
Lecture 15
CUDA

EEC 171 Parallel Architectures
John Owens

UC Davis

Credits

• © John Owens / UC Davis 2008–9.

• This lecture is primarily derived from a tutorial at
ASPLOS 2008 (March 2008) by David Luebke (NVIDIA
Research), Michael Garland (NVIDIA Research), John
Owens (UC Davis), and Kevin Skadron (NVIDIA
Research/University of Virginia), with additional
material from Mark Harris (NVIDIA Ltd.).

Performance beyond single thread ILP

• There can be much higher natural parallelism in some applications
(e.g., database or scientific codes)

• Explicit Thread Level Parallelism or Data Level Parallelism

• Thread: process with own instructions and data

• Thread may be a subpart of a parallel program (“thread”), or it may be an
independent program (“process”)

• Each thread has all the state (instructions, data, PC, register state, and so on)
necessary to allow it to execute

• Data Level Parallelism: Perform identical operations on data, and
(possibly) lots of data

• Today is going to be a little confusing about the word “thread”. Sorry.

Continuum of Granularity
• “Coarse”

• Each processor is more
powerful

• Usually fewer
processors

• Communication is more
expensive between
processors

• Processors are more
loosely coupled

• Tend toward MIMD

• “Fine”

• Each processor is less
powerful

• Usually more
processors

• Communication is
cheaper between
processors

• Processors are more
tightly coupled

• Tend toward SIMD

“If you were plowing a field, which
would you rather use? Two strong

oxen or 1024 chickens?”
—Seymour Cray

ILP vs. DLP
• “SIMD is about exploiting parallelism in the data

stream, while superscalar SISD is about exploiting
parallelism in the instruction stream.”

• What we learned last week:

• SIMD instructions in microprocessors (MMX, SSE, etc.)

• Vector and massively parallel machines

• Today: NVIDIA GPUs as a data-parallel processor

• NVIDIA G80 (GeForce 8000 family)

• NVIDIA CUDA (programming environment)
http://arstechnica.com/articles/paedia/cpu/simd.ars

http://arstechnica.com/articles/paedia/cpu/simd.ars
http://arstechnica.com/articles/paedia/cpu/simd.ars

Motivation for Today

• SIMD instructions in microprocessors are good ... but
they’re only 4 wide

• Some applications have more data parallelism than 4

• How do we design hardware and software to take
advantage of massive data parallelism?

Why is data-parallel computing fast?
• The GPU is specialized for compute-intensive, highly parallel

computation (exactly what graphics rendering is about)

• So, more transistors can be devoted to data processing rather than data
caching and flow control

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

Recent GPU Performance Trends
Programmable 32-bit FP operations per second

Early data courtesy Ian Buck; from Owens et al. 2007 [CGF]

$279
gtx280

$175
r4870

$125–699
Core2q

115.2
GB/s

12.8 GB/s

141.7
GB/s

Successes on NVIDIA GPUs

146X

Interactive visualization
of volumetric white
matter connectivity

36X

Ionic placement for
molecular dynamics
simulation on GPU

19X

Transcoding HD video
stream to H.264

17X

Fluid mechanics in
Matlab using .mex file

CUDA function

100X

Astrophysics N-body
simulation

149X

Financial simulation of
LIBOR model with

swaptions

47X

GLAME@lab: an M-script
API for GPU linear

algebra

20X

Ultrasound medical
imaging for cancer

diagnostics

24X

Highly optimized object
oriented molecular

dynamics

30X

Cmatch exact string
matching to find similar

proteins and gene
sequences

[courtesy David Luebke, NVIDIA]

Programming Model: A Massively Multi-threaded Processor

• Move data-parallel application portions to the GPU

• Differences between GPU and CPU threads

• Lightweight threads

• GPU supports 1000s of threads

• Today:

• GPU hardware

• CUDA programming
environment

Big Idea #1

• One thread per data element.

• Doesn’t this mean that large problems will have
millions of threads?

Big Idea #2

• Write one program.

• That program runs on ALL threads in parallel.

• Terminology here is “SIMT”: single-instruction,
multiple-thread.

• Roughly: SIMD means many threads run in lockstep; SIMT
means that some divergence is allowed

CUDA Kernels and Threads
• Parallel portions of an application are executed on the

device as kernels

• One SIMT kernel is executed at a time

• Many threads execute each kernel

• Differences between CUDA and CPU threads

• CUDA threads are extremely lightweight

• Very little creation overhead

• Instant switching

• CUDA must use 1000s of threads to achieve efficiency

• Multi-core CPUs can use only a few

Definitions:
Device = GPU; Host = CPU

Kernel = function that
runs on the device

Graphics Programs

Thread Program

Output Registers

Constants

Texture (read only)

Registers

Features

• Millions of instructions

• Full integer and bit instructions

• No limits on branching, looping

General-Purpose Programs
Features

• 1D, 2D, or 3D thread ID allocation

• Fully general load/store to GPU memory: Scatter/
Gather

• Programmer flexibility on how memory is accessed

• Untyped, not limited to fixed texture types

• Pointer support

Thread Program

Output Registers

Constants

Texture

Registers

Thread Number

Global Memory

Parallel Data Cache
Features
• Dedicated on-chip memory

• Shared between threads for inter-thread
communication

• Explicitly managed

• As fast as registers

Thread Program

Output Registers

Constants

Texture

Registers

Thread Number

Global Memory

Parallel Data Cache

Parallel Data Cache

Parallel execution through cache

Parallel
Data

Cache

Thread
Execution
Manager

ALU

Control

ALU

Control

ALU

Control

ALU

DRAM

P1

P2

P3

P4

P5

Shared
Data

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

Bring the data closer to the ALU

•Stage computation for the parallel data
cache
•Minimize trips to external memory
•Share values to minimize overfetch and

computation
•Increases arithmetic intensity by keeping

data close to the processors
•User managed generic memory, threads

read/write arbitrarily

Addresses a fundamental problem
of stream computing

• Processors execute
computing threads

• Thread Execution
Manager issues threads

• 128 Thread Processors

• Parallel Data Cache
accelerates processing

GPU Computing

Thread Execution Manager

Input Assembler

Host

Parallel
Data

Cache

Global Memory

Load/store

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

SM Multithreaded Multiprocessor
• Each SM runs a block of threads

• SM has 8 SP Thread Processors

• 32 GFLOPS peak at 1.35 GHz

• IEEE 754 32-bit floating point

• Scalar ISA

• Up to 768 threads,
hardware multithreaded

• 16KB Shared Memory

• Concurrent threads share data

• Low latency load/store

SP

Shared
Memory

IU

SP

Shared
Memory

IU

SP

Shared
Memory

MT IU

SM

Big Idea #3

• Latency hiding.

• It takes a long time to go to memory.

• So while one set of threads is waiting for memory ...

• ... run another set of threads during the wait.

• In practice, 32 threads run in a “warp” and an efficient program
usually has 128–256 threads in a block.

• Same program

• Scalable performance

Scaling the Architecture

Thread Execution Manager

Input Assembler

Host

Parallel
Data

Cache

Global Memory

Load/store

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Thread Execution Manager

Input Assembler

Host

Global Memory

Load/store

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

HW Goal: Scalability
• Scalable execution

• Program must be insensitive to the number of cores

• Write one program for any number of SM cores

• Program runs on any size GPU without recompiling

• Hierarchical execution model

• Decompose problem into sequential steps (kernels)

• Decompose kernel into computing parallel blocks

• Decompose block into computing parallel threads

• Hardware distributes independent blocks to SMs as available

This is very
important.

Programming Model: A Highly Multi-threaded
Coprocessor

• The GPU is viewed as a compute device that:

• Is a coprocessor to the CPU or host

• Has its own DRAM (device memory)

• Runs many threads in parallel

• Data-parallel portions of an application execute on the device as kernels
that run many cooperative threads in parallel

• Differences between GPU and CPU threads

• GPU threads are extremely lightweight

• Very little creation overhead

• GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

CUDA Software Development Kit

NVIDIA C Compiler

NVIDIA Assembly
for Computing (PTX) CPU Host Code

Integrated CPU + GPU
C Source Code

CUDA Optimized Libraries:
math.h, FFT, BLAS, …

CUDA
Driver

Debugger
Profiler Standard C Compiler

GPU CPU

Compiling CUDA for GPUs

NVCC

C/C++ CUDA
Application

PTX to Target
Translator

 GPU … GPU
Target device code

PTX CodeGeneric

Specialized

CPU Code

Programming Model (SPMD + SIMD): Thread Batching

• A kernel is executed as a grid of
thread blocks

• A thread block is a batch of
threads that can cooperate with
each other by:

• Efficiently sharing data through
shared memory

• Synchronizing their execution

• For hazard-free shared memory
accesses

• Two threads from two different
blocks cannot cooperate

• Blocks are independent

Host

Kernel 1

Kernel 2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Execution Model
• Kernels are launched in grids

• One kernel executes at a time

• A block executes on one multiprocessor

• Does not migrate

• Several blocks can reside concurrently on one multiprocessor (SM)

• Control limitations (of G8X/G9X GPUs):

• At most 8 concurrent blocks per SM

• At most 768 concurrent threads per SM

• Number is further limited by SM resources

• Register file is partitioned among all resident threads

• Shared memory is partitioned among all resident thread blocks

Execution Model
Multiple levels of parallelism

• Thread block

• Up to 512 threads per block

• Communicate through shared memory

• Threads guaranteed to be resident

• threadIdx, blockIdx

• __syncthreads()

• Grid of thread blocks

• f<<<nblocks, nthreads>>>(a,b,c)

Result data array

Thread
Identified by threadIdx

Thread Block
Identified by blockIdx

Grid of Thread Blocks

Divergence in Parallel Computing

• Removing divergence pain from parallel programming

• SIMD Pain

• User required to SIMD-ify

• User suffers when computation goes divergent

• GPUs: Decouple execution width from programming model

• Threads can diverge freely

• Inefficiency only when divergence exceeds native machine width

• Hardware managed

• Managing divergence becomes performance optimization

• Scalable

CUDA Design Goals

• Scale to 100’s of cores, 1000’s of parallel threads

• Let programmers focus on parallel algorithms

• not mechanics of a parallel programming language

• Enable heterogeneous systems (i.e., CPU+GPU)

• CPU & GPU are separate devices with separate DRAMs

Key Parallel Abstractions in CUDA

• Hierarchy of concurrent threads

• Lightweight synchronization primitives

• Shared memory model for cooperating threads

Hierarchy of concurrent threads

• Parallel kernels composed of many threads

• all threads execute the same sequential program

• (This is “SIMT”)

• Threads are grouped into thread blocks

• threads in the same block can cooperate

• Threads/blocks have unique IDs

• Each thread knows its “address” (thread/block ID)

Thread t

t0 t1 … tB
Block b

CUDA: Programming GPU in C
• Philosophy: provide minimal set of extensions necessary to expose power

• Declaration specifiers to indicate where things live

 __global__ void KernelFunc(...); // kernel callable from host

 __device__ void DeviceFunc(...); // function callable on device

 __device__ int GlobalVar; // variable in device memory

 __shared__ int SharedVar; // shared within thread block

• Extend function invocation syntax for parallel kernel launch
 KernelFunc<<<500, 128>>>(...); // launch 500 blocks w/ 128 threads each

• Special variables for thread identification in kernels
 dim3 threadIdx; dim3 blockIdx; dim3 blockDim; dim3 gridDim;

• Intrinsics that expose specific operations in kernel code
 __syncthreads(); // barrier synchronization within kernel

CUDA: Features available on GPU

• Standard mathematical functions

sinf, powf, atanf, ceil, min, sqrtf, etc.

• Atomic memory operations (not in the class hw)

atomicAdd, atomicMin, atomicAnd, atomicCAS, etc.

• Texture accesses in kernels
texture<float,2> my_texture; // declare texture reference

float4 texel = texfetch(my_texture, u, v);

Example: Vector Addition Kernel

• Compute vector sum C = A+B means:

• n = length(C)

• for i = 0 to n-1:

• C[i] = A[i] + B[i]

• So C[0] = A[0] + B[0], C[1] = A[1] + B[1], etc.

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main()

{

 // Run N/256 blocks of 256 threads each

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Device Code

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main()

{

 // Run N/256 blocks of 256 threads each

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Host Code

Synchronization of blocks

• Threads within block may synchronize with barriers
 … Step 1 …

__syncthreads();
… Step 2 …

• Blocks coordinate via atomic memory operations

• e.g., increment shared queue pointer with atomicInc()

• Implicit barrier between dependent kernels

 vec_minus<<<nblocks, blksize>>>(a, b, c);
vec_dot<<<nblocks, blksize>>>(c, c);

What is a thread?
• Independent thread of execution

• has its own PC, variables (registers), processor state, etc.

• no implication about how threads are scheduled

• CUDA threads might be physical threads

• as on NVIDIA GPUs

• CUDA threads might be virtual threads

• might pick 1 block = 1 physical thread on multicore CPU

• Very interesting recent research on this topic

What is a thread block?
• Thread block = virtualized multiprocessor

• freely choose processors to fit data

• freely customize for each kernel launch

• Thread block = a (data) parallel task

• all blocks in kernel have the same entry point

• but may execute any code they want

• Thread blocks of kernel must be independent tasks

• program valid for any interleaving of block executions

Blocks must be independent
• Any possible interleaving of blocks should be valid

• presumed to run to completion without pre-emption

• can run in any order

• can run concurrently OR sequentially

• Blocks may coordinate but not synchronize

• shared queue pointer: OK

• shared lock: BAD … can easily deadlock

• Independence requirement gives scalability

Big Idea #4

• Organization into independent blocks allows
scalability / different hardware instantiations

• If you organize your kernels to run over many blocks ...

• ... the same code will be efficient on hardware that runs
one block at once and on hardware that runs many blocks
at once

Levels of parallelism
• Thread parallelism

• each thread is an independent thread of execution

• Data parallelism

• across threads in a block

• across blocks in a kernel

• Task parallelism

• different blocks are independent

• independent kernels

Memory model

Thread
Per-thread

Local Memory

Block
Per-block

Shared
Memory

Using per-block shared memory

• Variables shared across block
 __shared__ int *begin, *end;

• Scratchpad memory
 __shared__ int scratch[blocksize];

 scratch[threadIdx.x] = begin[threadIdx.x];
// … compute on scratch values …
begin[threadIdx.x] = scratch[threadIdx.x];

• Communicating values between threads
 scratch[threadIdx.x] = begin[threadIdx.x];

 __syncthreads();
int left = scratch[threadIdx.x - 1];

Block

Shared

Memory model

Kernel 0
. .
. Per-device

Global
Memory

. . .

Kernel 1
Sequential

Kernels

Memory model

Device 0
memory

Device 1
memory

Host
memory

cudaMemcpy()

CUDA: Runtime support

• Explicit memory allocation returns pointers to GPU memory

 cudaMalloc(), cudaFree()

• Explicit memory copy for host ↔ device, device ↔ device

 cudaMemcpy(), cudaMemcpy2D(), ...

• Texture management

 cudaBindTexture(), cudaBindTextureToArray(), ...

• OpenGL & DirectX interoperability

 cudaGLMapBufferObject(), cudaD3D9MapVertexBuffer(), …

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C){

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main(){

 // Run N/256 blocks of 256 threads each

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Example: Host code for vecAdd
// allocate and initialize host (CPU) memory

float *h_A = …, *h_B = …;

// allocate device (GPU) memory

float *d_A, *d_B, *d_C;

cudaMalloc((void**) &d_A, N * sizeof(float));

cudaMalloc((void**) &d_B, N * sizeof(float));

cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device

cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice));

cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice));

// execute the kernel on N/256 blocks of 256 threads each

vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

Example: Parallel Reduction
• Summing up a sequence with 1 thread:
 int sum = 0;

 for(int i=0; i<N; ++i) sum += x[i];

• Parallel reduction builds a summation tree

• each thread holds 1 element

• stepwise partial sums

• n threads need log n steps

• one possible approach:
Butterfly pattern

Example: Parallel Reduction
• Summing up a sequence with 1 thread:
 int sum = 0;

 for(int i=0; i<N; ++i) sum += x[i];

• Parallel reduction builds a summation tree

• each thread holds 1 element

• stepwise partial sums

• n threads need log n steps

• one possible approach:
Butterfly pattern

Parallel Reduction for 1 Block
// INPUT: Thread i holds value x_i
int i = threadIdx.x;
__shared__ int sum[blocksize];

// One thread per element
sum[i] = x_i; __syncthreads();

for(int bit=blocksize/2; bit>0; bit/=2)
{
 int t=sum[i]+sum[i^bit]; __syncthreads();
 sum[i]=t; __syncthreads();
}
// OUTPUT: Every thread now holds sum in sum[i]

Example: Serial SAXPY routine

Serial program: compute y = α x + y with a loop
void saxpy_serial(int n, float a, float *x, float *y)
{
 for(int i = 0; i<n; ++i)
 y[i] = a*x[i] + y[i];
}

Serial execution: call a function

saxpy_serial(n, 2.0, x, y);

Example: Parallel SAXPY routine

Parallel execution: launch a kernel

uint size = 256; // threads per block
uint blocks = (n + size-1) / size; // blocks needed

saxpy_parallel<<<blocks, size>>>(n, 2.0, x, y);

Parallel program: compute with 1 thread per element
__global__
void saxpy_parallel(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if(i<n) y[i] = a*x[i] + y[i];
}

SAXPY in PTX 1.0 ISA
cvt.u32.u16 $blockid, %ctaid.x; // Calculate i from thread/block IDs
cvt.u32.u16 $blocksize, %ntid.x;
cvt.u32.u16 $tid, %tid.x;
mad24.lo.u32 $i, $blockid, $blocksize, $tid;
ld.param.u32 $n, [N]; // Nothing to do if n ≤ i
setp.le.u32 $p1, $n, $i;
@$p1 bra $L_finish;

mul.lo.u32 $offset, $i, 4; // Load y[i]
ld.param.u32 $yaddr, [Y];
add.u32 $yaddr, $yaddr, $offset;
ld.global.f32 $y_i, [$yaddr+0];
ld.param.u32 $xaddr, [X]; // Load x[i]
add.u32 $xaddr, $xaddr, $offset;
ld.global.f32 $x_i, [$xaddr+0];

ld.param.f32 $alpha, [ALPHA]; // Compute and store alpha*x[i] + y[i]
mad.f32 $y_i, $alpha, $x_i, $y_i;
st.global.f32 [$yaddr+0], $y_i;

$L_finish: exit;

Sparse matrix-vector multiplication

• Sparse matrices have relatively few non-zero entries

• Frequently O(n) rather than O(n2)

• Only store & operate on these non-zero entries

3 0 1 0
0 0 0 0
0 2 4 1
1 0 0 1

Av[7] = { 3, 1, 2, 4, 1, 1, 1 };

Aj[7] = { 0, 2, 1, 2, 3, 0, 3 };

Ap[5] = { 0, 2, 2, 5, 7 };

Non-zero values

Column indices

Row pointers

Row 0 Row 2 Row 3

Example: Compressed Sparse Row (CSR) Format

Sparse matrix-vector multiplication
float multiply_row(uint rowsize, // number of non-zeros in row
 uint *Aj, // column indices for row
 float *Av, // non-zero entries for row
 float *x) // the RHS vector
{
 float sum = 0;

 for(uint column=0; column<rowsize; ++column)
 sum += Av[column] * x[Aj[column]];

 return sum;
}

Av[7] = { 3, 1, 2, 4, 1, 1, 1 };

Aj[7] = { 0, 2, 1, 2, 3, 0, 3 };

Ap[5] = { 0, 2, 2, 5, 7 };

Non-zero values

Column indices

Row pointers

Row 0 Row 2 Row 3

Sparse matrix-vector multiplication
float multiply_row(uint size, uint *Aj,
float *Av, float *x);

void csrmul_serial(uint *Ap, uint *Aj, float *Av,
 uint num_rows, float *x, float *y)
{
 for(uint row=0; row<num_rows; ++row)
 {
 uint row_begin = Ap[row];
 uint row_end = Ap[row+1];

 y[row] = multiply_row(row_end-row_begin,
 Aj+row_begin,
 Av+row_begin,
 x);
 }
}

Sparse matrix-vector multiplication
float multiply_row(uint size, uint *Aj,
float *Av, float *x);

__global__
void csrmul_kernel(uint *Ap, uint *Aj, float *Av,
 uint num_rows, float *x, float *y)
{
 uint row = blockIdx.x*blockDim.x + threadIdx.x;

 if(row<num_rows)
 {
 uint row_begin = Ap[row];
 uint row_end = Ap[row+1];

 y[row] = multiply_row(row_end-row_begin,
 Aj+row_begin, Av+row_begin, x);
 }
}

Adding a simple caching scheme
__global__ void csrmul_cached(… … … … … …) {
 uint begin = blockIdx.x*blockDim.x, end = begin+blockDim.x;
 uint row = begin + threadIdx.x;

 __shared__ float cache[blocksize]; // array to cache rows
 if(row<num_rows) cache[threadIdx.x] = x[row]; // fetch to cache
 __syncthreads();

 if(row<num_rows) {
 uint row_begin = Ap[row], row_end = Ap[row+1]; float sum = 0;

 for(uint col=row_begin; col<row_end; ++col) {
 uint j = Aj[col];

 // Fetch from cached rows when possible
 float x_j = (j>=begin && j<end) ? cache[j-begin] : x[j];

 sum += Av[col] * x_j;
 }

 y[row] = sum;
 }
}

Basic Efficiency Rules
• Develop algorithms with a data parallel mindset

• Minimize divergence of execution within blocks

• Maximize locality of global memory accesses

• Exploit per-block shared memory as scratchpad

• Expose enough parallelism

Summing Up
• CUDA = C + a few simple extensions

• makes it easy to start writing basic parallel programs

• Three key abstractions:

1. hierarchy of parallel threads

2. corresponding levels of synchronization

3. corresponding memory spaces

• Supports massive parallelism of manycore GPUs

