Name:

Directions: MAKE SURE TO COPY YOUR AN-
SWERS TO A SEPARATE SHEET FOR SENDING
ME AN ELECTRONIC COPY LATER.

1. (10) There is a algorithm for sorting known as
even/odd transposition sort. At each iteration, each
array element is swapped with either its left or right
neighbor. (More commonly, contiguous chunks in the
array are swapped.) If this algorithm were implemented
in MPI, what MPI function would be especially appro-
priate?

2. (15) Consider the Thrust matrix transpose example
in Section 6.7.1. State the contents of dmap just before
the execution of the scatter operation in line 42.

3. (15) Consider the MPI mutual-outlinks example in
Section 8.6.8. Suppose Line 46 were to be changed to

i = me;

(and Line 51 would become blank). Write a single line
of code—and state between which two lines it should
be inserted—that does a check for whether the program
will still work, and prints out a warning if not.

4. (60) The code below computes the transpose of an
n x n matrix (presumably very large), to be done in
streaming mode in Hadoop. It is assumed that the input
matrix is as in Section 9.10, stored one matrix row per
line of the file, with a row numbers column prepended
on the left and with spaces used as the delimiter. The
output matrix will have the same form, except of course
without the prepended column. So, for instance, an
input matrix

6

11
2 3 8
30 1

Uk N

2

will produce output

1 3 0
2 4 5
6 8 12

Fill in the blanks. Assume that there will be only

1 reducer and 1 output file.
mapper:
#!/usr/bin/env Rscript
con <— file (”stdin”, open = 7r”)
repeat {
line <— readLines(con,n=1) # read 1 line
if (length(line) == 0) break
tks <— strsplit (line,split=" ")
tks <— tks[[1]]
i <— as.integer(tks[1])
elts <— tks[—1]
n <— length(elts)
for (j in 1:n) {
newpos <— blank (a)
blank (b)
}
}

reducer:

#!/usr/bin/env Rscript

get n from command line
args <— commandArgs(T)
n <— as.integer (args|[1])

con <— file (”stdin”, open = 7r”)
make vector of n integers
arow <— integer (n)
for (blank (c)) {
for (blank (d)) {
line <— readLines(con,n=1)
line <— strsplit(line,split="\t")
line <— line [[1]]
blank (e)

blank (f)

Solutions:
1. MPI_Sendrecv()

2.

[0, 2,4, 1, 3, 5]

3. Insert, say just before Line 62:

4.

if (nnodes < n) printf(”not enough MPI processes\n”);

mapper:

#!/usr/bin/env Rscript

map/reduce pair inputs rows of a square matrix, and emits one record
for each element of the matrix

con <— file (”stdin”, open = "r”)

repeat {
line <— readLines(con,n=1) # read 1 line
if (length(line) = 0) break
tks <— strsplit (line,split=" ")

tks <— tks[[1]]
i <— as.integer (tks[1])
elts <— tks[—1]
print (elts)
n <— length(elts)
for (j in 1:n) {
newpos <— (j—1) * n + i
print (newpos)
cat (newpos,”\t”,elts[j],”\n”)

}

reducer:

#!/usr/bin/env Rscript

get n from command line
args <— commandArgs(T)
n <— as.integer (args|[1])

con <— file (”stdin”, open = 7"r")
arow <— integer (n)
for (lineout in 1:n) {
for (j in 1:n) {
line <— readLines(con,n=1)
line <— strsplit(line,split="\t")
line <— line [[1]]
arow [j] <— line [2]

cat (arow,”\n”)

arguments :

a: adjacency matrix

Inks: edges matrix; shared, nrow(a) 2 rows and 2 columns

counts: numbers of edges found by each thread; shared

in this version, the matrix Inks must be created ahead of time; since
the number of rows is uknown a priori, one must allow for the worst

case, nrow(a)"2 rows; after the run, the number of actual rows will be
in counts[1,length(cls)]

getlinksthread <— function(a,lnks,counts) {
require (parallel)
nr <— nrow (a)
get my assigned portion of a
myidxs <— getidxs(nr)
myout <— apply (a[myidxs,],1,function(rw) which(rw==1))

myout [[i]] now lists the edges from node myidxs[1] + i — 1
nmyedges <— Reduce(sum, lapply (myout,length)) # my total edges
me <— myinfo$id
counts|[1l,me] <— nmyedges
barr ()
if (me = 1) {
use cumsum() to determine where each node will store its results
in Inks
counts [1,] <— cumsum(counts[1,])

barr ()
Inksidx will be the next row to write within Inks
Inksidx <— if (me == 1) 1 else counts[l,me—1] + 1

for (idx in myidxs) {
corresponding index to idx within myout
jdx <— idx — myidxs[1] + 1
myoj <— myout [[jdx]]
endwrite <— Inksidx + length (myoj) — 1
if (!is.null(myoj)) {
Inks [Inksidx : endwrite ,] <— cbind (idx ,myoj)
}

Inksidx <— endwrite + 1
}

0 # don’t do expensive return of result

}

test <— function(cls) {
mgrinit (cls)
mgrmakevar (cls ,”x” ,6,6)
mgrmakevar (cls ,” Inks” ;36 ,2)
mgrmakevar (cls ,” counts” ,1,length (cls))
x[,] <— matrix(sample (0:1,36,replace=T),ncol=6)
clusterExport (cls ,” getlinksthread”)
clusterEvalQ(cls , getlinksthread (x,lnks ,counts))
print (Inks[1,counts[1,length(cls)],])

