Name:
Directions: Work only on this sheet (on
both sides, if needed); do not turn in any supplementary
sheets of paper. There is actually plenty of room for your
answers, as long as you organize yourself BEFORE start-
ing writing.

Unless otherwise stated, give nu-
merical answers as expressions, e.g.

% x 6—1.8. Do NOT use calculators.

1. (35) The code below does an in-place transpose of
a square matrix. (Note: No unnecessary computation is
done.) Fill in the blanks.

#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>

__global__ void transpairs(int *m, int n, int nth)
{
int thn = blockIdx.x; // thread number
// this thread will handle one below-diagonal element and
// its "mate" above the diagonal;
// first, determine the row and column of
// the below-diagonal one
int i,j,count=-1, done = 0;
for (i=0; i < n-1;i++) {
for (j=0; j<=i; j++) {
count++;
if (count == thn) {
done = 1;
break;
}
}
if (done) break;
}

i++;

int tmp = m[wil;
mwil] = m[w2];
m[w2] = tmp;

}

int main(int argc, char **argv)
{

int n = atoi(argv[1]); // number of matrix rows/cols
int *hm, *dm;
int msize = n * n * sizeof(int);
hm = (int *) malloc(msize);
// as a test, fill matrix with consecutive integers
int t = 1,1,j;
for (i = 0; i < n; i++) {

for (j = 0; j < mn; j++) {

hm[i*n+j] = t++;

}
}
cudaMalloc((void **)&dm,msize);
cudaMemcpy (dm, hm,msize, cudaMemcpyHostToDevice) ;

dim3 H
dim3 H
transpairs<<<dimGrid,dimBlock>>>(dm,n,nth);
cudaThreadSynchronize() ;
cudaMemcpy (hm,dm,msize, cudaMemcpyDeviceToHost) ;
if (n < 10)

for(int i=0; i<n; i++)

for (int j = 0; j<n; j++) printf("%d\n",hm[n*i+j]);

free(hm) ;
cudaFree (dm) ;

}

2. Consider the Edgar matrix multiplication routine,

with
A 1 2 3 4 5 6
“\7 8 9 10 11 12

and

1 2 3 4
5 6 7 8
9 10 11 12
B= 13 14 15 16 2
17 18 19 20

21 22 23 24

Further suppose that BLOCK _SIZE is 2. Take row and
column numbers to start at 0, e.g. the (1,0) element of B
is 5. Consider the calculation of the (1,1) element of the
product C.

(a) (20) Give the “coordinates” of the thread handling
this computation, i.e. the values of variables bx, tx
etc. in the code.

(b) (20) During this computation, Csub will take on var-
ious values. List the first one that occurs after 0.

3. (25) There is an error concerning the call to
_syncthreads() in the CUDA prime-finding program,
causing an inefficiency though not incorrect results. State
what it is.

Solutions:
1.

int wl = i*n+j, w2 = j*n+i;
int nth = n*(n-1)/2;

dim3 dimGrid(nth,1);
dim3 dimBlock(1,1,1);

2a. Thread (1,1) within block (0,0).

2b. The entire computation is a sum of six products,
taken two at a time. With the first two, the terms will
be 7 x 2 and 8 x 6, making Csub 62.

3. The call should be moved inside the for loop, so that
the check sprimes[m] != 0 is valid.



