-Passing Software . 18

4 Shared-Memory Mechanisms 18

4.1 Hardware Issues . 18

4.2 Shared-Memory through Hardware . 18

4.2.1 Placement of Memory Modules . 19

4.2.2 Interconnect Topologies . 21

4.2.3 Test-and-Set . 25

4.2.4 Cache Coherency . 26

4.2.5 The Problem of “False Sharing” . 30

4.2.6 Memory-Access Consistency Policies . 30

4.2.7 Fetch-and-Add and Packet-Combining Operations 32

4.2.8 Multicore Chips . 33

4.2.9 Software for Use with Shared-Memory Hardware 33

4.3 Shared-Memory through Software . 37

4.3.1 Software Distributed Shared Memory . 37

4.3.2 Case Study: JIAJIA . 39

5 Program Performance Issues 42

5.1 The Problem . 42

5.2 Some Timing Comparisons . 43

5.3 Solutions . 44

5.4 Time Measurement . 44

6 Debugging Multicomputer Programs 44

7 Barrier Implementation 46

7.1 A Use-Once Version . 46

7.2 An Attempt to Write a Reusable Version . 46

Introduction to Parallel Processing: 2

1 OVERVIEW

1 Overview

There is an ever-increasing appetite among computer users for faster and faster machines. This was epito-
mized in a statement by Steve Jobs, founder/CEO of Apple and Pixar. He noted that when he was at Apple
in the 1980s, he was always worried that some other company would come out with a faster machine than
his. But now at Pixar, whose graphics work requires extremely fast computers, he is always hopingsomeone
produces faster machines, so that he can use them!

A major source of speedup is the parallelizing of operations. Parallel operations can be either within-
processor, such as with pipelining or having several ALUs within a processor, or between-processor, in
which many processor work on different parts of a problem in parallel. Our focus here is on between-
processor operations.

For example, the Registrar’s Office at UC Davis uses shared-memory multiprocessors for processing its
on-line registration work. A shared-memory multiprocessor machine consists of several processors, plus a
lot of memory, all connected to the same bus or other interconnect. All processors then access the same
memory chips. As of March 2004, the Registrar’s current system was a SPARC Sunfire 3800, with 16 GB
RAM and eight 900 MHz UltraSPARC III+ CPUs.1

Online registration involves an enormous amount of database computation. In order to handle this com-
putation reasonably quickly, the program partitions the work to be done, assigning different portions of
the database to different processors. Currently database work comprises the biggest use of shared-memory
parallel machines. It is due to the database field that such machines are now so successful commercially.

As the Pixar example shows, highly computation-intensive applications like computer graphics also have a
need for these fast parallel computers. No one wants to wait hours just to generate a single image, and the
use of parallel processing machines can speed things up considerably. For example, considerray tracing
operations. Here our code follows the path of a ray of light in a scene, accounting for reflection and ab-
sorbtion of the light by various objects. Suppose the image is to consist of 1,000 rows of pixels, with 1,000
pixels per row. In order to attack this problem in a parallel processing manner with, say, 25 processors, we
could divide the image into 25 squares of size 200x200, and have each processor do the computations for its
square.2

Parallel processing machines tend to be quite expensive, but another popular platform for parallel processing
which is much cheaper is a network of workstations (NOW). Here the hardware consists of a set of computers
which happen to be connected via a network, such as in our Computer Science Instructional Facility (CSIF)
at UCD.3 Most of the time these machines are used independently, with the role of the network being for e-

1You might consider 900 MHz somewhat slow, ironic for a machine whose goal is speed. But speeds for RISC chips such as the
SPARC cannot be easily compared with those of CISC chips like Intel. Moreover, these systems have especially fast I/O, which is
crucial for database applications. That, together with the fact that we have many processors working in parallel, does indeed make
for a very fast machine.

It is true, though, that Sun probably has faster SPARCs than 900 MHz. The problem is that in a multiprocessor system, the
processors must really be tuned to each other, and thus one cannot easily substitute newer, faster processors when they are developed.

2As we’ll see later, it may be much more challenging than this implies. First of all, the computation will need some communi-
cation between the processors, which harms performance if it is not done carefully. Second, if one really wants a good speedup,
one may need to take into account the fact that some squares require more computation work than others. More on this below.

3If one really wants a good NOW, though, one would need to have a faster network than CSIF’s.

Introduction to Parallel Processing: 3

2 PROGRAMMING PARADIGMS

mail, file sharing, Internet connections and so on. But they are sometimes also used for parallel processing,
with the network being used to pass messages between various machines which are cooperating on the same
task; a NOW is thus an example ofmessage-passing hardware.

Remember, the reason for buying a parallel processing machine isspeed. You need to have a program that
runs as fast as possible. That means that in order to write good parallel processing software, you must have
a good knowledge of the underlying hardware. You must find also think of clever tricks forload balancing,
i.e. keeping all the processors busy as much as possible. In the graphics ray-tracing application, for instance,
suppose a ray is coming from the “northeast” section of the image, and is reflected by a solid object. Then
the ray won’t reach some of the “southwest” portions of the image, which then means that the processors
assigned to those portions will not have any work to do which is associated with this ray. What we need to
do is then try to give these processors some other work to do; the more they are idle, the slower our system
will be.

2 Programming Paradigms

There are two main paradigms today in parallel-processing,shared memoryandmessage passing. These
distinctions can occur at either the software or hardware level. In other words, both software and hardware
can be designed around both the shared-memory and message-passing paradigms. Thus for example, the
UCD Registrar could run message-passing software such as the MPI package on their shared-memory hard-
ware, while we could use the shared-memory software package Treadmarks on the message-passing NOW
in CSIF.

2.1 World Views

To explain the two paradigms, we will use the termnodes, where roughly speaking one node corresponds
to one processor, and use the following example:

Suppose we wish to multiply an nx1 vector X by an nxn matrix A, putting the product in an nx1
vector Y, and we have p processors to share the work.

2.1.1 Shared-Memory

In the shared-memory paradigm, the arrays for A, X and Y would be held in common by all nodes. If for
instance node 2 were to execute

Y[3] = 12;

and then node 15 were to subsequently execute

print("%d\n",Y[3]);

Introduction to Parallel Processing: 4

2 PROGRAMMING PARADIGMS 2.1 World Views

then the outputted value from the latter would be 12.

2.1.2 Message Passing

By contrast, in the message-passing paradigm, all nodes would have separatecopies of A, X and Y (or
maybe some nodes would not even have some or all of these arrays). In this case, in our example above, in
order for node 2 to send this new value of Y[3] to node 15, it would have to execute some special function,
which would be something like

send(15,12,"Y[3]");

and node 15 would have to execute some kind ofreceive()function.

The conventional wisdom is that the shared-memory paradigm is much easier to program in than the
message-passing paradigm. The latter, however, may be easier to implement, and in some settings may
have greater speed.

2.1.3 SIMD

Another paradigm isSingle Instruction, Multiple Data (SIMD). This is almost entirely a hardware issue.
You can think of it as a processor with a very large number of ALUs, except that they do not operate
independently. Whenever the CPU issues an instruction, that same instruction is executed in lockstep by all
the ALUs. Another difference is that each ALU has its own data registers.

In classical SIMD machines, the ALUs are arranged in a two-dimensional array. A typical instruction might
be, say, SENDLEFT, which would mean sending the value in the ALU’s register to the ALU on one’s left
(or nowhere, if the ALU is on the left edge).

This is common in image-processing applications, for example. Say we hae one ALU per pixel and we wish
to replace each pixel value by the average of its neighboring values. The code might look like this:

set sum to 0
add left neighbor to sum
add right neighbor to sum
add top neighbor to sum
add bottom neighbor to sum
divide sum by 4

Again, remember that this is occurring simultaneously at all the ALUs, i.e. at all the pixels.

Some of the “MMX”-style chips operate under the SIMD paradigm.

Introduction to Parallel Processing: 5

2 PROGRAMMING PARADIGMS 2.2 Shared-Memory Example

2.2 Shared-Memory Example

Today, programming on shared-memory multiprocessors is typically done viathreading. A thread is sim-
ilar to a processin an operating system (OS), but with much less overhead. Threaded applications have
become quite popular in even uniprocessor systems, and Unix, Windows, Python, Java and Perl all support
threaded programming. One of the most famous threads packages is Pthreads.

2.2.1 How Threads Work on Multiprocessor Systems

Even if you have had some exposure to threaded programming before, it’s important to understand how
things change when we use it in a multiprocessor environment. To this end, let’s first review how an OS
schedules processes on a uniprocessor system.

Say persons X and Y are both running programs on the same uniprocessor machine. Since there is only one
CPU, only one program is running at any given time, but they do “take turns.” X’s program will run for
a certain amount of time, which we’ll assume for concreteness is 50 milliseconds. After 50 milliseconds,
a hardware timer will issue an interrupt, which will cause X’s program to suspend and the OS to resume
execution. Thestateof X’s program at the time of the interrupt, i.e. the values in the registers etc., will be
saved by the OS, and the OS will then restore the state of Y’s program which had been saved at its last turn.
Finally, the OS will execute a interrupt-return instruction, which will cause Y’s program to restore execution
in exactly the setting which it had at the end of its last turn. Note also that if the program which is currently
running makes asystem call, i.e. calls a function in the OS for input/output or other services, the program’s
turn ends before 50 ms.

But again, at any given time only one of the three programs (X, Y and the OS) is running. By contrast, on a
multiprocessor system with k CPUs, at any given time k programs are running. When a turn for a program
ends on a given CPU, again an interrupt occurs and the OS resumes execution, at which time it looks for
another program to run.

Though we have been speaking in terms of programs, the proper term isprocesses. Say for instance that
three people are running the GCC compiler right now on a certain machine. That would be only one program
but three processes.

For the type of threads we are discussing here—nonpreemptiveand system level—a thread essentially is
a process. If for instance a program creates four threads, then all four will show up when one runs the
ps command on a Unix system. The difference is that threads have much less overhead than do ordinary
processes.

Threaded programming is natural for shared-memory multiprocessors, since it does share memory.4 Just
like the process pool is shared by all the processors, so is the thread pool. Whenever a processor finishes a
timeslice for a thread, it goes to the thread pool to find another one to process. In that manner, there usually
will be many threads executing truly simultaneously, i.e. we get real parallelism.

4On Unix systems, one can arrange for shared memory between processes by usingshmem(). However, it has poor peformance
and is unwieldy. It is much easier, more direct and more natural with threads.

Introduction to Parallel Processing: 6

2 PROGRAMMING PARADIGMS 2.2 Shared-Memory Example

2.2.2 Example

Here is an example of Pthreads programming:

1 // PrimesThreads.c
2

3 // threads-based program to find the number of primes between 2 and n;
4 // uses the Sieve of Eratosthenes, deleting all multiples of 2, all
5 // multiples of 3, all multiples of 5, etc.
6

7 // for illustration purposes only; NOT claimed to be efficient
8

9 // Unix compilation: gcc -g -o primesthreads PrimesThreads.c -lpthread -lm
10

11 // usage: primesthreads n
12

13 #include <stdio.h>
14 #include <math.h>
15 #include <pthread.h> // required for threads usage
16

17 #define MAX_N 100000000
18 #define MAX_THREADS 25
19

20 // shared variables
21 int nthreads, // number of threads (not counting main())
22 n, // range to check for primeness
23 prime[MAX_N+1], // in the end, prime[i] = 1 if i prime, else 0
24 nextbase; // next sieve multiplier to be used
25 // lock for the shared variable nextbase
26 pthread_mutex_t nextbaselock = PTHREAD_MUTEX_INITIALIZER;
27 // ID structs for the threads
28 pthread_t id[MAX_THREADS];
29

30 // "crosses out" all odd multiples of k
31 void crossout(int k)
32 { int i;
33 for (i = 3; i*k <= n; i += 2) {
34 prime[i*k] = 0;
35 }
36 }
37

38 // each thread runs this routine
39 void *worker(int tn) // tn is the thread number (0,1,...)
40 { int lim,base,
41 work = 0; // amount of work done by this thread
42 // no need to check multipliers bigger than sqrt(n)
43 lim = sqrt(n);
44 do {
45 // get next sieve multiplier, avoiding duplication across threads
46 // lock the lock
47 pthread_mutex_lock(&nextbaselock);
48 base = nextbase;
49 nextbase += 2;
50 // unlock

Introduction to Parallel Processing: 7

2 PROGRAMMING PARADIGMS 2.2 Shared-Memory Example

51 pthread_mutex_unlock(&nextbaselock);
52 if (base <= lim) {
53 work++; // log work done by this thread
54 // don’t bother crossing out if base known composite
55 if (prime[base]) crossout(base);
56 }
57 else return work;
58 } while (1);
59 }
60

61 main(int argc, char **argv)
62 { int nprimes, // number of primes found
63 i,work;
64 n = atoi(argv[1]);
65 nthreads = atoi(argv[2]);
66 // mark all even numbers nonprime, and the rest "prime until
67 // shown otherwise"
68 for (i = 3; i <= n; i++) {
69 if (i%2 == 0) prime[i] = 0;
70 else prime[i] = 1;
71 }
72 nextbase = 3;
73 // get threads started
74 for (i = 0; i < nthreads; i++) {
75 // this call says to create a thread, record its ID in the array
76 // id, and get the thread started executing the function worker(),
77 // passing the argument i to that function
78 pthread_create(&id[i],NULL,worker,i);
79 }
80

81 // barrier, to wait for all done
82 for (i = 0; i < nthreads; i++) {
83 // this call said to wait until thread number id[i] finishes
84 // execution, and to assign the return value of that thread to our
85 // local variable work here
86 pthread_join(id[i],&work);
87 printf("%d values of base done\n",work);
88 }
89

90 // report results
91 nprimes = 1;
92 for (i = 3; i <= n; i++)
93 if (prime[i]) {
94 nprimes++;
95 }
96 printf("the number of primes found was %d\n",nprimes);
97

98 }

To make our discussion concrete, suppose we are running this program with two threads. Suppose also the
both threads are simultaneously most of the time. This will occur if they aren’t competing for turns with
other big threads. That in turn will occur if there are no other big threads, or more generally if the number
of other big threads is less than or equal to the number of processors minus two.

Introduction to Parallel Processing: 8

2 PROGRAMMING PARADIGMS 2.2 Shared-Memory Example

Note the global variables:

int nthreads, // number of threads (not counting main())
n, // range to check for primeness
prime[MAX_N+1], // in the end, prime[i] = 1 if i prime, else 0
nextbase; // next sieve multiplier to be used

pthread_mutex_t nextbaselock = PTHREAD_MUTEX_INITIALIZER;
pthread_t id[MAX_THREADS];

This will require some adjustment for those who’ve been taught that global variables are “evil.” All com-
munication between processors in shared-memory systems5 is via global variables, so if they are evil,
they are a necessary evil. Personally I think there is nothing wrong with global variables anyway. See
http://heather.cs.ucdavis.edu/˜matloff/globals.html .

As mentioned earlier, these are shared by all processors.6 If one processor, for instance, assigns the value
0 to prime[35] in the functioncrossout(), then that variable will have the value 0 when accessed by any of
the other processors as well. On the other hand, local variables have different values at each processor; for
instance, the variablei in that function has a different value at each processor.

In the code

pthread_mutex_lock(&nextbaselock);
base = nextbase
nextbase += 2
pthread_mutex_unlock(&nextbaselock);

we see acritical section operation which is typical in shared-memory programming. In this context here, it
means that we cannot allow more than one thread to execute

base = nextbase;
nextbase += 2;

at the same time. The calls topthread mutex lock() andpthread mutex unlock() ensure this. If thread A
is currently executing inside the critical section and thread B tries to lock the lock by callingpthread mutex lock(),
the call will block until thread B executespthread mutex unlock().

Here is why this is so important: Say currentlynextbasehas the value 11. What we want to happen is that
the next thread to readnextbasewill then “cross out” all multiples of 11. But if we allow two threads to
execute the critical section at the same time, the following may occur:

• thread A readsnextbase, setting its value ofbaseto 11

• thread B readsnextbase, setting its value ofbaseto 11

5And for that matter, within threaded programs on uniprocessor systems.
6Technically, we should say “shared by all threads” here, as a given thread does not always execute on the same processor, but

at any instant in time each executing thread is at some processor, so the statement is all right.

Introduction to Parallel Processing: 9

http://heather.cs.ucdavis.edu/~matloff/globals.html

2 PROGRAMMING PARADIGMS 2.3 Message-Passing Example

• thread A adds 2 tonextbase, so thatnextbasebecomes 13

• thread B adds 2 tonextbase, so thatnextbasebecomes 15

Two problems would then occur:

• Both threads would do “crossing out” of multiples of 7, thus duplicating and thus a slowing down
execution speed.

• We will never “cross out” multiples of 13.

Thus the lock is crucial to the correct (and speedy) execution of the program.

Note thebarrier :

for (i = 0; i < nthreads; i++) {
pthread_join(id[i],&work);
printf("%d values of base done\n",work);

}

Ignore theprintf() call; the main purpose of this loop is to wait for all threads to finish. This is needed in
order to prevent premature execution of the later code

for (i = 3; i <= n; i++)
if (prime[i]) {

nprimes++;
}

resulting in possibly wrong output if we start counting primes before some threads are done.

Actually, barriers are more general than this. A barrier is simply a point in the code at which we must wait
for all threads to reach before continuing. The threads do not necessarily have to exit at that point, as they
do here. This is a very common operation in shared-memory programming, which we will return to later.

2.3 Message-Passing Example

Here we use the MPI system, a popular public-domain set of interface functions, callable from C/C++, to
do message passing. We are again counting primes, though in this case using apipelining method. It is
similar to hardware pipelines, but in this case it is done in software, and each “stage” in the pipe is a different
computer.

The program is self-documenting, via the comments.

Introduction to Parallel Processing: 10

2 PROGRAMMING PARADIGMS 2.3 Message-Passing Example

1 /* this include file is mandatory */
2 #include <mpi.h>
3

4 /* MPI sample program; NOT INTENDED TO BE EFFICIENT as a prime
5 finder, either in algorithm or implementation
6

7 MPI (Message Passing Interface) is a popular package using
8 the "message passing" paradigm for communicating between
9 processors in parallel applications; as the name implies,

10 processors communicate by passing messages using "send" and
11 "receive" functions
12

13 finds and reports the number of primes less than or equal to N
14

15 uses a pipeline approach: node 0 looks at all the odd numbers
16 (i.e. has already done filtering out of multiples of 2) and
17 filters out those that are multiples of 3, passing the rest
18 to node 1; node 1 filters out the multiples of 5, passing
19 the rest to node 2; in this simple example, we just have node
20 2 filter out all the rest and then report the number of primes
21

22 note that we should NOT have a node run through all numbers
23 before passing them on to the next node, since we would then
24 have no parallelism at all; on the other hand, passing on just
25 one number at a time isn’t efficient either, due to the high
26 overhead of sending a message if it is a network (tens of
27 microseconds until the first bit reaches the wire, due to
28 software delay); thus efficiency would be greatly improved if
29 each node saved up a chunk of numbers before passing them to
30 the next node */
31

32 #define MAX_N 100000
33 #define PIPE_MSG 0 /* type of message containing a number to
34 be checked */
35 #define END_MSG 1 /* type of message indicating no more data will
36 be coming */
37

38 int NNodes, /* number of nodes in computation*/
39 N, /* find all primes from 2 to N */
40 Me, /* my node number */
41 ToCheck; /* current number to check for passing on to next node;
42 stylistically this might be nicer as a local in
43 Node*(), but I have placed it here to dramatize
44 the fact that the globals are NOT shared among
45 the nodes */
46

47 double T1,T2; /* start and finish times */
48

49 Init(Argc,Argv)
50 int Argc; char **Argv;
51

52 { int DebugWait;
53

54 N = atoi(Argv[1]);
55 DebugWait = atoi(Argv[2]);

Introduction to Parallel Processing: 11

2 PROGRAMMING PARADIGMS 2.3 Message-Passing Example

56

57 /* this loop is here to synchronize all nodes for debugging;
58 if DebugWait is specified as 1 on the command line, all nodes
59 wait here until the debugging programmer starts GDB at all
60 nodes and within GDB sets DebugWait to 0 to then proceed */
61 while (DebugWait) ;
62

63 /* mandatory to begin any MPI program */
64 MPI_Init(&Argc,&Argv);
65

66 /* puts the number of nodes in NNodes */
67 MPI_Comm_size(MPI_COMM_WORLD,&NNodes);
68 /* puts the node number of this node in Me */
69 MPI_Comm_rank(MPI_COMM_WORLD,&Me);
70

71 /* OK, get started; first record current time in T1 */
72 if (Me == 2) T1 = MPI_Wtime();
73 }
74

75 Node0()
76

77 { int I,Dummy,
78 Error; /* not checked in this example */
79 for (I = 1; I <= N/2; I++) {
80 ToCheck = 2 * I + 1;
81 if (ToCheck > N) break;
82 /* MPI_Send -- send a message
83 parameters:
84 pointer to place where message is to be drawn from
85 number of items in message
86 item type
87 destination node
88 message type ("tag") programmer-defined
89 node group number (in this case all nodes) */
90 if (ToCheck % 3 > 0)
91 Error = MPI_Send(&ToCheck,1,MPI_INT,1,PIPE_MSG,MPI_COMM_WORLD);
92 }
93 Error = MPI_Send(&Dummy,1,MPI_INT,1,END_MSG,MPI_COMM_WORLD);
94 }
95

96 Node1()
97

98 { int Error, /* not checked in this example */
99 Dummy;

100 MPI_Status Status; /* see below */
101

102 while (1) {
103 /* MPI_Recv -- receive a message
104 parameters:
105 pointer to place to store message
106 number of items in message (see notes on
107 this at the end of this file)
108 item type
109 accept message from which node(s)
110 message type ("tag"), programmer-defined (in this

Introduction to Parallel Processing: 12

2 PROGRAMMING PARADIGMS 2.3 Message-Passing Example

111 case any type)
112 node group number (in this case all nodes)
113 status (see notes on this at the end of this file) */
114 Error = MPI_Recv(&ToCheck,1,MPI_INT,0,MPI_ANY_TAG,
115 MPI_COMM_WORLD,&Status);
116 if (Status.MPI_TAG == END_MSG) break;
117 if (ToCheck % 5 > 0)
118 Error = MPI_Send(&ToCheck,1,MPI_INT,2,PIPE_MSG,MPI_COMM_WORLD);
119 }
120 /* now send our end-of-data signal, which is conveyed in the
121 message type, not the message (we have a dummy message just
122 as a placeholder */
123 Error = MPI_Send(&Dummy,1,MPI_INT,2,END_MSG,MPI_COMM_WORLD);
124 }
125

126 Node2()
127

128 { int ToCheck, /* current number to check from Node 0 */
129 Error, /* not checked in this example */
130 PrimeCount,I,IsComposite;
131 MPI_Status Status; /* see below */
132

133 PrimeCount = 3; /* must account for the primes 2, 3 and 5, which
134 won’t be detected below */
135 while (1) {
136 Error = MPI_Recv(&ToCheck,1,MPI_INT,1,MPI_ANY_TAG,
137 MPI_COMM_WORLD,&Status);
138 if (Status.MPI_TAG == END_MSG) break;
139 IsComposite = 0;
140 for (I = 7; I*I <= ToCheck; I += 2)
141 if (ToCheck % I == 0) {
142 IsComposite = 1;
143 break;
144 }
145 if (!IsComposite) PrimeCount++;
146 }
147 /* check the time again, and subtract to find run time */
148 T2 = MPI_Wtime();
149 printf("elapsed time = %f\n",(float)(T2-T1));
150 /* print results */
151 printf("number of primes = %d\n",PrimeCount);
152 }
153

154 main(argc,argv)
155 int argc; char **argv;
156

157 { Init(argc,argv);
158 /* note: instead of having a switch statement, we could write
159 three different programs, each running on a different node */
160 switch (Me) {
161 case 0: Node0();
162 break;
163 case 1: Node1();
164 break;
165 case 2: Node2();

Introduction to Parallel Processing: 13

3 MESSAGE-PASSING MECHANISMS

166 };
167 /* mandatory for all MPI programs */
168 MPI_Finalize();
169 }
170

171 /* explanation of "number of items" and "status" arguments at the end
172 of MPI_Recv():
173

174 when receiving a message you must anticipate the longest possible
175 message, but the actual received message may be much shorter than
176 this; you can call the MPI_Get_count() function on the status
177 argument to find out how many items were actually received
178

179 the status argument will be a pointer to a struct, containing the
180 node number, message type and error status of the received
181 message
182

183 say our last parameter is Status; then Status.MPI_SOURCE
184 will contain the number of the sending node, and
185 Status.MPI_TAG will contain the message type; these are
186 important if used MPI_ANY_SOURCE or MPI_ANY_TAG in our
187 node or tag fields but still have to know who sent the
188 message or what kind it is */

3 Message-Passing Mechanisms

3.1 Message-Passing Hardware

3.1.1 Hypercubes

A popular class of parallel machines used to be that ofhypercubes. Intel sold them, for example. A
hypercube would consist of some number of ordinary Intel processors, with each processor having some
memory and serial I/O hardward for connection to its “neighbor” processors.

Hypercubes proved to be too expensive for the type of performance they could achieve, and the market
was small anyway. Thus they are not common today, but they are still important, in that the algorithms
developed for them have become quite popular for use on general machines. In this section we will discuss
architecture, algorithms and software for such machines.

Definitions A hypercubeof dimension d consists ofD = 2d processing elements(PEs), i.e. processor-
memory pairs, We refer to such a cube as ad-cube.

The PEs in a d-cube will have numbers 0 through D-1. Let(cd−1, ..., c0) be the base-2 representation of a
PE’s number. The PE has fast point-to-point links to d other PEs, which we will call itsneighbors. Its ith
neighbor has number(cd−1, ..., 1− ci−1, ..., c0).7

7Note that we number the digits from right to left, with the rightmost digit being digit 0.

Introduction to Parallel Processing: 14

3 MESSAGE-PASSING MECHANISMS 3.1 Message-Passing Hardware

For example, consider a hypercube having D = 16, i.e. d = 4. The PE numbered 1011, for instance, would
have four neighbors, 0011, 1111, 1001 and 1010.

It is sometimes helpful to build up a cube from the lower-dimensional cases. To build a (d+1)-dimensional
cube from two d-dimensional cubes, just follow this recipe:

(a) Take a d-dimensional cube and duplicate it. Call these two cubes subcube 0 and subcube 1.

(b) For each pair of same-numbered PEs in the two subcubes, add a binary digit 0 to the front of the
number for the PE in subcube 0, and add a 1 in the case of subcube 1. Add a link between them.

The following figure shows how a 4-cube can be constructed in this way from two 3-cubes:

Introduction to Parallel Processing: 15

3 MESSAGE-PASSING MECHANISMS 3.1 Message-Passing Hardware

Given a PE of number(cd−1, ..., c0) in a d-cube, we will discuss the i-cube to which this PE belongs,
meaning all PEs whose first d-i digits match this PE’s.8 Of all these PEs, the one whose last i digits are all
0s is called theroot of this i-cube.

For the 4-cube and PE 1011 mentioned above, for instance, the 2-cube to which that PE belongs consists of
1000, 1001, 1010 and 1011—i.e. all PEs whose first two digits are 10—and the root is 1000.

Given a PE, we can split the i-cube to which it belongs into two (i-1)-subcubes, one consisting of those PEs
whose digit i-1 is 0 (to be called subcube 0), and the other consisting of those PEs whose digit i-1 is 1 (to be
called subcube 1). Each given PE in subcube 0 has as itspartner the PE in subcube 1 whose digits match
those of the given PE, except for digit i-1.

To illustrate this, again consider the 4-cube and the PE 1011. As an example, let us look at how the 3-cube
it belongs to will split into two 2-cubes. The 3-cube to which 1011 belongs consists of 1000, 1001, 1010,
1011, 1100, 1101, 1110 and 1111. This 3-cube can be split into two 2-cubes, one being 1000, 1001, 1010
and 1011, and the other being 1100, 1101, 1110 and 1111. Then PE 1000 is partners with PE 1100, PE 1001
is partners with PE 1101, and so on.

Each link between two PEs is a dedicated connection, much preferable to the shared link we have when
we run, say, MPI, on a collection of workstations on an Ethernet. On the other hand, if one PE needs to
communicate with a non-neighbor PE, multiple links (as many as d of them) will need to be traversed. Thus
the nature of the communications costs here is much different than for a network of workstations, and this
must be borne in mind when developing programs.

3.1.2 Networks of Workstations (NOWs)

As of this writing (early 2004), the commercial market for shared-memory hardware is strong, with the
machines being used for heavy-duty server applications, such as for large databases and World Wide Web
sites. The conventional wisdom is that these applications require the efficiency that good shared-memory
hardware can provide. Nevertheless, the prices of these systems are enormous, and it is very unclear as to
whether they can remain commercially viable.

Instead, the most promising alternative today appears to be networks of workstations (NOWs). It is much
cheaper to purchase a set of workstations9 and network them for use as parallel processing systems. They
are of course individual machines, capable of the usual uniprocessor, nonparallel applications, but by net-
working them together and using parallel-processing software environments, we can form very powerful
parallel systems.

The networking does result in a significant loss of performance. This will be discussed later. But even
without these techniques, the price/performance ratio in NOW is much superior in many applications to that
of specialized shared-memory or hypercube hardware.

One factor which can be key to the success of a NOW is to use a fast network, both in terms of hardware
and network protocol. Ordinary Ethernet and TCP/IP are fine for the applications envisioned by the original

8Note that this is indeed an i-dimensional cube, because the last i digits are free to vary.
9 I am including PCs in this category, as they are certainly as powerful today as the machines traditionally called “workstations.”

Introduction to Parallel Processing: 16

3 MESSAGE-PASSING MECHANISMS 3.1 Message-Passing Hardware

designers of the Internet, e.g. e-mail and file transfer, but is slow in the NOW context. A good network
for a NOW is, for instance, Infiniband. For information on network protocols, e.g. for examplewww.
rdmaconsortium.org .

3.1.3 Hardware Issues

Multiprocessor architects use the termslatencyandbandwidth to provide a rough description of the perfor-
mance potential of an interconnect. Latency means time it takes for a bit to travel from source to destination.
This includes queuing delays within network nodes, software delays (as a bit travels through software layers,
e.g. from application program to OS to I/O hardware), etc. Bandwidth means the number of bits which can
be sent simultaneously.

In a message-passing system on an Ethernet, node-to-node communication latency is quite high, as high
as hundreds of microseconds, which is huge compared to memory-latency time for (at least the smaller)
shared-memory systems. This can be greatly reduced by using a special network, but in any case, when
writing application software, failure to write the code in such a way as to deal with this latency issue can
severely reduce program speed, sometimes even to the point at which running on a single machine is faster
than running in parallel.

One remedy that one can try is to usenonblocking versions of Send() functions to reduce the effect of this
latency. This means that a node does not have to wait for a message transmission to occur, but can instead
work on other subtasks in the interim.

The newest message-passing hardware/software systems implementactive messages. Here latency is ac-
tually reduced, because a message will be deposited directly into the application program’s buffer at the
receiver, rather than being buffered by the operating system first and then copied a second time to the appli-
cation program’s address space.

For example, consider the code

int X[1000000];
...
Recv(X);

The array X will be sent to this node by some other node, with a call something like

Send(X);

As this message arrives at the receiving node via the Ethernet, the Ethernet card at that node will cause a
CPU interrupt. The interrupt service routine, i.e. the OS, will copy the incoming data from ports in the
Ethernet card to a buffer in the OS. When done, that data will then be sent by the OS to the application
program, which will, via Recv(), copy the data to X. In other words, we have only one copy operation to
memory, not two, which can save a lot of time.

Introduction to Parallel Processing: 17

www.rdmaconsortium.org
www.rdmaconsortium.org

4 SHARED-MEMORY MECHANISMS 3.2 Message-Passing Software

Another way to deal with latency is to hide it, rather than reduce it, using threading. If we are using message-
passing, for instance, instead of waiting a long time to receive a message, we can switch to a different thread
and do other useful work for our parallel processing task while we are waiting.

3.1.4 Message Passing on Shared-Memory Machines

Even if one has shared-memory hardware, one can still do message-passing on it, say with MPI. In fact,
IBM even produces its own version of MPI, especially tailored to IBM’s shared-memory machines.

Why would one do this? Well, even though most people in the parallel processing community believe that
the shared-memory programming paradigm is clearer than the message-passing paradigm, there is general
agreement that if one wants to really get as much speed as possible on a given platform, message-passing is
better able to attain top speed than shared-memory programming. Another reason for using message passing
on a shared-memory machine, using MPI, is that the code is then usable on (if not optimized for) use on
almost any platform.

3.2 Message-Passing Software

The first widely-used message-passing software was PVM (Parallel Virtual Machine); see the links at
http://heather.cs.ucdavis.edu/˜matloff/pvm.html . It was developed at Oak Ridge Na-
tional Laboratory. It is still in wide use today, but its successor MPI (Message Passing Interface); see
the links athttp://heather.cs.ucdavis.edu/˜matloff/mpi.html . It was developed at Ar-
gonne National Laboratory is probably the more popular package now. Both PVM and MPI are public-
domain.

4 Shared-Memory Mechanisms

4.1 Hardware Issues

As mentioned in the message-passing setting above, when writing application software to run on such sys-
tems, failure to write the code in such a way as to deal with hardware issues can severely reduce program
speed, sometimes even to the point at which running on a single machine is faster than running in parallel.

4.2 Shared-Memory through Hardware

(Note: In spite of the wordhardwarein the title of this section, you will see later that many of the issues
discussed here will also arise in software contexts.)

The termshared memorymeans that the processors all share a common address space. Say this is occurring
at the hardware level, and we are using Intel Pentium CPUs. Suppose processor P3 issues the instruction

Introduction to Parallel Processing: 18

http://heather.cs.ucdavis.edu/~matloff/pvm.html
http://heather.cs.ucdavis.edu/~matloff/mpi.html

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

movl 200, %eabx

which reads memory location 200 and places the result in the EAX register in the CPU. If processor P4 does
the same, they both will be referring to the same physical memory cell. In non-shared-memory machines,
each processor has its own private memory, and each one will then have its own location 200, completely
independent of the locations 200 at the other processors’ memories.

Say a program contains a global variable X and a local variable Y on share-memory hardware (and we
use shared-memory software). If for example the compiler assigns location 200 to the variable X, i.e.
&X = 200, then the point is that all of the processors will have that variable in common, because any
processor which issues a memory operation on location 200 will access the same physical memory cell.

On the other hand, each processor will have its own separate run-time stack,10 and thus each processor will
have its own independent copy of the local variable Y.

To make the meaning of “shared memory” more concrete, suppose we have a bus-based system, with all
the processors and memory attached to the bus. Let us compare the above variables X and Y here. Suppose
again that the compiler assigns X to memory location 200. Then in the machine language code for the
program, every reference to X will be there as 200. Every time an instruction involving X is executed by a
CPU, that CPU will put 200 into its Memory Address Register (MAR), from which the 200 flows out on the
address lines in the bus, and goes to memory. This will happen in the same way no matter which CPU it is.
Thus the same physical memory location will end up being accessed, no matter which CPU generated the
reference.

By contrast, say the compiler assigns Y to something like ESP+8, the third item on the stack.11 Each CPU
will have its own current value for ESP, so the stacks of the various CPUs will be separate.12

4.2.1 Placement of Memory Modules

The placement of the memory modules is quite important.

Symmetric Multiprocessor Let’s first consider the following structure:

Here and below:
10Still in shared memory, but a separate stack for each processor, since each CPU has a different value in its SP register.
11ESP is the number of the stack pointer register in the Pentium.
12Again, the stacks willbe in the physical shared memory, and thus P3, say, could theoretically access P8’s stack, say if there

were an erroneous pointer value. But even that would not occur if we are using virtual memory and thus have protections against
this.

Introduction to Parallel Processing: 19

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

• The Ps are processors, e.g. off-the-shelf chips such as Pentiums.

• The Ms arememory modules. These are physically separate objects, e.g. separate boards of memory
chips. It is typical that there will be the same number of Ms as Ps, but it does not have to be this
way. In the shared-memory case, the Ms collectively form the entire shared address space, but with
the addresses being assigned to the Ms in one of two ways:

– (a)

High-order interleaving. Here consecutive addresses are in the sameM (except at boundaries).
For example, suppose for simplicity that our memory consists of addresses 0 through 1023, and
that there are four Ms. Then M0 would contain addresses 0-255, M1 would have 256-511, M2
would have 512-767, and M3 would have 768-1023.13

– (b)

Low-order interleaving. Here consecutive addresses are in consecutive M’s (except when we get
to the right end). In the example above, if we used low-order interleaving, then address 0 would
be in M0, 1 would be in M1, 2 would be in M2, 3 would be in M3, 4 would be back in M0, 5 in
M1, and so on.

• To make sure only one P uses the bus at a time, standard bus arbitration signals and/or arbitration
devices are used.

• There may also becoherent caches, which we will discuss later.

The shared-memory, bus-connected case shown here is called asymmetric multiprocessor(SMP). It is also
referred to as a Uniform Memory Access (UMA) structure, meaning that all CPUs have the same access time
to memory. Except for the negligible difference in bus propagation delays, each processor takes the same
time to acquire the bus and then access memory.

A NUMA Example By contrast, look at this version:

Each P/M/R set here is called aprocessing element(PE). Note that each PE has its own local bus, and is
also connected to the global bus via R, the router.

13Miscellaneous gates (“glue”) would be used so that the correct M would recognize a bus address as being for that M.

Introduction to Parallel Processing: 20

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

Suppose for example that P3 needs to access location 200, and suppose that high-order interleaving is used.14

If location 200 is in M3, then P3’s request is satisfied by the local bus.15 On the other hand, suppose location
200 is in M8. Then the R3 will notice this, and put the request on the global bus, where it will be seen by
R8, which will then copy the request to the local bus at PE8, where the request will be satisfied. (E.g. if it
was a read request, then the response will go back from M8 to R8 to the global bus to R3 to P3.)

It should be obvious now where NUMA gets its name. P8 will have much faster access to M8 than P3 will
to M8, if none of the buses is currently in use—and if say the global bus is currently in use, P3 will have to
wait a long time to get what it wants from M8.

These days NUMA systems are really in vogue. One of the attractive features of NUMA is that by good
programming we can exploit the nonuniformity. In matrix problems, for example, we can write our program
so that, for example, P8 usually works on those rows of the matrix which are stored in M8, P3 usually works
on those rows of the matrix which are stored in M3, etc. In order to do this, we need to make use of the
C language’s & address operator, and have some knowledge of the memory hardware structure, i.e. the
interleaving.

4.2.2 Interconnect Topologies

The problem with a bus connection, of course, is that there is only one pathway for communication, and thus
only one processor can access memory at the same time. If one has more than, say, two dozen processors are
on the bus, the bus becomes saturated, even if traffic-reducing methods such as adding caches are used. Thus
multipathway topologies are used for all but the smallest systems. In this section we look at two alternatives
to a bus topology.

Crossbar Interconnects Consider a UMA shared-memory system with n processors and n memory mod-
ules. The a crossbar connection would providen2 pathways. E.g. for n = 8:

14 Low-order interleaving would probably be disastrous here.
15This sounds similar to the concept of a cache. However, it is very different. A cache contains a local copy of some data stored

elsewhere. Here it is the data itself, not a copy, which is being stored locally.

Introduction to Parallel Processing: 21

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

Generally serial communication is used from node to node, with a packet containing information on both
source and destination address. E.g. if P2 wants to read from M5, the source and destination will be 3-bit
strings in the packet, coded as 010 and 101, respectively. The packet will also contain bits which specify
which word within the module we wish to access, and bits which specify whether we wish to do a read or a
write. In the latter case, additional bits are used to specify the value to be written.

Each diamond-shaped node has two inputs (bottom and right) and two outputs (left and top), with buffers
at the two inputs. If a buffer fills, there are two design options: (a) Have the node from which the input
comes block at that output. (b) Have the node from which the input comes discard the packet, and retry
later, possibly outputting some other packet for now. If the packets at the heads of the two buffers both need
to go out the same output, the one (say) from the bottom input will be given priority.

In this UMA setting,16 there would also be a return network of the same type, with this one being memory

16 Note that we are calling it UMA because processors and memory modules are not paired together. The access is not really
very uniform.

Introduction to Parallel Processing: 22

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

→ processor, to return the result of the read requests.17

A NUMA version of this is also possible. It is not shown here, but the difference would be that at the bottom
edge we would have the PEi and at the left edge the memory modules Mi would be replaced by lines which
wrap back around to PEi.18

Crossbar switches are too expensive for large-scale systems, but are useful in some small systems. The
16-CPU Sun Microsystems Enterprise 10000 system includes a 16x16 crossbar.

Omega Interconnects These are multistage networks similar to crossbars, but with fewer paths. Here is
an example of a NUMA 8x8 system:

Recall that each PE is a processor/memory pair. PE3, for instance, consists of P3 and M3.

Note the fact that at the third stage of the network (top of picture), the outputs are routed back to the PEs,
each of which consists of a processor and a memory module.19

In a UMA version, we would see Pi instead of PEi at the bottom edge, and would see Mi at the top edge
instead of dashed lines leading downward.

At each network node (the nodes are the three rows of rectangles), the output routing is done by destination
bit. Let’s number the stages here 0, 1 and 2, starting from the bottom stage, number the nodes within a stage
0, 1, 2 and 3 from left to right, number the PEs from 0 to 7, left to right, and number the bit positions in a
destination address 0, 1 and 2, starting from the most significant bit. Then at stage i, bit i of the destination
address is used to determine routing, with a 0 meaning routing out the left output, and 1 meaning the right
one.

Say P2 wishes to read from M5. It sends a read-request packet, including 5 = 101 as its destination address,
to the switch in stage 0, node 1. Since the first bit of 101 is 1, that means that this switch will route the
packet out its right-hand output, sending it to the switch in stage 1, node 3. The latter switch will look at the
next bit in 101, a 0, and thus route the packet out its left output, to the switch in stage 2, node 2. Finally, that
switch will look at the last bit, a 1, and output out its right-hand output, sending it to PE5, as desired. M5
will process the read request, and send a packet back to PE2, along the same

Again, if two packets at a node want to go out the same output, one must get priority (let’s say it is the one
from the left input).

17 For safety’s sake, i.e. fault tolerance, even writes are typically acknowledged in multiprocessor systems.
18Similar to the Omega network shown below.
19The picture may be cut off somewhat at the top and left edges. The upper-right output of the rectangle in the top row, leftmost

position should connect to the dashed line which leads down to the second PE from the left. Similarly, the upper-left output of that
same rectangle is a dashed lined, possibly invisible in your picture, leading down to the leftmost PE.

Introduction to Parallel Processing: 23

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

Here is how the more general case of N =2n PEs works. Again number the rows of switches, and switches
within a row, as above. So,Sij will denote the switch in the i-th row from the bottom and j-th column from
the left (starting our numbering with 0 in both cases). Row i will have a total of N input portsIik and N
output portsOik, where k = 0 corresponds to the leftmost of the N in each case. Then if row i is not the last
row (i < n− 1), Oik will be connected toIjm, where j = i+1 and

m = (2k + b(2k)/Nc) mod N (1)

If row i is the last row, thenOik will be connected to, PE k.

Comparative Analysis In the world of parallel architectures, a key criterion for a proposed feature is
scalability, meaning how well the feature performs as we go to larger and larger systems. Let n be the
system size, either the number of processors and memory modules, or the number of PEs. Then we are
interested in how fast the latency, bandwidth and cost grow with n:

criterion bus Omega crossbar
latency O(1) O(log2 n) O(n)
bandwidth O(1) O(n) O(n)
cost O(1) O(n log2 n) O(n2)

Let us see where these expressions come from, beginning with a bus: No matter how large n is, the time to
get from, say, a processor to a memory module will be the same, thus O(1). Similarly, no matter how large
n is, only one communication can occur at a time, thus again O(1).20

Again, we are interested only in “O()” measures, because we are only interested in growth rates as the
system size n grows. For instance, if the system size doubles, the cost of a crossbar will quadruple; the
O(n2) cost measure tells us this, with any multiplicative constant being irrelevant.

For Omega networks, it is clear thatlog2n network rows are needed, hence the latency value given. Also,
each row will have n/2 switches, so the number of network nodes will be O(nlog2n). This figure then gives
the cost (in terms of switches, the main expense here). It also gives the bandwidth, since the maximum
number of simultaneous transmissions will occur when all switches are sending at once.

Similar considerations hold for the crossbar case.

The crossbar’s big advantage is that it is guaranteed that n packets can be sent simultaneously, providing
they are to distinct destinations.21

That is nottrue for Omega-networks. If for example, PE0 wants to send to PE3, and at the same time PE4
wishes to sent to PE2, the two packets will clash at the leftmost node of stage 1, where the packet from PE0
will get priority.

20 Note that the ‘1’ in “O(1)” does not refer to the fact that only one communication can occur at a time. If we had, for example,
a two-bus system, the bandwidth would still be O(1), since multiplicative constants do not matter. What O(1) means, again, is that
as n grows, the bandwidth stays at a multiple of 1, i.e. stays constant.

21 If two or more go to the same destination, they couldn’t be satisfied simultaneously anyway, unless dual-port memory were
used.

Introduction to Parallel Processing: 24

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

On the other hand, a crossbar is very expensive, and thus is dismissed out of hand in most modern sys-
tems. Note, though, that an equally troublesom aspect of crossbars is their high latency value; this is a big
drawback when the system is not heavily loaded.

The bottom line is that Omega-networks amount to a compromise between buses and crossbars, and for this
reason have become popular.

4.2.3 Test-and-Set

Consider a bus-based UMA system. In addition to whatever memory read and memory write instructions
the processor included, say LD and ST, there would also be a TAS instruction.22 This instruction would
control a TAS pin on the processor chip, and the pin in turn would be connected to a TAS line on the bus.

Applied to a location L in memory and a register R, say, TAS does the following:

copy L to R
if R is 0 then write 1 to L

And most importantly, these operations are done in anatomic manner; no bus transactions by other proces-
sors may occur between the two steps.

The TAS operation is applied to variables used aslocks. Let’s say that 1 means locked and 0 unlocked. Then
the guarding of a critical section C by a lock variable L would be done by having the following code in the
program being run:

TRY: TAS R,L
JNZ TRY

C: ... ; start of critical section
...
... ; end of critical section
MOV L,0 ; unlock

where of course JNZ is a jump-if-nonzero instruction, and we are assuming that the copying from the
Memory Data Register to R results in the processor N and Z flags (condition codes) being affected.

A critical section is a portion of a program in which we cannot have more than one processor execute at a
time. For instance, consider an airline reservation system. If a flight has only one seat left, we want to avoid
giving it to two different customers who might be talking to two agents at the same time. The lines of code
in which the seat is finally assigned (thecommit phase, in database terminology) is then a critical section.

In crossbar orΩ-network systems, some 2-bit field in the packet must be devoted to transaction type, say 00
for Read, 01 for Write and 10 for TAS. In a sytem with 16 CPUs and 16 memory modules, say, the packet
might consist of 4 bits for the CPU number, 4 bits for the memory module number, 2 bits for the transaction
type, and 32 bits for the data (for a write, this is the data to be written, while for a read, it would be the
requested value, on the trip back from the memory to the CPU).

22This discussion is for a mythical machine, but any real system works in this manner.

Introduction to Parallel Processing: 25

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

But note that the atomicity here is best done at the memory, i.e. some hardware should be added at the
memory so that TAS can be done; otherwise, an entire processor-to-memory path (say in a UMA system)
would have to be locked up for a fairly long time, obstructing even the packets which go to other memory
modules.

There are many variations of test-and-set, so don’t expect that all processors will have an instruction with
this name, but they all will have some kind of synchronization instruction like it.

Note carefully that in many settings it may not be crucial to get the most up-to-date value of a variable.
For example, a program may have a data structure showing work to be done. Some processors occasionally
add work to the queue, and others take work from the queue. Suppose the queue is currently empty, and
a processor adds a task to the queue, just as another processor is checking the queue for work. As will be
seen later, it is possible that even though the first processor has written to the queue, the new value won’t be
visible to other processors for some time. But the point is that if the second processor does not see work in
the queue (even though the first processor has put it there), the program will still work correctly, albeit with
some performance loss.

4.2.4 Cache Coherency

Consider, for example, a bus-based system. Relying purely on TAS for interprocessor synchronization
would be unthinkable: As each processor contending for a lock variable spins in the loop shown above, it is
adding tremendously to bus traffic.

An answer is to have caches at each processor.23 These will to store copies of the values of lock variables.
(Of course, non-lock variables are stored too. However, the discussion here will focus on effects on lock
variables.) The point is this: Why keep looking at a lock variable L again and again, using up the bus
bandwidth? L may not change value for a while, so why not keep a copy in the cache, avoiding use of the
bus?

The answer of course is that eventually L willchange value, and this causes some delicate problems. Say for
example that processor P5 wishes to enter a critical section guarded by L, and that processor P2 is already
in there. During the time P2 is in the critical section, P5 will spin around, always getting the same value for
L (1) from C5, P5’s cache. When P2 leaves the critical section, P2 will set L to 0—and now C5’s copy of L
will be incorrect. This is thecache coherency problem, inconsistency between caches.

A number of solutions have been devised for this problem. For bus-based systems,snoopyprotocols of
various kinds are used, with the word “snoopy” referring to the fact that all the caches monitor (“snoop on”)
the bus, watching for transactions made by othercaches.

The most common protocols are theinvalidate andupdate types. This relation between these two is some-
what analogous to the relation betweenwrite-back andwrite-through protocols for caches in uniprocessor
systems:

• Under an invalidate protocol, when a processor writes to a variable in a cache, it first (i.e. before

23The reader may wish to review the basics of caches. See for examplehttp://heather.cs.ucdavis.edu/ mat-
loff/50/PLN/CompOrganization.pdf.

Introduction to Parallel Processing: 26

h

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

actually doing the write) tells each other cache to mark as invalid its cache line (if any) which contains
a copy of the variable.24 Those caches will be updated only later, the next time their processors need
to access this cache line.

• For an update protocol, the processor which writes to the variable tells all other caches to immediately
update their cache lines containing copies of that variable with the new value.

Let’s look at an outline of how one implementation (many variations exist) of an invalidate protocol would
operate:

In the scenario outlined above, when P2 leaves the critical section, it will write the new value 0 to L. Under
the invalidate protocol, P2 will post an invalidation message on the bus. All the other caches will notice, as
they have been monitoring the bus. They then mark their cached copies of the line containing L as invalid.

Now, the next time P5 executes the TAS instruction—which will be very soon, since it is in the loop shown
above—P5 will find that the copy of L in C5 is invalid. It will respond to this cache miss by going to the
bus, and requesting P2 to supply the “real” (and valid) copy of the line containing L.

But there’s more. Suppose that all this time P6 had also been executing the loop shown above. Then P5 and
P6 may have to contend with each other; whoever manages to grab possession of the bus first25 will be the
one who ends up finding that L = 0. Let’s say that that one is P6. P6 then executes the TAS again, finds L =
0, and then enters the critical section. An instant later, P5 P6 relinquishes the bus, P5 tries its execution of
the TAS again. P5 acquires a valid copy of L now, but L will be 1 at this time, so P5 must resume executing
the loop. P5 will then continue to use its valid local copy of L each time it does the TAS, until P6 leaves the
critical section, writes 0 to L, and causes another cache miss at P5, etc.

At first the update approach seems obviously superior, and actually, if our shared, cacheable26 variables
were only lock variables, this might be true.

But consider a shared, cacheable vector. Suppose the vector fits into one block, and that we write to each vec-
tor element sequentially. Under an update policy, we would have to send a new message on the bus/network
for each component, while under an invalidate policy, only one message (for the first component) would be
needed. If during this time the other processors do not need to access this vector, all those update messages,
and the bandwidth they use, would be wasted.

Or suppose for example we have code like

Sum += X[I];

in the middle of afor loop. Under an update protocol, we would have to write the value of Sum back many
times, even though the other processors may only be interested in the final value when the loop ends. (This
would be true, for instance, if the code above were part of a critical section.)

24we will follow commonly-used terminology here, distinguishing between acache lineand amemory block. Memory is divided
in blocks, some of which have copies in the cache. The cells in the cache are calledcache lines. So, at any given time, a given
cache line is either empty or contains a copy (valid or not) of some memory block.

25Again, remember that ordinary bus arbitration methods would be used.
26 Many modern processors, including Pentium and MIPS, allow the programmer to mark some blocks as being noncacheable.

Introduction to Parallel Processing: 27

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

If you have previously studiedwrite-back andwrite-through cache policies on uniprocessor systems, you
should note the similarities of the issues here. Note, though, that the problems are exacerbated here, due to
the high cost of communication, e.g. bus contention.

Thus the invalidate protocol works well for some kinds of code, while update works better for others. The
CPU designers must try to anticipate which protocol will work well across a broad mix of applications.27

Now, how is cache coherency handled in non-bus shared-memory systems, say crossbars? Here the problem
is more complex. Think back to the bus case for a minute: The very feature which was the biggest negative
feature of bus systems—the fact that there was only one path between components made bandwidth very
limited—is a very positivefeature in terms of cache coherency, because it makes broadcastvery easy: Since
everyone is attached to that single pathway, sending a message to all of them costs no more than sending it
to just one—we get the others for free. That’s no longer the case for multipath systems. In such systems,
extra copies of the message must be created for each path, adding to overall traffic.

A solution is to send messages only to “interested parties.” Indirectory-basedprotocols, a list is kept of
all caches which currently have valid copies of all blocks. In one common implementation, for example,
while P2 is in the critical section above, it would be theowner of the block containing L. (Whoever is the
latest node to write to L would be considered its current owner.) It would maintain a directory of all caches
having valid copies of that block, say C5 and C6 in our story here. As soon as P2 wrote to L, it would then
send either invalidate or update packets (depending on which type was being used) to C5 and C6 (and notto
other caches which didn’t have valid copies).

There would also be a directory at the memory, listing the current owners of all blocks. Say for example P0
now wishes to “join the club,” i.e. tries to access L, but does not have a copy of that block in its cache C0.
C0 will thus not be listed in the directory for this block. So, now when it tries to access L and it will get a
cache miss. P0 must now consult thehomeof L, say P14. The home might be determined by L’s location
in main memory according to high-order interleaving; it is the place where the main-memory version of L
resides. A table at P14 will inform P0 that P2 is the current owner of that block. P0 will then send a message
to P2 to add C0 to the list of caches having valid copies of that block. Similarly, a cache might “resign” from
the club, due to that cache line being replaced, e.g. in a LRU setting, when some other cache miss occurs.

Example: the MESI Cache Coherency Protocol Many types of cache coherency protocols have been
proposed and used, some of them quite complex. A relatively simple one for snoopy bus systems which is
widely used is MESI, whose name stands for the four states a given cache line can be in for a given CPU:

• Modified

• Exclusive

• Shared

• Invalid

It is the protocol used in the Pentium I, for example.

27Some protocols change between the two modes dynamically.

Introduction to Parallel Processing: 28

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

Here is a summary of the meanings of the states:

state meaning
M written to more than once; no other copy valid
E valid; no other cache copy valid; memory copy valid
S valid; at least one other cache copy valid
I invalid

Following is a summary of MESI state changes.28 When reading it, keep in mind that there is a separate
state for each cache/memory block combination. In other words, if we have c CPUs (and thus c caches) and
b memory blocks, there are components in a state. Also, in addition to the termsread hit, read miss, write
hit , write miss, which you are already familiar with, there are alsoread snoopandwrite snoop. These
refer to the case in which our CPU observes a read or write action by another CPU on the bus. So, here are
various events and their corresponding state changes:

If our CPU does a read:

present state event new state
M read hit M
E read hit E
S read hit S
I read miss; no valid cache copy at any other CPU E
I read miss; at least one valid cache copy in some other CPU S

If our CPU does a memory write:

present state event new state
M write hit; do not put invalidate signal on bus; do not update memory M
E same as M above M
S write hit; put invalidate signal on bus; update memory E
I write miss; update memory but do nothing else I

If our CPU does a read snoop(i.e. observes another CPU’s cache do a read action on the bus) orwrite
snoop(i.e. observes another CPU’s cache to a write action on the bus):

present state event newstate
M read snoop; write line back to memory, picked up by other CPU S
M write snoop; write line back to memory I
E read snoop; put shared signal on bus; no memory action S
E write snoop; no memory action I
S read snoop S
S write snoop I
I any snoop I

28SeePentium Processor System Architecture, by D. Anderson and T. Shanley, Addison-Wesley, 1995. We have simplified the
presentation here, by eliminating certain programmable options.

Introduction to Parallel Processing: 29

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

4.2.5 The Problem of “False Sharing”

Consider the C declaration

int W,Z;

SinceW andZ are declared adjacently, most compilers will assign them contiguous memory addresses.
Thus, unless one of them is at a memory block boundary, when they are cached they will be stored in the
same cache line. Suppose the program writes toZ, and our system uses an invalidate protocol. ThenW will
be considered invalid at the other processors, even though its values at those processors’ caches are correct.
This is thefalse sharingproblem, alluding to the fact that the two variables are sharing a cache line even
though they are not related.

This can have very adverse impacts on performance. If for instance our variableW is now written to, then
Z will suffer unfairly, as its copy in the cache will be considered invalid even though it is perfectly valid.
This can lead to a “ping-pong” effect, in which alternate writing to two variables leads to a cyclic pattern of
coherency transactions.

4.2.6 Memory-Access Consistency Policies

Though the wordconsistencyin the title of this section may seem to simply be a synonym forcoherency
from the last section, and though there actually is some relation, the issues here are quite different. In this
case, it is a timing issue: After one processor changes the value of a shared variable, when will that value be
visible to the other processors?

There are various reasons why this is an issue. For example, many processors, especially in multiprocessor
systems, havewrite buffers , which save up writes for some time before actually sending them to memory.
(For the time being, let’s suppose there are no caches.) The goal is to reduce memory access costs. Sending
data to memory in groups is generally faster than sending one at a time, as the overhead of, for instance,
acquiring the bus is amortized over many accesses. Reads following a write may proceed, without waiting
for the write to get to memory, except for reads to the same address. So in a multiprocessor system in which
the processors use write buffers, there will often be some delay before a write actually shows up in memory.

A related issue is that operations may occur, or appear to occur, out of order. As noted above, a read which
follows a write in the program may execute before the write is sent to memory. Also, in a multiprocessor
system with multiple paths between processors and memory modules, two writes might take different paths,
one longer than the other, and arrive “out of order.” In order to simplify the presentation here, we will focus
on the case in which the problem is due to write buffers, though.

The designer of a multiprocessor system must adopt someconsistency modelregarding situations like this.
The above discussion shows that the programmer must be made aware of the model, or risk getting incorrect
results. Note also that different consistency models will give different levels of performance. The “weaker”
consistency models make for faster machines but require the programmer to do more work.

The strongest consistency model is Sequential Consistency. It essentially requires that memory operations
done by one processor are observed by the other processors to occur in the same order as executed on the

Introduction to Parallel Processing: 30

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

first processor. Enforcement of this requirement makes a system slow, and it has been replaced on most
systems by weaker models.

One such model isrelease consistency. Here the processors’ instruction sets include instructions ACQUIRE
and RELEASE. Execution of an ACQUIRE instruction at one processor involves telling all other processors
to flush their write buffers. However, the ACQUIRE won’t execute until pending RELEASEs are done.
Execution of a RELEASE basically means that you are saying, ”I’m done writing for the moment, and
wish to allow other processors to see what I’ve written.” An ACQUIRE waits for all pending RELEASEs to
complete before it executes.29

A related model isscope consistency. Say a variable, saySum, is written to within a critical section guarded
by LOCK and UNLOCK instructions.30 Then under scope consistency any changes made by one processor
to Sum within this critical section would then be visible to another processor when the latter next enters
this critical section. The point is that memory update is postpone until it is actually needed. Also, a barrier
operation (again, executed at the hardware level) forces all pending memory writes to complete.

All modern processors include instructions which implement consistency operations. For example, Sun
Microsystems’ SPARC has a MEMBAR instruction. If used with a STORE operand, then all pending writes
at this processor will be sent to memory. If used with the LOAD operand, all writes will be made visible to
this processor.

Now, how does cache coherency fit into all this? There are many different setups, but for example let’s
consider a design in which there is a write buffer between each processor and its cache. As the processor
does more and more writes, the processor saves them up in the write buffer. Eventually, some programmer-
induced event, e.g. a MEMBAR instruction,31 will cause the buffer to be flushed. Then the writes will be
sent to “memory”—actually meaning that they go to the cache, and then possibly to memory.

The point is that before that flush of the write buffer occurs, the cache coherency system is quite unaware
of these writes. Thus the cache coherency operations, e.g. the various actions in the MESI protocol, won’t
occur until the flush happens.

To make this notion concrete, again consider the example withSumabove, and assume release or scope con-
sistency. The CPU currently executing that code (say CPU 5) writes toSum, which is a memory operation—
it affects the cache and thus eventually the main memory—but that operation will be invisible to the cache
coherency protocol for now, as it will only be reflected in this processor’s write buffer. But when the unlock
is finally done (or a barrier is reached), the write buffer is flushed and the writes are sent to this CPU’s
cache. That then triggers the cache coherency operation (depending on the state). The point is that the cache
coherency operation would occur only now, not before.

What about reads? Suppose another processor, say CPU 8, does a read ofSum, and that page is marked
invalid at that processor. A cache coherency operation will then occur. Again, it will depend on the type of
coherency policy and the current state, but in typical systems this would result inSum’s cache block being

29There are many variants of all of this, especially in the software distibuted shared memory realm, to be discussed later.
30Note again that these are instructions within the processors’ instruction sets, not just a software operation. They would typically

be made conveniently available to the programmer via library calls from C/C++, but those library functions would include LOCK
and UNLOCK instructions.

31We call this “programmer-induced,” since the programmer will include some special operation in her C/C++ code which will
be translated to MEMBAR.

Introduction to Parallel Processing: 31

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

shipped to CPU 8 from whichever processor the cache coherency system thinks has a valid copy of the
block. That processor may or may not be CPU 5, but even if it is, that block won’t show the recent change
made by CPU 5 toSum.

The analysis above assumed that there is a write buffer between each processor and its cache. There would
be a similar analysis if there were a write buffer between each cache and memory.

Note once again the performance issues. Instructions such as ACQUIRE or MEMBAR will use a substantial
amount of interprocessor communication bandwidth. A consistency model must be chosen carefully by
the system designer, and the programmer must keep the communication costs in mind in developing the
software.

4.2.7 Fetch-and-Add and Packet-Combining Operations

Another form of interprocessor synchronization is afetch-and-add (FA) instruction. The idea of FA is as
follows. For the sake of simplicity, consider code like

LOCK(K);
Y = X++;
UNLOCK(K);

Suppose our architecture’s instruction set included an F&A instruction. It would add 1 to the specified
location in memory, and return the old value (toY) that had been in that location before being incremented.
And all this would be an atomic operation.

We would then replace the code above by a library call, say,

FETCH_AND_ADD(X,1);

The C code above would compile to, say,

F&A X,R,1

whereR is the register into which the old (pre-incrementing) value ofX would be returned.

There would be hardware adders placed at each memory module. That means that the whole operation could
be done in one round trip to memory. Without F&A, we would need two round trips to memory just for the

X++;

(we would loadX into a register in the CPU, increment the register, and then write it back toX in memory),
and then the LOCK() and UNLOCK() would need trips to memory too. This could be a huge time savings,
especially in situations like this one in which the operation is repeatedly executed in a loop.

Introduction to Parallel Processing: 32

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

In addition to read and write operations being specifiable in a network packet, an F&A operation could be
specified as well (a 2-bit field in the packet would code which operation was desired). Again, there would
be adders included at the memory modules, i.e. the addition would be done at the memory end, not at the
processors. When the F&A packet arrived at a memory module, our variableX would have 1 added to it,
while the old value would be sent back in the return packet (and put into R).

Another possibility for speedup occurs if our system uses a multistage interconnection network such as a
crossbar. In that situation, we can design some intelligence into the network nodes to dopacket combining:
Say more than one CPU is executing an F&A operation at about the same time for the same variableX.
Then more than one of the corresponding packets may arrive at the same network node at about the same
time. If each one requested an incrementing ofX by 1, the node can replace the two packets by one, with
an increment of 2. Of course, this is a delicate operation, and we must make sure that different CPUs get
different return values, etc.

4.2.8 Multicore Chips

A recent trend has been to put several CPUs on one chip, termed amulticore chip. As of March 2006,
dual-core chips were beginning to become common in personal computers. The typical dual-core setup
might have the two CPUs sharing a common L2 or L3 cache, and thus a common connection to the bus or
interconnect network.

If our system consists of more than one of these chips, there are both challenges and opportunities. For
example, if the hardware is designed well (and the software takes advantage of it), the number of systemwide
cache coherency transactions may be reduced.

4.2.9 Software for Use with Shared-Memory Hardware

As mentioned earlier, programming on shared-memory systems today is typically done via threads. But
to alleviate the need to do a lot of coding for low-level thread operations, a higher-level paradigm was
developed cooperatively by IBM, Intel, Sun Microsystems and Hewlett-Packard, called OpenMP. It still is
threads-based, but the thread creation and usage is done behind the scenes, in response to OpenMP high-
level operations. For example, in OpenMP one can set up a parallelfor loop. Each iteration of the loop will
be processed by a different thread, but the programmer does not explicitly create or see the threads.

I have a longer tutorial on OpenMP athttp://heather.cs.ucdavis.edu/˜matloff/openmp.
html , but OpenMP example program below is heavily-commented in order to serve as a quick tutorial. It
implements the Dijkstra algorithm for finding the shortest path between two nodes in a graph.

Let G(i,j) denote the one-hop distance from vertex i to vertex j if i and j are neighbors,∞ otherwise. Here
is pseudocode describing the process on a uniprocessor system:

Done = {0}
NewDone = 0
NonDone = {1,2,...,N-1}
for J = 0 to N-1 Dist[J] = G(0,J)

Introduction to Parallel Processing: 33

http://heather.cs.ucdavis.edu/~matloff/openmp.html
http://heather.cs.ucdavis.edu/~matloff/openmp.html

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

for Step = 1 to N-1
find J such that Dist[J] is min among all J in NonDone
transfer J from NonDone to Done
NewDone = J
for K = 1 to N-1

if K is in NonDone
Dist[K] = min(Dist[K],Dist[NewDone]+G[NewDone,K])

Here is a parallel implementation in OpenMP:

1 // OpenMP example program: Dijkstra shortest-path finder in a
2 // bidirectional graph
3

4 // serves as a tutorial to OpenMP; see notes in comments at the end of
5 // the file
6

7 // each thread handles one chunk of vertices
8

9 // usage: dijkstra
10

11 #include <stdio.h>
12

13 #define LARGEINT 2<<30-1 // "infinity"
14 #define NV 6
15

16 // global variables, all shared by all threads by default
17

18 int ohd[NV][NV], // 1-hop distances between vertices
19 mind[NV], // min distances found so far
20 notdone[NV], // vertices not checked yet
21 nth, // number of threads
22 chunk, // number of vertices handled by each thread
23 md, // current min over all threads
24 mv; // vertex which achieves that min
25

26 void init(int ac, char **av)
27 { int i,j;
28 for (i = 0; i < NV; i++)
29 for (j = 0; j < NV; j++) {
30 if (j == i) ohd[i][i] = 0;
31 else ohd[i][j] = LARGEINT;
32 }
33 ohd[0][1] = ohd[1][0] = 40;
34 ohd[0][2] = ohd[2][0] = 15;
35 ohd[1][2] = ohd[2][1] = 20;
36 ohd[1][3] = ohd[3][1] = 10;
37 ohd[1][4] = ohd[4][1] = 25;
38 ohd[2][3] = ohd[3][2] = 100;
39 ohd[1][5] = ohd[5][1] = 6;
40 ohd[4][5] = ohd[5][4] = 8;
41 for (i = 1; i < NV; i++) {
42 notdone[i] = 1;
43 mind[i] = ohd[0][i];

Introduction to Parallel Processing: 34

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

44 }
45 }
46

47 // finds closest to 0 among notdone, among s through e
48 void findmymin(int s, int e, int *d, int *v)
49 { int i;
50 *d = LARGEINT;
51 for (i = s; i <= e; i++)
52 if (notdone[i] && mind[i] < *d) {
53 *d = ohd[0][i];
54 *v = i;
55 }
56 }
57

58 // for each i in [s,e], ask whether a shorter path to i exists, through
59 // mv
60 void updateohd(int s, int e)
61 { int i;
62 for (i = s; i <= e; i++)
63 if (mind[mv] + ohd[mv][i] < mind[i])
64 mind[i] = mind[mv] + ohd[mv][i];
65 }
66

67 void dowork()
68 {
69 #pragma omp parallel // Note 1
70 { int startv,endv, // start, end vertices for this thread
71 step, // whole procedure goes NV steps
72 mymd, // min value found by this thread
73 mymv, // vertex which attains that value
74 me = omp_get_thread_num(); // my thread number
75 #pragma omp single // Note 2
76 { nth = omp_get_num_threads(); chunk = NV/nth;
77 printf("there are %d threads\n",nth); }
78 #pragma omp barrier // Note 3
79 startv = me * chunk;
80 endv = startv + chunk - 1;
81 for (step = 0; step < NV; step++) {
82 // find closest vertex to 0 among notdone; each thread finds
83 // closest in its group, then we find overall closest
84 #pragma omp single
85 { md = LARGEINT; mv = 0; }
86 findmymin(startv,endv,&mymd,&mymv);
87 // update overall min if mine is smaller
88 #pragma omp critical // Note 4
89 { if (mymd < md)
90 { md = mymd; mv = mymv; }
91 }
92 // mark new vertex as done
93 #pragma omp barrier
94 #pragma omp single
95 { notdone[mv] = 0; }
96 // now update my section of ohd
97 updateohd(startv,endv);
98 #pragma omp barrier

Introduction to Parallel Processing: 35

4 SHARED-MEMORY MECHANISMS 4.2 Shared-Memory through Hardware

99 }
100 }
101 }
102

103 int main(int argc, char **argv)
104 { int i;
105 init(argc,argv);
106 dowork();
107 // back to single thread now
108 printf("minimum distances:\n");
109 for (i = 1; i < NV; i++)
110 printf("%d\n",mind[i]);
111 }
112

113 // tutorial notes:
114

115 // 1. OpenMP works via a preprocessor, which translates pragmas to
116 // threads calls. Note that the sharp sign (’#’) must be the first
117 // character in the line, other than blanks.
118 //
119 // The "parallel" clause says, "Have each thread do this block"
120 // (enclosed by braces). Code not in a block with a "parallel"
121 // pragma is done only by the master thread.
122

123 // 2. The "single" clause says, "Have only one thread (whichever hits
124 // this line first) execute the following block."
125

126 // In this case, we are calling the OMP function
127 // omp_get_num_threads(), which of course returns the number of
128 // threads. Since we assign the return value to the global variable
129 // nth, only one thread needs to do this, so we use "single". And
130 // thought there would be no harm (other than a delay) if all
131 // threads did this, in some applications we would need to limit an
132 // action to just one thread.
133

134 // 3. The "barrier" clause does the standard barrier operation. Note
135 // carefully that there are also implicit barriers following blocks
136 // to which various OpenMP pragmas apply, such as "for" and
137 // "single". One can override those implicit barriers by using the
138 // "nowait" clause. On platforms with nonsequential memory
139 // consistency, you can also use the "flush" directive to force a
140 // memory update.
141

142 // 4. The "critical" clause sets up a critical section, with invisible
143 // lock/unlock operations. Note carefully that the clause may be
144 // followed by an optional name, which is crucial in some
145 // applications. All critical sections with the same name
146 // are guarded by the same (invisible) locks. Those with
147 // no name are also guarded by the same locks, so the programmer
148 // could really lose parallelism if he/she were not aware of this.
149

150 // Certain very specialized one-statement critical sections can be
151 // handled more simply and efficiently using the "atomic"
152 // directive, e.g.
153

Introduction to Parallel Processing: 36

4 SHARED-MEMORY MECHANISMS 4.3 Shared-Memory through Software

154 // #pragma omp atomic
155 // y += x;
156

157 // Note that that statment can NOT be a block.

4.3 Shared-Memory through Software

4.3.1 Software Distributed Shared Memory

There are also various shared-memory software packages that run on message-passing hardware such as
NOWs, calledsoftware distributed shared memory(SDSM) systems. Since the platforms do not have
any physically shared memory, the shared-memory view which the programmer has is just an illusion. But
that illusion is very useful, since the shared-memory paradigm is believed to be the easier one to program
in. Thus SDSM allows us to have “the best of both worlds”—the convenience of the shared-memory world
view with the inexpensive cost of some of the message-passing hardware systems, particularly networks of
workstations (NOWs).

SDSM itself is divided into two main approaches, thepage-basedandobject-basedvarieties. The page-
based approach is generally considered clearer and easier to program in, and provides the programmer the
“look and feel” of shared-memory programming better than does the object-based type.32 We will discuss
only the page-based approach here. The most popular SDSM system today is the page-based Treadmarks
(Rice University). Another excellent page-based system is JIAJIA (Academy of Sciences, China).

To illustrate how page-paged SDSMs work, consider the line of JIAJIA code

Prime = (int *) jia_alloc(N*sizeof(int));

The functionjia alloc() is part of the JIAJIA library,libjia.a , which is linked to one’s application program
during compilation.

At first this looks a little like a call to the standardmalloc() function, setting up an arrayPrime of size
N. In fact, it does indeed allocate some memory. Note that each node in our JIAJIA group is executing
this statement, so each node allocates some memory at that node. Behind the scenes, not visible to the
programmer, each node will then have its own copy ofPrime.

However, JIAJIA sets things up so that when one node later accesses this memory, for instance in the
statement

Prime[I] = 1;

this action will eventually trigger a network transaction (not visible to the programmer) to the other JIAJIA
nodes.33 This transaction will then update the copies ofPrime at the other nodes.34

32The termobject-basedis not related to the termobject-oriented programming.
33There are a number of important issues involved with this wordeventually, as we will see later.
34The update may not occur immediately. More on this later.

Introduction to Parallel Processing: 37

4 SHARED-MEMORY MECHANISMS 4.3 Shared-Memory through Software

How is all of this accomplished? It turns out that it relies on a clever usage of the nodes’ virtual memory
(VM) systems. To understand this, let’s review how VM systems work.

Suppose a variableX has the virtual address 1200, i.e.&X = 1200. The actual physical address may be,
say, 5000. When the CPU executes a machine instruction that specifies access to 1200, the CPU will do a
lookup on thepage table, and find that the true location is 5000, and then access 5000. On the other hand,
X may not beresident in memory at all, in which case the page table will say so. If the CPU finds thatX is
nonresident, it will cause an internal interrupt, which in turn will cause a jump to the operating system (OS).
The OS will then readX in from disk,35 place it somewhere in memory, and then update the page table to
show thatX is now someplace in memory. The OS will then execute a return from interrupt instruction,36,
and the CPU will restart the instruction which triggered the page fault.

Here is how this is exploited to develop SDSMs on Unix systems. The SDSM will call a system function
such asmprotect(). This allows the SDSM to deliberately mark a page as nonresident (even if the pageis
resident). Basically, anytime the SDSM knows that a node’s local copy of a variable is invalid, it will mark
the page containing that variable as nonresident. Then, the next time the program at this node tries to access
that variable, a page fault will occur.

As mentioned in the review above, normally a page fault causes a jump to the OS. However, technically any
page fault in Unix is handled as a signal, specifically SIGSEGV. Recall that Unix allows the programmer to
write his/her own signal handler for any signal type. In this case, that means that the programmer—meaning
the people who developed JIAJIA or any other page-based SDSM—writes his/her own page fault handler,
which will do the necessary network transactions to obtain the latest valid value forX.

Note that although SDSMs are able to create an illusion of almost all aspects of shared memory, it really is
not possible to create the illusion of shared pointer variables. For example on shared memory hardware we
might have a variable likeP:

int Y,*P;
...
...
P = &Y;
...

There is no simple way to have a variable likeP in an SDSM. This is because a pointer is an address, and
each node in an SDSM has its own memory separate address space. The problem is that even though the
underlying SDSM system will keep the various copies ofY at the different nodes consistent with each other,
Y will be at a potentially different address on each node.

All SDSM systems must deal with a software analog of the cache coherency problem. Whenever one node
modifies the value of a shared variable, that node must notify the other nodes that a change has been made.
The designer of the system must choose between update or invalidate protocols, just as in the hardware
case.37 Recall that in non-bus-based shared-memory multiprocessors, one needs to maintain a directory

35Actually, it will read the entire page containingX from disk, but to simplify language we will just sayX here.
36E.g. iret on Pentium chips.
37Note, though, that we are not actually dealing with a cache here. Each node in the SDSM system will have a cache, of course,

but a node’s cache simply stores parts of that node’s set of pages. The coherency across nodes is across pages, not caches. We must
insure that a change made to a given page is eventually propropagated to pages on other nodes which correspond to this one.

Introduction to Parallel Processing: 38

4 SHARED-MEMORY MECHANISMS 4.3 Shared-Memory through Software

which indicates at which processor a valid copy of a shared variable exists. Again, SDSMs must take an
approach similar to this.

Similarly, each SDSM system must decide between sequential consistency, release consistency etc. More
on this later.

Note that in the NOW context the internode communication at the SDSM level is typically done by TCP/IP
network actions. Treadmarks uses UDP, which is faster than TCP. but still part of the slow TCP/IP protocol
suite. TCP/IP was simply not designed for this kind of work. Accordingly, there have been many efforts
to use more efficient network hardware and software. The most popular of these is the Virtual Interface
Architecture (VIA).

Not only are coherency actions more expensive in the NOW SDSM case than in the shared-memory hard-
ware case due to network slowness, there is also expense due to granularity. In the hardware case we are
dealing with cache blocks, with a typical size being 512 bytes. In the SDSM case, we are dealing with pages,
with a typical size being 4096 bytes. The overhead for a cache coherency transaction can thus be large.

4.3.2 Case Study: JIAJIA

Programmer Interface

We will not go into detail on JIAJIA programming here. There is a short tutorial on JIAJIA athttp:
//heather.cs.ucdavis.edu/˜matloff/jiajia.html , but here is an overview:

• one writes in C/C++38, making call to the JIAJIA library, which is linked in upon compilation

• the library calls include standard shared-memory operations for lock, unlock, barrier, processor num-
ber, etc., plus some calls aimed at improving performance

Following is a JIAJIA example program, performing Odd/Even Transposition Sort. This is a variant on
Bubble Sort, sometimes useful in parallel processing contexts.39 The algorithm consists of n phases, in
which each processor alternates between trading with its left and right neighbors.

1 // JIAJIA example program: Odd-Even Tranposition Sort
2

3 // array is of size n, and we use n processors; this would be more
4 // efficient in a "chunked" versions, of course (and more suited for a
5 // message-passing context anyway)
6

7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <jia.h> // required include; also link via -ljia

10

11 // pointer to shared variable

38Or FORTRAN.
39Though, as mentioned in the comments, it is aimed more at message-passing contexts.

Introduction to Parallel Processing: 39

http://heather.cs.ucdavis.edu/~matloff/jiajia.html
http://heather.cs.ucdavis.edu/~matloff/jiajia.html

4 SHARED-MEMORY MECHANISMS 4.3 Shared-Memory through Software

12 int *x; // array to be sorted
13

14 int n, // range to check for primeness
15 debug; // 1 for debugging, 0 else
16

17 // if first arg is bigger, then replace it by the second
18 void cpsmaller(int *p1,int *p2)
19 { int tmp;
20 if (*p1 > *p2) *p1 = *p2;
21 }
22

23 // if first arg is smaller, then replace it by the second
24 void cpbigger(int *p1,int *p2)
25 { int tmp;
26 if (*p1 < *p2) *p1 = *p2;
27 }
28

29 // does sort of m-element array y
30 void oddeven(int *y, int m)
31 { int i,left=jiapid-1,right=jiapid+1,newval;
32 for (i=0; i < m; i++) {
33 if ((i+jiapid)%2 == 0) {
34 if (right < m)
35 if (y[jiapid] > y[right]) newval = y[right];
36 }
37 else {
38 if (left >= 0)
39 if (y[jiapid] < y[left]) newval = y[left];
40 }
41 jia_barrier();
42 if ((i+jiapid)%2 == 0 && right < m || (i+jiapid)%2 == 1 && left >= 0)
43 y[jiapid] = newval;
44 jia_barrier();
45 }
46 }
47

48 main(int argc, char **argv)
49 { int i,mywait=0;
50 jia_init(argc,argv); // required init call
51 // get command-line arguments (shifted for nodes > 0)
52 if (jiapid == 0) {
53 n = atoi(argv[1]);
54 debug = atoi(argv[2]);
55 }
56 else {
57 n = atoi(argv[2]);
58 debug = atoi(argv[3]);
59 }
60 jia_barrier();
61 // create a shared array x of length n
62 x = (int *) jia_alloc(n*sizeof(int));
63 // barrier recommended after allocation
64 jia_barrier();
65 // node 0 gets simple test array from command-line
66 if (jiapid == 0) {

Introduction to Parallel Processing: 40

4 SHARED-MEMORY MECHANISMS 4.3 Shared-Memory through Software

67 for (i = 0; i < n; i++)
68 x[i] = atoi(argv[i+3]);
69 }
70 jia_barrier();
71 if (debug && jiapid == 0)
72 while (mywait == 0) { ; }
73 jia_barrier();
74 oddeven(x,n);
75 if (jiapid == 0) {
76 printf("\nfinal array\n");
77 for (i = 0; i < n; i++)
78 printf("%d\n",x[i]);
79 }
80 jia_exit();
81 }

System Workings

JIAJIA’s main characteristics as an SDSM are:

• page-based

• scope consistency

• home-based

• multiple writers

Let’s take a look at these.

As mentioned earlier, one first callsjia alloc() to set up one’s shared variables. Note that this will occur at
each node, so there are multiple copies of each variable; the JIAJIA system ensures that these copies are
consistent with each other, though of course subject to the laxity afforded by scope consistency.

Recall that under scope consistency, a change made to a shared variable at one processor is guaranteed to
be made visible to another processor if the first processor made the change between lock/unlock operations
and the second processor accesses that variable between lock/unlock operations on that same lock.40

Each page—and thus each shared variable—has ahome processor. If another processor writes to a page,
then later when it reaches the unlock operation it must send all changes it made to the page back to the
home node. In other words, the second processor callsjia unlock(), which sends the changes to its sister
invocation ofjia unlock() at the home processor.41 Say later a third processor callsjia lock() on that same
lock, and then attempts to read a variable in that page. A page fault will occur at that processor, resulting in
the JIAJIA system running, which will then obtain that page from the first processor.

40Writes will also be propagated at barrier operations, but two successive arrivals by a processor to a barrier can be considered to
be a lock/unlock pair, by considering a departure from a barrier to be a “lock,” and considering reaching a barrier to be an “unlock.”
So, we’ll usually not mention barriers separately from locks in the remainder of this subsection.

41The set of changes is called adiff , remiscent of the Unix file-compare command. A copy, called atwin , had been made of the
original page, which now will be used to produce the diff. This has substantial overhead. The Treadmarks people found that it took
167 microseconds to make a twin, and as much as 686 microseconds to make a diff.

Introduction to Parallel Processing: 41

5 PROGRAM PERFORMANCE ISSUES

Note that all this means the JIAJIA system at each processor must maintain a page table, listing where each
home page resides.42 At each processor, each page has one of three states: Invalid, Read-Only, Read-Write.
State changes, though, are reported when lock/unlock operations occur. For example, if CPU 5 writes to a
given page which had been in Read-Write state at CPU 8, the latter will not hear about CPU 5’s action until
some CPU does a lock. This CPU need not be CPI 8. When one CPU does a lock, it must coordinate with
all other nodes, at which time state-change messages will be piggybacked onto lock-coordination messages.

Note also that JIAJIA allows the programmer to specify which node should serve as the home of a variable,
via one of several forms of thejia alloc() call. The programmer can then tailor his/her code accordingly.
For example, in a matrix problem, the programmer may arrange for certain rows to be stored at a given node,
and then write the code so that most writes to those rows are done by that processor.

The general principle here is that writes performed at one node can be made visible at other nodes on a
“need to know” basis. If for instance in the above example with CPUs 5 and 8, CPU 2 does not access this
page, it would be wasteful to send the writes to CPU 2, or for that matter to even inform CPU 2 that the page
had been written to. This is basically the idea of all non-Sequential consistency protocols, even though they
differ in approach and in performance for a given application.

JIAJIA allows multiple writers of a page. Suppose CPU 4 and CPU 15 are simultaneously writing to a
particular page, and the programmer has relied on a subsequent barrier to make those writes visible to other
processors.43 When the barrier is reached, each will be informed of the writes of the other.44 Allowing
multiple writers helps to reduce the performance penalty due to false sharing.

5 Program Performance Issues

5.1 The Problem

In one’s first experience with parallel processing, say with 16 processors, one might naively expect to see
one’s program run about 16 times faster. The reality, though, is the following:

• there are many significant sources of overhead to slow things down

• because of that overhead, one may find that parallel processing yields a substantial speed advantage
over sequential processing only on very large problems; in smaller problems, a parallel program may
actually be considerably slower than a sequential one

• the programmer must devote considerable effort to write the code in such a way as to mitigate the
overhead

• the type of interconnect between nodes has a huge impact on the potential speedup from parallel
processing

42In JIAJIA, that location is normally fixed, but JIAJIA does include advanced programmer options which allow the location to
migrate.

43The only other option would be to use lock/unlock, but then their writing would not be simultaneous.
44If they are writing to the same variable, not just the same page, the programmer would use locks instead of a barrier, and the

situation would not arise.

Introduction to Parallel Processing: 42

5 PROGRAM PERFORMANCE ISSUES 5.2 Some Timing Comparisons

5.2 Some Timing Comparisons

David J. Pursley of the Dept. of Computer Science at Bucknell University did some timing experiments on
parallel Mergesort, summarized below.45

The two types of sort were compared to a sequential (i.e. one-node) quicksort. The version used for the
latter was optimized, with no recursion and with the sorting done “in place,” i.e. without other arrays being
used for intermediate steps.

First, the experiment was run on what Pursley refers to as a “network,” presumably a LAN. Here are the
results, measured in seconds:

Two-Way Merge Three-Way Merge Quicksort

NUMPROC-> 3 7 3 7 1
NUM2SORT

1008 5.50 6.07 3.05 4.82 0.04
2016 9.37 12.06 6.47 9.56 0.10
4032 22.54 28.50 14.03 19.57 0.24

As you can see, parallel operations really slowed us down! The communication overhead is simply too high.

He then modified the algorithm so that each node sends an entire array at once, instead of one data item at a
time. He used PVM as his programming language, and ran this one on a hypercube. Here are the results:

Two-Way Merge Three-Way Merge Quicksort

NUMPROC-> 3 7 3 7 1
NUM2SORT

1008 0.06 0.18 0.06 0.09 0.04
2016 0.12 0.23 0.14 0.15 0.10
4032 0.25 0.35 0.18 0.28 0.24
8064 0.51 0.55 0.36 0.47 0.44

16128 1.01 1.11 0.71 0.95 0.98
32256 2.05 2.14 1.44 1.96 2.13
64512 4.26 4.23 3.00 3.16 4.84

129024 9.08 9.05 5.99 6.21 9.72
258048 18.91 17.88 12.41 12.41 21.95
516096 37.56 38.40 25.24 25.00 42.87

So, for small arrays quicksort is either better or similar to the parallel sorts, but for the much larger arrays we
do see a definite improvement. On the other hand, we are not seeing very good scalability—e.g. a speedup
of less than 2 for 7 processors.

Note that by sending an entire array at once we are actually reducingparallelism, so the speedup we see in
the latter table may seem paradoxical. But the reason for it is that the software overhead to send and receive
a message is very high; by sending whole arrays at once, we reduce that overhead per data item.

45The results are rather old by now, but they still illustrate the issues well.

Introduction to Parallel Processing: 43

6 DEBUGGING MULTICOMPUTER PROGRAMS 5.3 Solutions

5.3 Solutions

One must always keep in mind the communication costs. For a NOW, for instance, Myrinet has lower
communication costs than Ethernet, but the latency on Myrinet is on the order of microseconds, far slower
than local memory access. For a shared-memory machine, a crossbar provides the most paths but also has a
slow latency, as there is a delay at each switch in a path.

Much of this overhead can be mitigated in various ways, such as:

• in message-passing settings, keep as many of the operations on the local node as possible

• in shared-memory NUMA settings, keep as many of the operations on the local memory as possible

• in shared-memory settings, both hardware and SDSM, try to minimize cache coherency transactions

• in message-passing settings, try to make most messages long ones, saving up data if necessary, in
order to amortize the latency costs

• in shared-memory settings, both hardware and SDSM, note the memory consistency model, and take
advantage of it (again in an amortization sense)

5.4 Time Measurement

Since speed is of the essence in most parallel processing applications, an issue arises as to how to measure
run time.

In Unix, a first-level measure is thetime command. If the program is named, say,a.out, we type

$ time a.out

This causesa.out to run, and a report as to time spent follows. The output includes the time the program
spend in user mode, system mode (for OS calls) andwall clock time, i.e. the actual time elapsed. Note
carefully that the user time is the sum of such times for all threads of the program.

A better approach, though, is to use timing functions available in your parallel processing tools package. In
MPI, one can callMPI Wtime(). The corresonding function in OpenMP isomp get wtime().

6 Debugging Multicomputer Programs

Even in nonparallel contexts, you should never debug by usingprintf() or cout. It is just very distracting
and wasteful of time to keep insertingprintf()/cout lines, recompiling, etc.46 Instead, use a debugging tool.
I will use GDB as an example here.47

46And in the parallel case, it is even worse, because the output tostdout from the various nodes is typically all mixed together.
47Note that DDD provides a GUI interface to GDB and various other debuggers. You may find it more useful than direct use of

GDB.

Introduction to Parallel Processing: 44

6 DEBUGGING MULTICOMPUTER PROGRAMS

Use the debugging tool to follow my Principle of Confirmation: Keep checking that key variables have the
values you think they should, and that the program’s flow of control follows the path you think it should.
(Use the debugging tool to do the checking.) Eventually you will find a situation where your expectation
fails; at that point you will have discovered the rough location of the bug, and can reason out what is wrong.

In the parallel case, use of a debugging tool becomes more complex, because you need to have a separate
invocation of the tool for each node. For concreteness, let’s use as our example the MPI program in Section
2.3. (The same principles hold for shared-memory programming.) It runs on three nodes, saypc10, pc11
andpc12. Here is what you need to do:

• Start the program running atpc10from one window.

• In another window, log in topc10 and run the Unix commandps ax,48 to determine the process
number of your MPI program on this node. Then type

gdb program_name process_number

GDB will then join the program in progress.49

• In two other windows, do the same atpc11andpc12.50

A problem that arises here is that there will of course be some delay while you are determining process
numbers and invoking GDB. By that time, the program may be finished, or at least may be past the place at
which you had intended to set a breakpoint. The standard way of dealing with this is to set a variable, which
we namedDebugWait in the example in Section 2.3, which forces the program to stop and give us humans
a chance to “catch up”:

while (DebugWait) ;

If we wish to debug, we specify a value of 1 forDebugWait on the command line.51 The program will stop
there, and then when we get there with GDB, we can change the value of the variable to 0, thus causing the
program to resume execution when we issue GDB’scontinuecommand.

We need not manually intervene in all nodes. In MPI, for instance, we may have node 0 wait for manual
intevention, and then broadcast a go-ahead message to the other nodes.52 In a shared-memory context, say
JIAJIA, one could accomplish the same effect using a barrier; CPU 0 would wait for manual intervention,
and the other nodes would wait for CPU 0 at a barrier.

Note that any output may be delayed. Useflush() or fflush() to ensure that everything gets output right
away.

48It may be a slightly different command on some flavors of Unix.
49You may prefer to already have GDB running and then use GDB’sattach command to attach the process. This way you do not

have to exit GDB between runs of your program, and you retain breakpoints and other GDB state.
50You may find that using three separate windows requires too much space on your monitor. An alternative would be to use the

screenprogram, available on most Unix systems. Within a single window, you can have multiple shells, toggling among them by
hitting a specified key sequence. This way you use monitor space for only one window. Thanks to Bryan Richter for this suggestion.

51See the lineDebugWait = atoi(Argv[2]) in the program’s source code.
52Thanks for M. Wiley for this suggestion.

Introduction to Parallel Processing: 45

7 BARRIER IMPLEMENTATION

7 Barrier Implementation

Recall that abarrier is program code53 which has a processor do a wait-loop action until all processors have
reached that point in the program.

A function Barrier() is often supplied as a library function; here we will see how to implement such a
function.54

In our implementation ofBarrier() , suppose we will have available some library functions like SYSSIZE
and CPUNUM, which give us the number of CPUs and the CPU number, respectively.

7.1 A Use-Once Version

1 struct BarrStruct {
2 int Count,Lock;
3 } ;
4

5 Barrier(struct BarrStruct *PB)
6 { LOCK(PB->Lock);
7 PB->Count++;
8 UNLOCK(PB->Lock);
9 while (PB->Count < SYS_SIZE) ;

10 }

This is very simple, actually overly so. This implementation will work once, so if the example above didn’t
have two calls toBarrier() it would be fine, but not otherwise.

What is the problem? Clearly, something must be done to resetcount to 0 at the end of the call, but doing
this safely is not so easy, as seen in the next subsection.

7.2 An Attempt to Write a Reusable Version

Consider the following attempt at fixing the code forbarrier() :

1 struct BarrStruct {
2 int Count;
3 int Lock;
4 } ;
5

6 Barrier(struct BarrStruct *PB;
7 { int OldCount;
8

9 LOCK(PB->Lock);
10 OldCount = PB->Count++;

53Some hardware barriers have been proposed.
54Again, keep in mind that this is a libraryfunction, not a system call. We are notrelying on the OS here.

Introduction to Parallel Processing: 46

7 BARRIER IMPLEMENTATION 7.2 An Attempt to Write a Reusable Version

11 UNLOCK(PB->Lock);
12 if (OldCount == SYS_SIZE-1) PB->Count = 0;
13 else while (PB->Count < SYS_SIZE) ;
14 }

Unfortunately, this doesn’t work either. To see why, consider a loop with a barrier call at the end:

1 struct BarrStruct B; /* global variable! */
2
3 while(.......) {
4
5 Barrier(&B);
6
7 }

At the end of the first iteration of the loop, all the processors will wait at the barrier until everyone catches
up. After this happens, one processor, say 12, will resetB.Count to 0, as desired. But if we are unlucky,
some other processor, say processor 3, will perform the second iteration of the loop in an extremely short
period of time, and will reach the barrier and increment the Count variable before processor 12 resets it.
This would result in disaster, since processor 3’s increment would be canceled, leaving us one short when
we try to finish the barrier the second time.55

One way to avoid this would be to havetwo Count variables, and have the processors alternate using one
then the other. In the scenario described above, processor 3 would increment theotherCount variable, and
thus would not conflict with processor 12’s resetting. Here is a safe barrier function based on this idea:

1 struct BarrStruct {
2 int Count[2];
3 int Lock;
4 int EvenOdd;
5 } ;
6

7 Barrier(struct BarrStruct *PB)
8 { int Par,OldCount;
9 Par = PB->EvenOdd;

10 LOCK(PB->Lock);
11 OldCount = PB->Count[Par]++;
12 UNLOCK(PB->Lock);
13 if (OldCount == SYS_SIZE-1) PB->Count[Par] = 0;
14 else while (PB->Count[Par] > 0) ;
15 PB->EvenOdd = 1 - Par;
16 }

55Another disaster scenario which might occur, of course, is that one processor might resetB.Count to 0 before another processor
had a chance to notice thatB.Count had reached SYSSIZE.

Introduction to Parallel Processing: 47

	Overview
	Programming Paradigms
	World Views
	Shared-Memory
	Message Passing
	SIMD

	Shared-Memory Example
	How Threads Work on Multiprocessor Systems
	Example

	Message-Passing Example

	Message-Passing Mechanisms
	Message-Passing Hardware
	Hypercubes
	Networks of Workstations (NOWs)
	Hardware Issues
	Message Passing on Shared-Memory Machines

	Message-Passing Software

	Shared-Memory Mechanisms
	Hardware Issues
	Shared-Memory through Hardware
	Placement of Memory Modules
	Interconnect Topologies
	Test-and-Set
	Cache Coherency
	The Problem of ``False Sharing''
	Memory-Access Consistency Policies
	Fetch-and-Add and Packet-Combining Operations
	Multicore Chips
	Software for Use with Shared-Memory Hardware

	Shared-Memory through Software
	Software Distributed Shared Memory
	Case Study: JIAJIA

	Program Performance Issues
	The Problem
	Some Timing Comparisons
	Solutions
	Time Measurement

	Debugging Multicomputer Programs
	Barrier Implementation
	A Use-Once Version
	An Attempt to Write a Reusable Version

