Lecture 15
CUDA

EECL71 Parallel Architectures
John Owens
UC Davis

Credits

e © John Owens / UC Davis 200809

e This lecture is primarily derived from a tutorial at
ASPLOS 2008 (March 2008) by David Luebke (NVIDIA
Research), Michael Garland (NVIDIA Research), John
Owens (UC Davis), and Kevin Skadron (NVIDIA
Research/University of Virginia), with additional
material from Mark Harris (NVIDIA Ltd.).

Performance beyond single thread ILP

There can be much higher natural parallelism in some applications
(e.g., database or scientibc codes)

Explicit Thread Level Parallelisnmor Data Level Parallelism

Thread process with own instructions and data

e Thread may be a subpart of a parallel program (OthreadO), or it may be an
independent program (OprocessO)

Each thread has all the state (instructions, data, PC, register state, and so on
necessary to allow it to execute

Data Level Parallelism Perform identical operations on data, and
(possibly) lots of data

Today is going to be a little confusing about the word OthreadO. Sorry.

Continuum of Granularity

e OFineO

e OCoarseO

Each processor is more
powerful

Usually fewer
processors

Communication iIs more
expensive between
Processors

Processors are more
loosely coupled

Tend toward MIMD

Each processor is less
powerful

Usually more
processors

Communication is
cheaper between
Processors

Processors are more
tightly coupled

Tend toward SIMD

OIf you were plowing a beld, whict
would you rather use? Two strong
oxen or 1024 chickens?0

N Seymour Cray

ILP vs. DLP

e OSIMD is about exploiting parallelism in the data
stream, while superscalar SISD is about exploiting
parallelism in the instruction stream.O

e What we learned last week:
e SIMD instructions in microprocessors (MMX, SSE, etc.)
e Vector and massively parallel machines
e Today: NVIDIA GPUs as a data-parallel processor
e NVIDIA G80 (GeForce 8000 family)
e NVIDIA CUDA (programming environment)

http://arstechnica.com/articles/paedia/cpu/simd.ars

http://arstechnica.com/articles/paedia/cpu/simd.ars
http://arstechnica.com/articles/paedia/cpu/simd.ars

Motivation for Today

SIMD instructions in microprocessors are good ... but
theyOre only 4 wide

Some applications have more data parallelism than 4

How do we design hardware and software to take
advantage of massive data parallelism?

Why Is data-parallel computing fast?

e The GPU is specialized for compute-intensive, highly parallel
computation (exactly what graphics rendering is about)

e S0, more transistors can be devoted to data processing rather than data
caching and Bow control

ALU ALU

Control

ALU @ ALU

CPU GPU

Rece

nt GPU Performance Treno

Programmable 32- bltFPoperatlons per second

1200

1000

800}

GFLOPS

400

200

0

600

2001 2002 2003 2004 2005 2006 2007 2008 2009

=0 AMD (GPU)
m—m NVIDIA (GPU) 115.2
=9 Intel (CPU) GB/s $175
$4870
$279
| I"# 280
l$125D699
Core2o
12.8 GB/s
dual-core uad-core

Y
Early data CS?Jrrtesy lan Buck; from Owens et al. 200C[GF

Successes on NVIDIA GPUs

Interactive visualization lonic placement for Transcoding HD video Fluid mechanics in Astrophysics N-body
of volumetric white molecular dynamics stream to H.264 Matlab using .mex file simulation
matter connectivity simulation on GPU CUDA function

Financial simulation of GLAME@Ilab: an M-script Ultrasound medical Highly optimized object Cmatch exact string
LIBOR model with API for GPU linear imaging for cancer oriented molecular matching to find similar
swaptions algebra diagnostics dynamics proteins and gene
sequences

[courtesy David Luebke, NVIDIA]

Programming Model: A Massively Multi-threaded Processor

e Move data-parallel application portions to the GPU
e Di&erences between GPU and CPU threads

e Lightweight threads

e GPU supports 1000s of threads

e Today:

e GPU hardware

e CUDA programming
environment

Big ldea #1

e One thread per data element.

e DoesnOt this mean that large problems will have
millions of threads?

Big ldea #2

Write one program.
That program runs on ALL threads in parallel.

Terminology here is OSIMTO: single-instruction,
multiple-thread.

e Roughly: SIMD means many threads run in lockstep; SIM
means that some divergence is allowed

CUDA Kernels and Threads

e Parallel portions of an application are executed on the
device as kernels Debnitions:

Device = GPU:Host = CPU
Kernel = function that
runs on the device

e One SIMT kernel is executed at a time
e Many threads execute each kernel

e Di&erences between CUDA and CPU threads

e CUDA threads are extremely lightweight
e \Very little creation overhead

e [nstant switching

e CUDAmust use 1000s of threads to achieve e'ciency

e Multi-core CPUs can use only a few

Graphics Programs

Features
¥ Millions of instructions
¥ Full integer and bit instructions

¥ No limits on branching, looping

Texture (read only)

Thread Program Constants

Registers

l

Output Registers

General-Purpose Programs

Feat
1D, 2D, or 3D thread ID allocation

Fully general load/store to GPU memory: Scatter/
Gather

Thread Number Programmer 3exibility on how memory is accessed

Untyped, not limited to Pxed texture types

Pointer support

Texture

Thread Program Constants

Registers

Global Memory

Output Registers

Parallel Data Cache

Features

¥ Dedicated on-chip memory

¥ Shared between threads for inter-thread
communication

Thread Number
l Explicitly managed

As fast as registers

Texture

Thread Program Constants

Registers

l Global Memory

Output Registers
Parallel Data Cache

Parallel Data Cache

Addresses a fundamental problem
of stream computing

Bring the data closer to the ALU

Stage computation for the parallel data
cache

Minimize trips to external memory

Share values to minimize overfetch and
computation

Increases arithmetic intensity by keeping
data close to the processors

User managed generic memory, threads
read/write arbitrarily

o

P O=PP,+P,+P,

|
L
P O=P+P,+P,+P,

h

l<-

P O=P+P,+P,+P,

=

DRAM

Parallel execution through cache

L
@)
)
(7))
D
@)
O
x
o
qv]
o
O
T
(0®)
AN
—
@) I
-
I
>
O o
-
o
c
(b
Om
O s
)
)
D -
O
A o
o -

computing threads

@)
=
2 7
3 8
O °
mp
S o
-
TR
[ElT
© O
A ©
°®
)
S
(qv]
D
| -
c =
S n
=R
%S
_HA.B
| -
b
T O
© ©
O
| —-—
c ©
- =
o

Host

v

Input Assembler

v

v

e e e R e s e s

SM Multithreaded Multiprocessor

¥ Each SM runs ablock of threads

e SM has 8 SP Thread Processors

o 32 GFLOPS peak at 1.35 GHz

e |EEE 754 32-bit Roating point

Scalar ISA

Up to 768 threads,
hardware multithreaded

16KB Shared Memory

e Concurrent threads share data

e Low latency load/store

Big ldea #3

e Latency hiding.
e |t takes a long time to go to memory.
e 5o while one set of threads is waiting for memory ...

e ... run another set of threads during the wait.

e In practice, 32 threads run in a OwarpO and an e'cient program
usually has 128256 threads in a block.

D 5]

—

= E

e

O

),

iy s

i -

@)

<

<)) S

e E

» E O 2
© r_n_rlu w*m.v

o) 8§ =

C sz |

— £

a n n

C ° °

HW Goal: Scalabllity

e Scalable execution
e Program must be insensitive to the number of cores
e \Write one program for any number of SM cores

e Program runs on any size GPU without recompiling

e Hierarchical execution model
e Decompose problem into sequential steps (kernels)

e Decompose kernel into computing parallel blocks

e Decompose block into computing parallel threads This Is very
Important.

e Hardware distributes independent blocks to SMs as available

Programming Model: A Highly Multi-threaded
Coprocessor

e The GPU is viewed as a compute device that:
® |s a coprocessor to the CPU or host
e Has its own DRAM (device memory)

e Runs many threads in parallel

Data-parallel portions of an application execute on the device akernels
that run many cooperative threads in parallel

Di&erences between GPU and CPU threads
e GPU threads are extremely lightweight

e Very little creation overhead
e GPU needs 1000s of threads for full e'ciency

e Multi-core CPU needs only a few

CUDA Software Development Ki

Compiling CUDA for GPUs
Applcaion

Generic

Specialized -

Target device code

Programming Model (SPMD + SIMD): Thread Batching

e A kernel is executed as a grid of
thread blocks

Device

Grid 1

. Block Block Block
e A thread block is a batch of Kernel 1 00 | wo || 2o
threads that can cooperate with Biock " Biook \/ Block
each other by: @D @&y i @9

e E'ciently sharing data through
shared memory

e Synchronizing their execution

Block (1, 1)
e [For hazard-free shared memory

aCCcesses

Thread | Thread | Thread
(1,0) | 20) | (3,0

e Two threads from two di&erent
blocks cannot cooperate

Thread | Thread | Thread
Ly | 21| GBI

Thread | Thread | Thread
L2] 22| 3.2

e Blocks areindependent

Execution Model

e Kernels are launched in grids
e One kernel executes at a time
e A block executes on one multiprocessor

e Does not migrate

e Several blocks can reside concurrently on one multiprocessor (SM)

e Control limitations (of G8X/G9X GPUs):
e At most 8 concurrent blocks per SM
e At most 768 concurrent threads per SM
e Number is further limited by SM resources
e Register ble is partitioned among all resident threads

e Shared memory is partitioned among all resident thread blocks

Execution Model

Thread : _
@ Identibed by threadidx Multiple levels of parallelism

e Thread block

Thread Block
Identibed by blockldx e Up to 512 threads per block

e Communicate through shared memory
e Threads guaranteed to be resident
Grid of Thread Blocks
¥ threadldx, blockldx

¥ syncthreads()

e Grid of thread blocks

Result data array
¥ f<<<nblocks, nthreads>>>(a,b,c)

Divergence In Parallel Computing

e Removing divergence pain from parallel programming

e SIMD Pain
e User required to SIMD-ify
e User su&ers when computation goes divergent

e GPUs: Decouple execution width from programming model

Threads can diverge freely

Ine'ciency only when divergence exceeds native machine width

Hardware managed

Managing divergence becomes performance optimization

Scalable

CUDA Design Goals

e Scale to 1000s of cores, 10000s of parallel threads
e Let programmers focus on parallel algorithms

e not mechanics of a parallel programming language
e Enable heterogeneous systems (i.e., CPU+GPU)

e CPU & GPU are separate devices with separate DRAMs

Key Parallel Abstractions in CUD#A

e Hierarchy of concurrent threads

e Lightweight synchronization primitives

e Shared memory model for cooperating threads

Hierarchy of concurrent threads

e Parallel kernels composed of many threads Thrgadt

e all threads execute the same sequential program
e (Thisis OSIMTO)
e Threads are grouped intothread blocks
e threads in the same block can cooperate
e Threads/blocks have unique IDs %

e Each thread knows its OaddressO (thread/block ID)

CUDA: Programming GPU In

Philosophy: provide minimal set of extensions necessary to expose power
Declaration specibers to indicate where things live
__global __ void KernelFunc(...); Il kernel callable from host
__device void DeviceFunc(...); I/l function callable on device
__device_ int GlobalVar; /[variable in device memory

__sShared int SharedVar, /[shared within thread block

Extend function invocation syntax for parallel kernel launch
KernelFunc <<<500, 128>>> (..)); /I Taunch 500 blocks w/ 128 threads each

Special variables for thread identibcation in kernels
dim3 threadldx ; dim3 blockldx ; dim3 blockDim ; dim3 gridDim ;

Intrinsics that expose specibc operations in kernel code
__syncthreads() /[barrier synchronization within kernel

CUDA: Features available on GF

e Standard mathematical functions
sinf , powf, atanf , cell , min, sqgrtf , etc.

e Atomic memory operations (not in the class hw)
atomicAdd , atomicMin , atomicAnd , atomicCAS , etc.

e Texture accesses In kernels

texture<float,2> my_texture; /I declare texturereference

float4 texel = texfetch (my_texture, u, v);

Example: Vector Addition Kernel

Compute vector sum C = A+B means:

n = length(C)

fori =0 to n-1:

o CJi] = Ali] + BIi]

So C[0] = A[O] + B[O], C[1] = A[1] + BJ[1], etc.

Example: Vector Addition Kernel

/[Compute vector sum C = A+B Device Code

/[Each thread performs one pair-wise addition

__global void vecAdd(float* A, float* B, float* C)

{

inti= threadldx.x + blockDim.x * Dblockldx.x ;

Cli] = A[i] + BIi];

int main()
{
/I Run N/256 blocks of 256 threads each
vecAdd<<< N/256, 256>>> (d_A,d B,d C);

Example: Vector Addition Kernel

/[Compute vector sum C = A+B
/I Each thread performs one pair-wise addition
__global void vecAdd(float* A, float* B, float* C)
{
inti= threadldx.x + blockDim.x * blockldx.x ;

C[i] = A[i] + BJi];

Host Code

int main()

{
/I Run N/256 blocks of 256 threads each
vecAdd<<< N/256, 256>>> (d_ A, dB,d C)

Synchronization of blocks

e Threads within block may synchronize withbarriers
ESteplE
__syncthreads();
EStep2 E
e Blocks coordinate via atomic memory operations
® e.g., iIncrement shared queue pointer withatomiclnc()

e Implicit barrier between dependent kernels

vec_minus<<<nblocks, blksize>>>(a, b, c);
vec_dot<<<nblocks, blksize>>>(c, c);

What Is a thread?

e Independent thread of execution
e has its own PC, variables (registers), processor state, etc
e no implication about how threads are scheduled
e CUDA threads might behysical threads
e as on NVIDIA GPUs
e CUDA threads might bevirtual threads
e might pick 1 block = 1 physical thread on multicore CPU

e \ery interesting recent research on this topic

What is a thread block?

e Thread block =virtualized multiprocessor
e freely choose processors to bt data
e freely customize for each kernel launch
e Thread block = a (dataparallel task
e all blocks in kernel have the same entry point
e but may execute any code they want
e Thread blocks of kernel must bendependent tasks

e program valid for any interleaving of block executions

Blocks must be independent

e Any possible interleaving of blocks should be valid
e presumed to run to completion without pre-emption
® can run in any order
e can run concurrently OR sequentially

e Blocks may coordinate but not synchronize
e shared queue pointer:

e shared lock: BADE can easily deadlock

e [ndependence requirement givesscalability

Big ldea #4

e Qrganization into independent blocks allows
scalability / di&erent hardware instantiations

e If you organize your kernels to run over many blocks ...

e ... the same code will be e'cient on hardware that runs
one block at once and on hardware that runs many blocks
at once

Levels of parallelism

e Thread parallelism

e each thread is an independent thread of execution
e Data parallelism

® across threads in a block

e across blocks in a kernel
e Task parallelism

e di&erent blocks are independent

e independent kernels

Memory model

Thread

Per-thread
Local Memor

Block

Per-block
Shared

Memory

Using per-block shared memory

| Block
e Variables shared across block

__shared Int *begin, *end,

e Scratchpad memory

__shared__ int scratch[blocksize];

scratch[threadldx.x] =begin[threadldx.x
/[E compute on scratch values E
begin[threadldx.x] = scratch| threadldx.x

e Communicating values between threads

scratch[threadldx.x]=Dbegin[threadldx.x

__syncthreads() ;
Int left = scratch| threadldx.x - 1];

Memory model

Kernel O

AL AL
23333335 2555

Per-device
Global

Memory

Sequential
Kernels

Memory model

Device 0O

ﬁ
memory

cudaMemcpy()

ﬁ

Host

memory

Device 1

memory

CUDA: Runtime support

Explicit memory allocation returns pointers to GPU memory
cudaMalloc() , cudaFree()

Explicit memory copy for host— device, device«< device

cudaMemcpy() , cudaMemcpy2D() , ...
Texture management

cudaBindTexture() , cudaBindTextureToArray()
OpenGL & DirectX interoperability

cudaGLMapBufferObject() , cudaD3D9MapVertexBuffer() E

Example: Vector Addition Kernel

// Compute vector sum C = A+B
I/l Each thread performs one pair-wise addition
__global void vecAdd(float* A, float* B, float* C){
inti= threadldx.x + DblockDim.x * blockldx.x

Clil = Al + B[J;

iInt main(){
/I Run N/256 blocks of 256 threads each
vecAdd<<< N/256, 256>>> (d A, dB,d O,

Example: Host code forvecAdd

// allocate and initialize host (CPU) memory
float*h_A=E, *h_B=E;

/[allocate device (GPU) memory
float *d_A, *d_B, *d_C;

cudaMalloc ((void**) &d_A, N * sizeof(float));
cudaMalloc ((void**) &d_B, N * sizeof(float));
cudaMalloc ((void**) &d_C, N * sizeof(float));

// copy host memory to device

cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice));

cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice));

/| execute the kernel on N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d_A, d B, d C);

Example: Parallel Reduction

e Summing up a sequence with 1 thread.:
Int sum = 0O;
for(int 1=0; I<N; ++1) sum += X]i];

e Parallel reduction builds a summation tree

each thread holds 1 element

stepwise partial sums %
n threads need logn steps >§§< >§§<

one possible approach:

Butter3y pattern >< >< >< ><

Example: Parallel Reduction

e Summing up a sequence with 1 thread.:
Int sum = 0O;
for(int 1=0; I<N; ++1) sum += X]i];

e Parallel reduction builds a summation tree

each thread holds 1 element

stepwise partial sums ////

n threads need logn steps >§§< //j pd
7~

one possible approach:

ButterRy pattern >< >< >< //

Parallel Reduction for 1 Blocl

/[INPUT: Thread i holds value x_i
Inti= threadldx.x :
__shared__ int sum[blocksize],

// One thread per element
sumli] = x_1i; __syncthreads()

for(int bit=blocksize/2; bit>0; bit/=2)
{
Int t=sum[i]+sum[i"bit]; __syncthreads()
sum[i]=t; __syncthreads()

}
/[OUTPUT: Every thread now holds sum in sum|i]

Example: Serial SAXPY routine

Serial program: compute y = (X + y with a loop

void saxpy_serial(int n, float a, float *x, float *y)

{

for(int i = 0; i<n; ++i)
ylil = a*x[i] + y[i];

Serial execution: call a function

saxpy_serial(n, 2.0, X, y);

Example: Parallel SAXPY routine

Parallel program: compute with 1 thread per element

__global__
void saxpy_parallel(int n, float a, float *x, float *y)

{

inti= blockldx.x *blockDim.x + threadldx.x

if(i<n) y[i] = a*x[i] + V[i];
}

Parallel execution: launch a kernel

uint size = 256; // threads per block
uint blocks = (n + size-1) / size; // blocks needed

saxpy_parallel<<<blocks, size>>> (n, 2.0, X, y);

SAXPY In PTX 1.0 ISA

cvt.u32.ul6| Sblockid, : [/ Calculate i from thread/block IDs
cvt.u32.uloc| Sblocksize, ;
cvt.u32.ulo| Stid, ;
mad24.lo.u32 $1i, $blockid, Sblocksize, S$tid;
ld.param.u32 $n, [N]; [Nothingtodoifn)i
setp.le.u32 pl, Sn, $i;
@$pl bra SL finish;

mul.lo.u32 Soffset, $i, 4; [iLoad yli]
ld.param.u32 Syaddr, [Y];

add.u32 Syaddr, Syaddr, Soffset;
1d.global.f32 Sy i, [Syaddr+0];
ld.param.u32 S$Sxaddr, [X]; // Load X]i]
add.u32 Sxaddr, S$xaddr, Soffset;
ld.global.f32 $x_ i, [Sxaddr+0];

ld.param.f32 S$alpha, [ALPHA]; // Compute and store alpha*x[i] + yl[i]
mad.f32 $y i, Salpha, $x i, Sy i;
st.global.f32 [Syaddr+0], Sy i;

$L finish: exit;

Sparse matrix-vector multiplication

e Sparse matrices have relatively few non-zero entries
e FrequentlyO(n) rather than O(n?)

e Only store & operate on these non-zero entries

Example: Compressed Sparse Row (CSR) Format

RowO Row?2 Row3
Non-zerovalues AV[7]={3,1,2,4,1,1,1%
Column indices Aj[7]1={0,2,1,2,3,0,3}

Row pointers Ap[5]={0, 2,2,5,7}

Sparse matrix-vector multiplication

float multiply _row(uint rowsize, /[number of non-zeros in row
uint *Aj, /[column indices for row
float *Av, // non-zero entries for row
float *x) I/ the RHS vector

{

float sum = 0;

for(uint column=0; column<rowsize; ++column)
sum += Av[column] * x[Aj[column]];

return sum, Row (O Row 2
Non-zerovalues AV[7]={3,1,2,4,1,1,1%
Column indices Aj[7]={0, 2,1, 2,3,0,3};

}

Row pointers Ap[5]={0, 2,2,5,7}

Sparse matrix-vector multiplication

float multiply row(uint size, uint *A|,
float *Av, float *x);

void csrmul_serial(uint *Ap, uint *Aj, float *Av,
uint num_rows, float *x, float *y)
{

for(uint row=0; row<num_rows; ++row)
{

uint row_begin = Ap[row];

uint row_end = Ap[row+1];

y[row] = multiply _row(row_end-row_begin,
Aj+row_begin,
Av+row_begin,
X);

Sparse matrix-vector multiplication

float multiply row(uint size, uint *A|,
float *Av, float *x);

__global

void csrmul_kernel(uint *Ap, uint *Aj, float *Av,
uint num_rows, float *x, float *y)

{

uint row = blockldx.x *blockDim.x + threadldx.x

If(row<num_rows)

{
uint row_begin = Ap[row],
uint row_end = Ap[row+1];

y[row] = multiply _row(row_end-row_begin,
Aj+row_begin, Av+row_begin, X);

Adding a simple caching scheme
__global__ void csrmul_cached(E E E E E E) {

uint begin = blockldx.x *blockDim.x , end = begin+ blockDim.x
uintrow =begin + threadldx.x

__shared__float cache[blocksize]; // array to cache rows

row<num_rows) cache[threadldx.x] = x[row]; /[fetch to cache
__|syncthreads();

if(row<num_rows) {
uint row_begin = Ap[row], row_end = Ap[row+1]; float sum = O;

for(uint col=row_begin; col<row_end; ++col) {
uint j = Aj[col];

/I Fetch from cached rows when possible
float x_jj= (j>=begin && j<end) ? cache[j-begin] : X[j];

sum += Av]col] * x_j;

}

y[row] = sum;

}

Basic E'ciency Rules

e Develop algorithms with a data parallel mindset
Minimize divergence of execution within blocks
Maximize locality of global memory accesses

Exploit per-block shared memory as scratchpad

Expose enough parallelism

Summing Up
e CUDA = C + a few simple extensions

e makes it easy to start writing basic parallel programs

e Three key abstractions:
hierarchy of parallel threads
corresponding levels of synchronization

corresponding memory spaces

e Supports massive parallelism of manycore GPUs

