
Name:

Directions: Work only on this sheet (on
both sides, if needed). MAKE SURE TO COPY YOUR
ANSWERS TO A SEPARATE SHEET FOR SEND-
ING ME AN ELECTRONIC COPY LATER.

Important note: Remember that in problems calling
for R code, you are allowed to use any built-in R func-
tion, e.g. choose(), sum(), combn() etc.

IMPORTANT NOTE: All questions refer to CUD-
A/NVIDIA GPUs.

1. (15) Fill in the blank: Having a lot of threads helps
achieve hiding.

2. (15) Suppose the variable n is our problem size, and
we wish to check whether the total number of threads
evenly divides this quantity. Write one line of code,
to be run on the device, that sets the bool variable
evenlydivides (assumed previously declared) to true
if this condition holds, false otherwise. Assume we only
use the “x dimension” in grids and blocks.

3. Consider the mutual-outlinks problem in Section 5.8,
but changed as follow:

• Line 14 is now

i = me ;

• Line 19 is now blank.

• Variables such as totth will now be ignored. (They
would be removed, but let’s keep the specs simple
here.)

Answer the questions below. Assume the program won’t
ever be run with any partially-filled blocks; the total
number of threads will be evenly divisible by the number
of blocks.

(a) (20) One more line in the program would need to be
changed. State which one, and what the new ver-
sion of the line would look line. Note! Put your
answer on just ONE line in your submitted
electronic file. Sample answer line:

change l i n e 45 to : i = 168 ;

(b) (15) Which line, already a drain on execution
speed, would become even more of a drain, and
why?

4. (20) Consider static versus dynamic scheduling of
loop operations. Our CUDA examples, such as Line
14 in the mutual-outlink example (original version, not
changed as in Problem 3), have used static scheduling.
Explain in one line why dynamic scheduling generally
would not be a good choice for our GPU programming.

5. (15) Consider the primes-finding code in Section 5.9,
specifically the function sieve(). This question con-
cerns the issue of possible bank conflicts between thread
0 and thread 1. Fill in the blank with a mathematical
condition involving chunk: There will be no bank con-
flicts as long as .

1



Solutions:

1. latency

2.

ev en l yd i v i d e s = (n % ( gridDim . x ∗ blockDim . x ) == 0 ) ;

3.a

change l i n e 50 to : dim3 dimGrid (n /192 , 1 ) ;

3.b Line 20. It would be executed more often, thus more of a drain.

4. It would be difficult to implement dynamic scheduling without inducing a large degree of thread divergence. Also,
dynamic scheduling requires atomic access to a work queue, which is slow on our GPUs.

5. In Line 74 the two threads will be simultaneously accessing items that are chunks words apart in memory. Those
will be in separate banks as long as chunk % 32 is not 0.

2


