Name:

Directions: D0 NOT turn in this sheet
of paper (unless you lack a laptop

or have a laptop failure during the
Exam). You will submit electronic
files to handin.

1. (70) A method for compressing data is to store only
repeat counts in runs, where the latter means a set of
consecutive, identical values. For instance, the sequence
2,2,2,0,0,5,0,0 would be compressed to 3,2,2,0,1,5,2,0,
meaning that the data consist of first three 2s, then
two Os, then one 5, and finally two Os. Note that the
compressed version consists of alternating run counts
and run values, respectively 2 and 0 at the end of the
above example.

Here you will write a function to uncompress an array
that uses this type of storage, in both OpenMP and
Snow, submitting files named uncomprle.c and un-
comprle.R, respectively.

In both cases, you are required to first call a parallel
sum scan, using the functions in prfx.c from the (top
level of) our class Web site or in ParSum.R in the
Extras directory in our Web site. You will use the
output of that operation to decide where to place the
runs in your overall output. You will then do further
parallel processing.

You may assume that the number of threads divides
the number of run counts, i.e. half of 4 in the above
example.

The signature for a C version must be

void uncomprle(int *x,int nx,int *tmp,
int xy,int *ny)

where x is the input array, of length nx, y is the output
array, and tmp is an array for temporary storage to be
explained shortly. It is assumed for convenience that
space has been preallocated for y and tmp before the
call. The function fills in y and also sets *ny.

The test code I will use for OpenMP is

// test code
int main ()

int i;

int x[12] = {2,3,1,9,3,5,2,6,2,88,1,12};
int nx = 12;

int tmp[100],y[100];

int ny;

uncomprle (x,nx,tmp,y,&ny);
// y should be {3,3,9,5,5,5,6,6,88,88,12};
for (i = 0; i < ny;

}

In the case of R, your function will have two parameters:
cls, the cluster name, and x, the input vector. The
function will return y. My test call will be

uncomprle(c(2,3,1,9,3,5,2,6,2,88,1,12))

2. (30) Give code to do the parallel scan operation in

i++) printf("%d\n”,y[i]);

Problem 1 using Thrust. (Use only Thrust functions
from our course materials.) You will fill the blanks:

// possibly put material here

int main ()
{ int i;
int x[12] = {2,3,1,9,3,5,2,6,2,88,1,12};
int nx = 12;
int tmp[100];
// compute and print out tmp here
// (should be 2,3,6,...)
}

Turn in a file findtmp.cu (for compiling with gec for
OpenMP, use .c suffix). IT SHOULD BE THE
ENTIRE CODE, INCLUDING main() ABOVE,
COMPILABLE AND RUNNABLE.



Solutions:
1. OpenMP code:

1 void uncomprle(int #x,int nx,int xtmp,int *y,int =ny)
2 |

3 int i,nx2 = nx/2;

4 int z[MAXTHREADS];

5 for (i = 0; i < nx2; i++) tmp[i+1] = x[2*i];
6 parprfsum (tmp+1,nx2+1,z);

7 tmp[0] = 0;

8 #pragma omp parallel

9 { int j,k;

10 int me=omp-_get_thread_num ();

11 #pragma omp for

12 for (j = 0; j < nx2; j++) {

13 // where to start the j—th run?
14 int start = tmp[j];

15 // what value is in the run?
16 int val = x[2x%j4+1];

17 // how long is the run?

18 int nrun = x[2%]];

19 for (k = 0; k < nrun; k++)
20 y[start+k] = val;

21 }

22 }

23 *ny = tmp[nx2];

24}

2.

1 #include <stdio.h>

2 #include <thrust/host_vector.h>

3 #include <thrust/scan.h>

4 #include <thrust/sequence.h>

5 #include <thrust/remove.h>

6

7 struct iseven {

8 bool operator ()(const int i)

9 { return (i % 2) = 0;

10 }

11}

12

13 int main()

14 { int i;

15 int x[12] = {2,3,1,9,3,5,2,6,2,88,1,12};

16 int nx = 12;

17 int tmp[100];

18 int seq[nx];

19 thrust :: host_vector<int> out(nx);

20 thrust :: sequence(seq,seq+nx,0);

21 thrust :: host_vector<int> hx(x,x4nx);

22 thrust :: host_vector<int >::iterator newend =

23 thrust:: copy-if (hx.begin(),hx.end(),seq,out.begin(),iseven ());
24 thrust::inclusive_scan (out.begin (),out.end(),out.begin());

25 // compute and print out tmp here

26 // (should be 2,3,6,...)

27 for (int i = 0; i < newend—out.begin(); i++) printf(”%d\n” ,out[i]);
28}



