Lecture 15 CUDA

EEC 171 Parallel Architectures John Owens UC Davis

Credits

- © John Owens / UC Davis 2008–9.
- This lecture is primarily derived from a tutorial at ASPLOS 2008 (March 2008) by David Luebke (NVIDIA Research), Michael Garland (NVIDIA Research), John Owens (UC Davis), and Kevin Skadron (NVIDIA Research/University of Virginia), with additional material from Mark Harris (NVIDIA Ltd.).

Performance beyond single thread ILP

- There can be much higher natural parallelism in some applications (e.g., database or scientific codes)
- Explicit Thread Level Parallelism or Data Level Parallelism
- Thread: process with own instructions and data
 - Thread may be a subpart of a parallel program ("thread"), or it may be an independent program ("process")
 - Each thread has all the state (instructions, data, PC, register state, and so on) necessary to allow it to execute
- Data Level Parallelism: Perform identical operations on data, and (possibly) lots of data
- Today is going to be a little confusing about the word "thread". Sorry.

Continuum of Granularity

- "Coarse"
 - Each processor is more powerful
 - Usually fewer processors
 - Communication is more expensive between processors
 - Processors are more loosely coupled
 - Tend toward MIMD

- "Fine"
 - Each processor is less powerful
 - Usually more processors
 - Communication is cheaper between processors
 - Processors are more tightly coupled
 - Tend toward SIMD

"If you were plowing a field, which would you rather use? Two strong oxen or 1024 chickens?"

-Seymour Cray

ILP vs. DLP

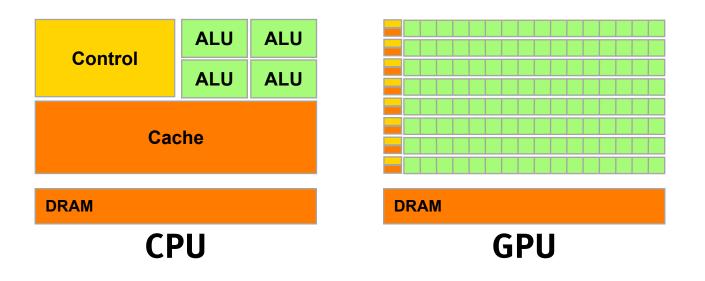
- "SIMD is about exploiting parallelism in the data stream, while superscalar SISD is about exploiting parallelism in the instruction stream."
- What we learned last week:
 - SIMD instructions in microprocessors (MMX, SSE, etc.)
 - Vector and massively parallel machines
- Today: NVIDIA GPUs as a data-parallel processor
 - NVIDIA G80 (GeForce 8000 family)
 - NVIDIA CUDA (programming environment)

Motivation for Today

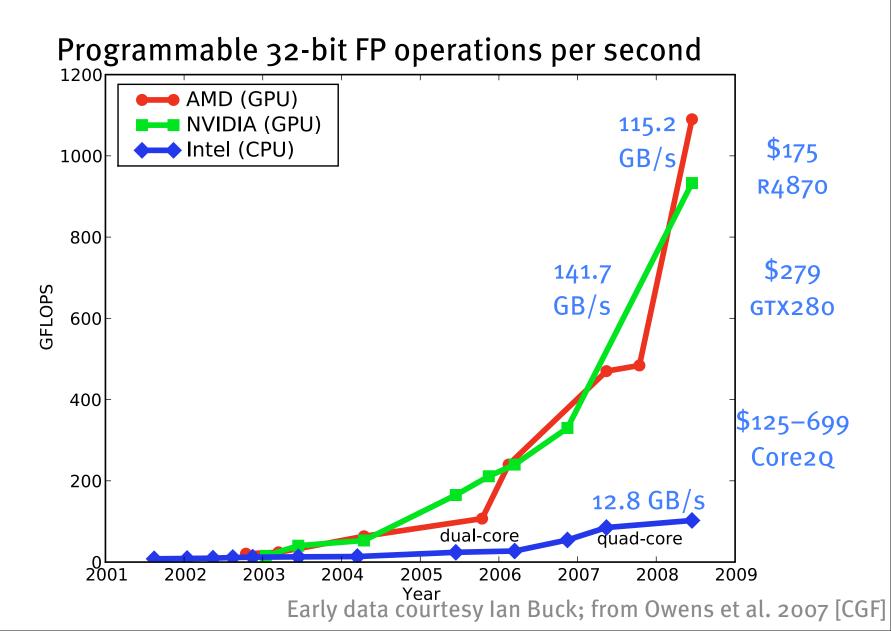
- SIMD instructions in microprocessors are good ... but they're only 4 wide
- Some applications have more data parallelism than 4
- How do we design hardware and software to take advantage of massive data parallelism?

Why is data-parallel computing fast?

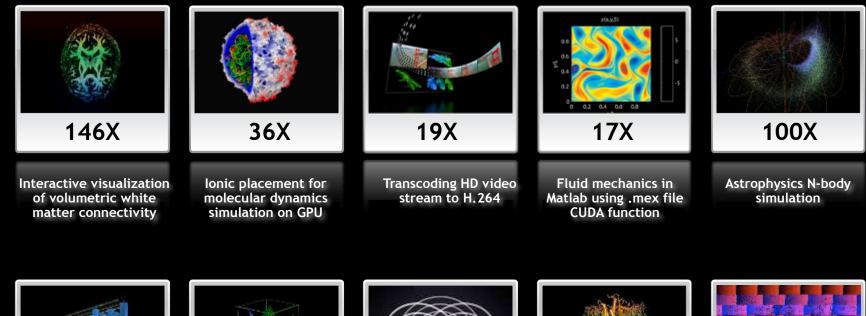
- The GPU is specialized for compute-intensive, highly parallel computation (exactly what graphics rendering is about)
 - So, more transistors can be devoted to data processing rather than data caching and flow control

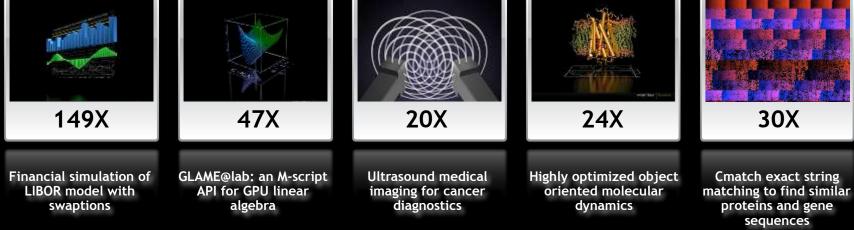


Recent GPU Performance Trends



Successes on NVIDIA GPUs





[courtesy David Luebke, NVIDIA]

Programming Model: A Massively Multi-threaded Processor

- Move data-parallel application portions to the GPU
- Differences between GPU and CPU threads
 - Lightweight threads
 - GPU supports 1000s of threads
- Today:
 - GPU hardware
 - CUDA programming environment

Big Idea #1

- One thread per data element.
- Doesn't this mean that large problems will have millions of threads?

Big Idea #2

- Write one program.
- That program runs on ALL threads in parallel.
- Terminology here is "SIMT": single-instruction, multiple-thread.
 - Roughly: SIMD means many threads run in lockstep; SIMT means that some divergence is allowed

CUDA Kernels and Threads

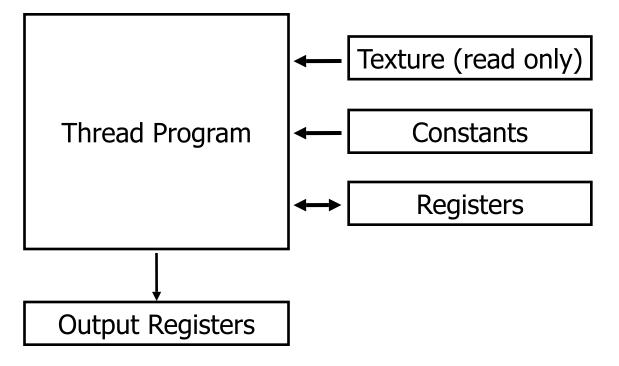
- Parallel portions of an application are executed on the device as kernels
 Definitions:
 - One SIMT kernel is executed at a time
 - Many threads execute each kernel
- Differences between CUDA and CPU threads
 - CUDA threads are extremely lightweight
 - Very little creation overhead
 - Instant switching
 - CUDA *must* use 1000s of threads to achieve efficiency
 - Multi-core CPUs can use only a few

Definitions: *Device =* GPU; *Host* = CPU *Kernel* = function that runs on the device

Graphics Programs

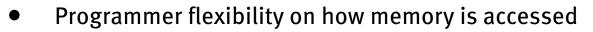
Features

- Millions of instructions
- Full integer and bit instructions
- No limits on branching, looping

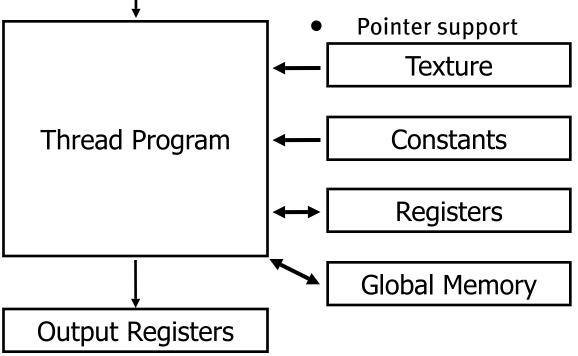


General-Purpose Programs

- 1D, 2D, or 3D thread ID allocation
- Fully general load/store to GPU memory: Scatter/ Gather



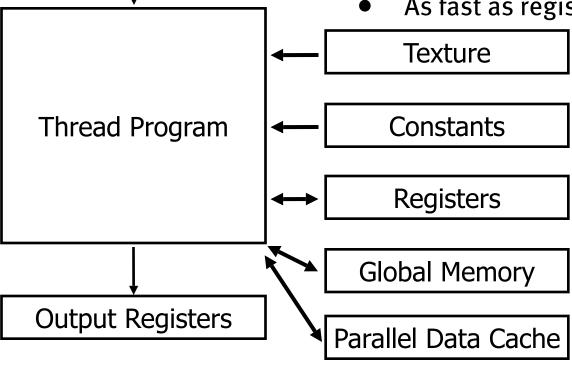
Untyped, not limited to fixed texture types



Thread Number

Parallel Data Cache Features

- Dedicated on-chip memory
- Shared between threads for inter-thread communication
- Thread Number **Explicitly managed** As fast as registers Texture

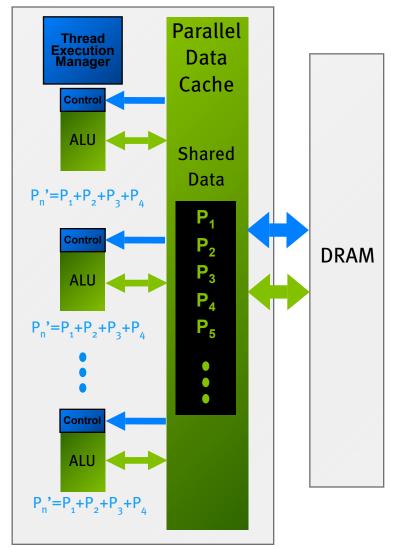


Parallel Data Cache

Addresses a fundamental problem of stream computing

Bring the data closer to the ALU

- Stage computation for the parallel data cache
- Minimize trips to external memory
- Share values to minimize overfetch and computation
- Increases arithmetic intensity by keeping data close to the processors
- User managed generic memory, threads read/write arbitrarily



Parallel execution through cache

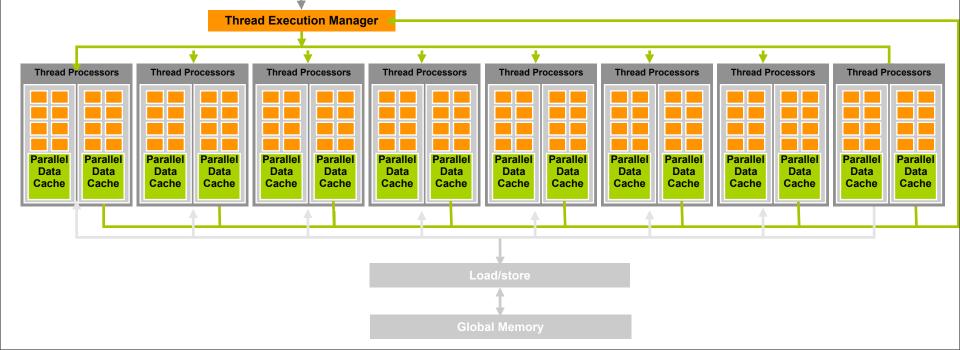
GPU Computing

- Processors execute computing threads
- Thread Execution Manager issues threads

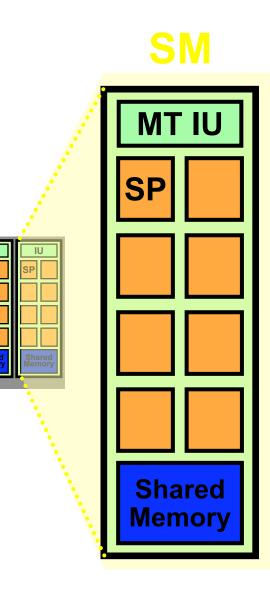
Host

Input Assembler

- 128 Thread Processors
- Parallel Data Cache accelerates processing



SM Multithreaded Multiprocessor



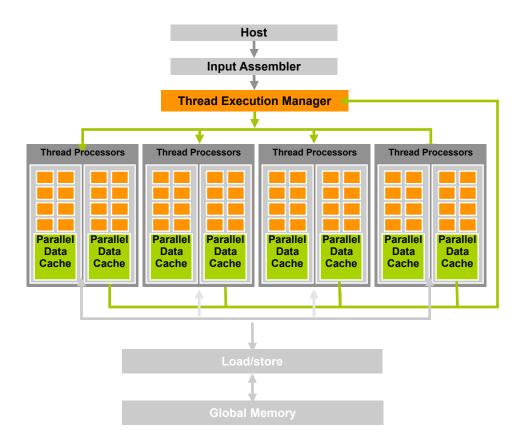
- Each SM runs a *block* of threads
- SM has 8 SP Thread Processors
 - 32 GFLOPS peak at 1.35 GHz
 - IEEE 754 32-bit floating point
- Scalar ISA
- Up to 768 threads, hardware multithreaded
- 16KB Shared Memory
 - Concurrent threads share data
 - Low latency load/store

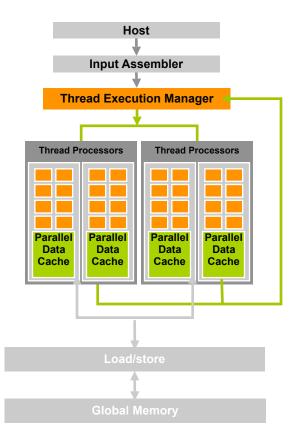
Big Idea #3

- Latency hiding.
 - It takes a long time to go to memory.
 - So while one set of threads is waiting for memory ...
 - ... run another set of threads during the wait.
 - In practice, 32 threads run in a "warp" and an efficient program usually has 128–256 threads in a block.

Scaling the Architecture

- Same program
- Scalable performance

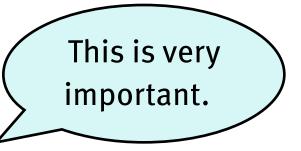




HW Goal: Scalability

- Scalable execution
 - Program must be insensitive to the number of cores
 - Write one program for any number of SM cores
 - Program runs on any size GPU without recompiling

- Hierarchical execution model
 - Decompose problem into sequential steps (kernels)
 - Decompose kernel into computing parallel blocks
 - Decompose block into computing parallel threads



• Hardware distributes *independent* blocks to SMs as available

Programming Model: A Highly Multi-threaded Coprocessor

- The GPU is viewed as a compute device that:
 - Is a coprocessor to the CPU or host
 - Has its own DRAM (device memory)
 - Runs many threads in parallel
- Data-parallel portions of an application execute on the device as *kernels* that run many cooperative threads in parallel
- Differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - Very little creation overhead
 - GPU needs 1000s of threads for full efficiency
 - Multi-core CPU needs only a few

CUDA Software Development Kit

CUDA Optimized Libraries: math.h, FFT, BLAS, ... Integrated CPU + GPU C Source Code

NVIDIA C Compiler

Debugger

Profiler

NVIDIA Assembly for Computing (PTX)

CUDA

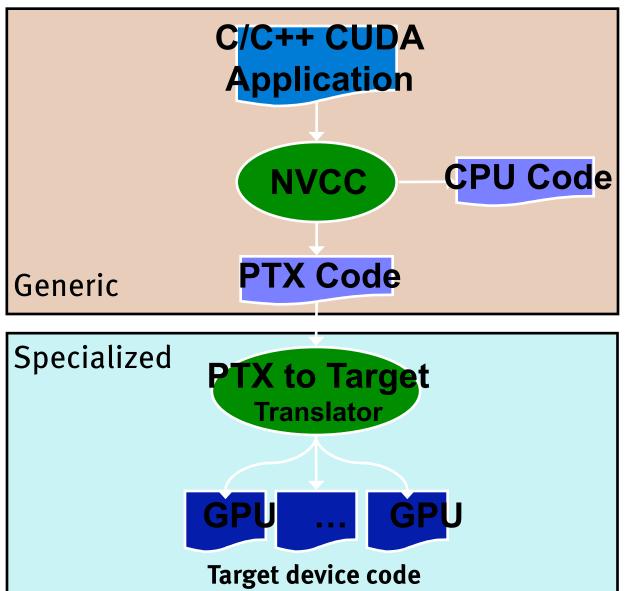
Driver

CPU Host Code

Standard C Compiler

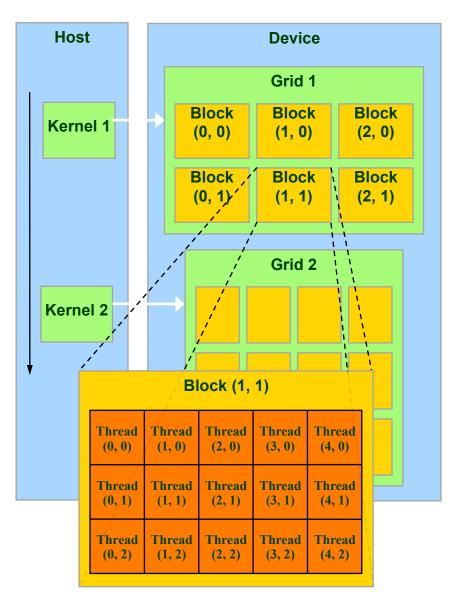
CPU

Compiling CUDA for GPUs



Programming Model (SPMD + SIMD): Thread Batching

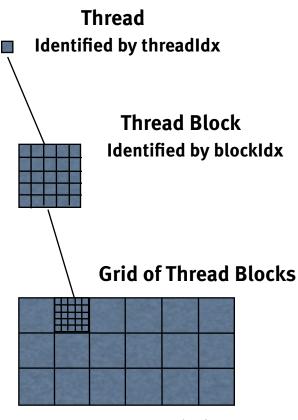
- A kernel is executed as a grid of thread blocks
- A thread block is a batch of threads that can cooperate with each other by:
 - Efficiently sharing data through shared memory
 - Synchronizing their execution
 - For hazard-free shared memory accesses
- Two threads from two different blocks cannot cooperate
 - Blocks are *independent*



Execution Model

- Kernels are launched in grids
 - One kernel executes at a time
- A block executes on one multiprocessor
 - Does not migrate
- Several blocks can reside concurrently on one multiprocessor (SM)
 - Control limitations (of G8X/G9X GPUs):
 - At most 8 concurrent blocks per SM
 - At most 768 concurrent threads per SM
 - Number is further limited by SM resources
 - Register file is partitioned among all resident threads
 - Shared memory is partitioned among all resident thread blocks

Execution Model



Result data array

Multiple levels of parallelism

- Thread block
 - Up to 512 threads per block
 - Communicate through shared memory
 - Threads guaranteed to be resident
 - threadIdx, blockIdx
 - ____syncthreads()
- Grid of thread blocks
 - f f <<< nblocks, nthreads>>>(a,b,c)

Divergence in Parallel Computing

- Removing divergence pain from parallel programming
- SIMD Pain
 - User required to SIMD-ify
 - User suffers when computation goes divergent
- GPUs: Decouple execution width from programming model
 - Threads can diverge freely
 - Inefficiency only when divergence exceeds native machine width
 - Hardware managed
 - Managing divergence becomes performance optimization
 - Scalable

CUDA Design Goals

- Scale to 100's of cores, 1000's of parallel threads
- Let programmers focus on parallel algorithms
 - *not* mechanics of a parallel programming language
- Enable heterogeneous systems (i.e., CPU+GPU)
 - CPU & GPU are separate devices with separate DRAMs

Key Parallel Abstractions in CUDA

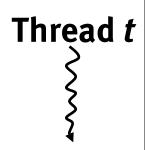
• Hierarchy of concurrent threads

• Lightweight synchronization primitives

• Shared memory model for cooperating threads

Hierarchy of concurrent threads

- Parallel *kernels* composed of many threads
 - all threads execute the same sequential program
 - (This is "SIMT")
- Threads are grouped into *thread blocks*
 - threads in the same block can cooperate
- Threads/blocks have unique IDs
 - Each thread knows its "address" (thread/block ID)





CUDA: Programming GPU in C

- Philosophy: provide minimal set of extensions necessary to expose power
- Declaration specifiers to indicate where things live

__global___void KernelFunc(...); // kernel callable from host __device___void DeviceFunc(...); // function callable on device __device___ int GlobalVar; // variable in device memory __shared___ int SharedVar; // shared within thread block

- Extend function invocation syntax for parallel kernel launch
 KernelFunc<<<500, 128>>>(...); // launch 500 blocks w/ 128 threads each
- Special variables for thread identification in kernels
 dim3 threadIdx; dim3 blockIdx; dim3 blockDim; dim3 gridDim;
- Intrinsics that expose specific operations in kernel code
 _____syncthreads(); // barrier synchronization within kernel

CUDA: Features available on GPU

• Standard mathematical functions

sinf, powf, atanf, ceil, min, sqrtf, etc.

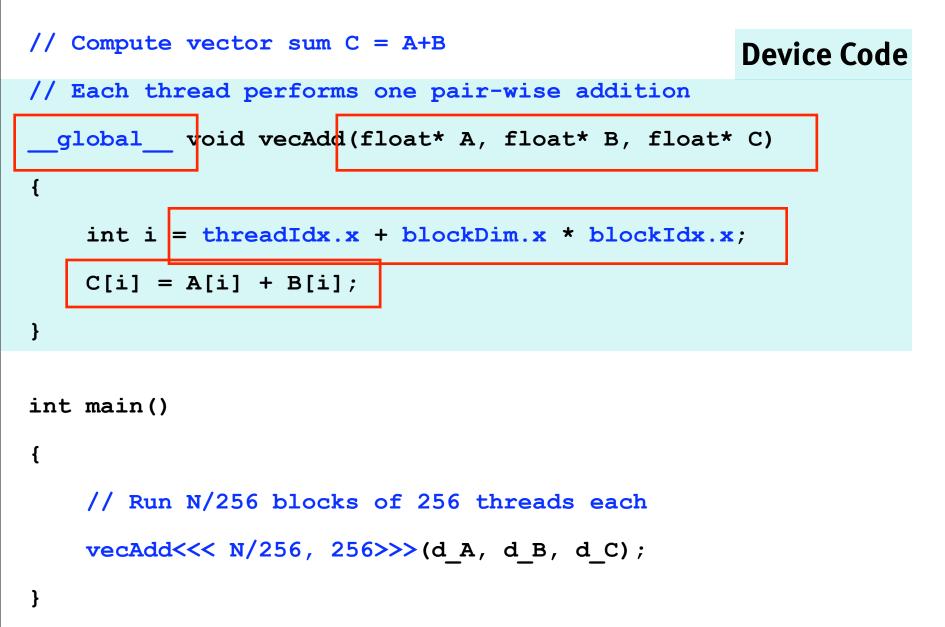
- Atomic memory operations (not in the class hw)
 atomicAdd, atomicMin, atomicAnd, atomicCAS, etc.
- Texture accesses in kernels
 texture<float, 2> my texture; // declare texture reference

float4 texel = texfetch(my_texture, u, v);

Example: Vector Addition Kernel

- Compute vector sum C = A+B means:
- n = length(C)
- for i = 0 to n-1:
 - C[i] = A[i] + B[i]
- So C[o] = A[o] + B[o], C[1] = A[1] + B[1], etc.

Example: Vector Addition Kernel



Example: Vector Addition Kernel

```
// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
  global void vecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
   C[i] = A[i] + B[i];
}
                                                    Host Code
int main()
{
    // Run N/256 blocks of 256 threads each
    vecAdd<<< N/256, 256>>>(d A, d B, d C);
```

Synchronization of blocks

• Threads within block may synchronize with *barriers*

- Blocks *coordinate* via atomic memory operations
 - e.g., increment shared queue pointer with *atomicInc()*
- Implicit barrier between *dependent kernels*

vec_minus<<<nblocks, blksize>>>(a, b, c); vec_dot<<<nblocks, blksize>>>(c, c);

What is a thread?

- Independent thread of execution
 - has its own PC, variables (registers), processor state, etc.
 - no implication about how threads are scheduled
- CUDA threads might be *physical* threads
 - as on NVIDIA GPUs
- CUDA threads might be *virtual* threads
 - might pick 1 block = 1 physical thread on multicore CPU
 - Very interesting recent research on this topic

What is a thread block?

- Thread block = *virtualized multiprocessor*
 - freely choose processors to fit data
 - freely customize for each kernel launch
- Thread block = a (data) *parallel task*
 - all blocks in kernel have the same entry point
 - but may execute any code they want
- Thread blocks of kernel must be *independent* tasks
 - program valid for *any interleaving* of block executions

Blocks must be independent

- Any possible interleaving of blocks should be valid
 - presumed to run to completion without pre-emption
 - can run in any order
 - can run concurrently OR sequentially
- Blocks may coordinate but not synchronize
 - shared queue pointer: OK
 - shared lock: **BAD** ... can easily deadlock
- Independence requirement gives *scalability*

Big Idea #4

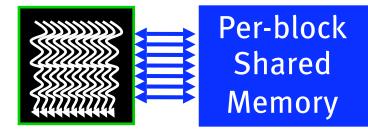
- Organization into independent blocks allows scalability / different hardware instantiations
 - If you organize your kernels to run over many blocks ...
 - ... the same code will be efficient on hardware that runs one block at once and on hardware that runs many blocks at once

Levels of parallelism

- Thread parallelism
 - each thread is an independent thread of execution
- Data parallelism
 - across threads in a block
 - across blocks in a kernel
- Task parallelism
 - different blocks are independent
 - independent kernels

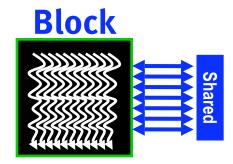
Memory model

Block



Using per-block shared memory

- Variables shared across block
 - shared int *begin, *end;



• Scratchpad memory

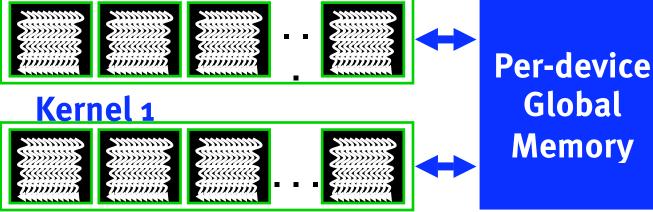
shared int scratch[blocksize];

scratch[threadIdx.x] = begin[threadIdx.x];
// ... compute on scratch values ...
begin[threadIdx.x] = scratch[threadIdx.x];

• Communicating values between threads

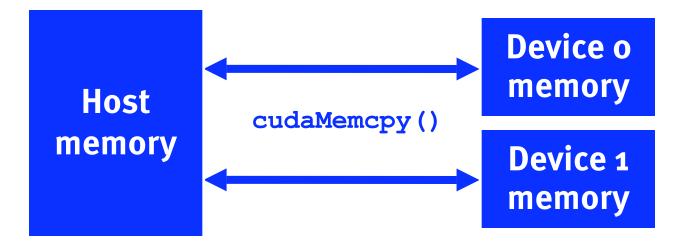
Memory model

Kernel o



Sequential Kernels

Memory model



CUDA: Runtime support

• Explicit memory allocation returns pointers to GPU memory

```
cudaMalloc(), cudaFree()
```

• Explicit memory copy for host ↔ device, device ↔ device

cudaMemcpy(), cudaMemcpy2D(),...

• Texture management

cudaBindTexture(), cudaBindTextureToArray(),...

• OpenGL & DirectX interoperability

cudaGLMapBufferObject(), cudaD3D9MapVertexBuffer(),...

Example: Vector Addition Kernel

// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global___ void vecAdd(float* A, float* B, float* C){

int i = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[i];

}

int main() {

// Run N/256 blocks of 256 threads each
vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

Example: Host code for vecAdd

// allocate and initialize host (CPU) memory

float $*h_A = ..., *h_B = ...;$

// allocate device (GPU) memory

float *d_A, *d_B, *d_C;

cudaMalloc((void**) &d_A, N * sizeof(float));

cudaMalloc((void**) &d_B, N * sizeof(float));

cudaMalloc((void**) &d C, N * sizeof(float));

// copy host memory to device

cudaMemcpy(d A,	h A, N	<pre>sizeof(float),</pre>	cudaMemcpyHostToDevice));

cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice));

// execute the kernel on N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

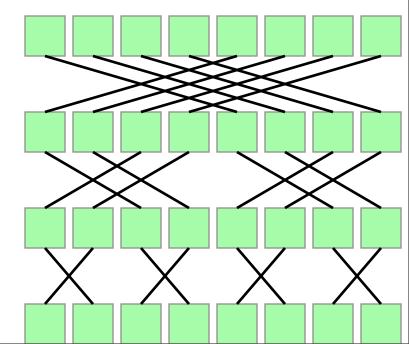
Example: Parallel Reduction

• Summing up a sequence with 1 thread:

int sum = 0;

for(int i=0; i<N; ++i) sum += x[i];</pre>

- Parallel reduction builds a summation tree
 - each thread holds 1 element
 - stepwise partial sums
 - *n* threads need log *n* steps
 - one possible approach: Butterfly pattern



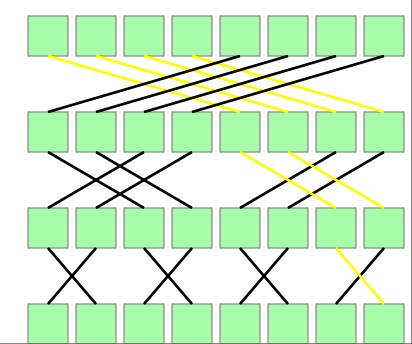
Example: Parallel Reduction

• Summing up a sequence with 1 thread:

int sum = 0;

for(int i=0; i<N; ++i) sum += x[i];</pre>

- Parallel reduction builds a summation tree
 - each thread holds 1 element
 - stepwise partial sums
 - *n* threads need log *n* steps
 - one possible approach: Butterfly pattern



Parallel Reduction for 1 Block

```
// INPUT: Thread i holds value x_i
```

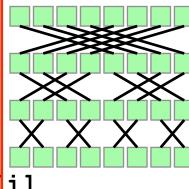
```
int i = threadIdx.x;
```

_shared__ int sum[blocksize];

// One thread per element
sum[i] = x_i; __syncthreads();

```
for(int bit=blocksize/2; bit>0; bit/=2)
{
    int t=sum[i]+sum[i^bit]; __syncthreads();
    sum[i]=t; __syncthreads();
}
```

// OUTPUT: Every thread now holds sum in sum[i]



Example: Serial SAXPY routine

```
Serial program: compute y = a x + y with a loop
void saxpy_serial(int n, float a, float *x, float *y)
{
    for(int i = 0; i<n; ++i)
        y[i] = a*x[i] + y[i];
}</pre>
```

Serial execution: call a function

```
saxpy_serial(n, 2.0, x, y);
```

Example: Parallel SAXPY routine

Parallel program: compute with 1 thread per element

```
__global___
void saxpy_parallel(int n, float a, float *x, float *y)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if( i<n ) y[i] = a*x[i] + y[i];
}</pre>
```

Parallel execution: launch a kernel

uint size = 256; // threads per block uint blocks = (n + size-1) / size; // blocks needed saxpy_parallel<<<blocks, size>>>(n, 2.0, x, y);

SAXPY in PTX 1.0 ISA

cvt.u32.u16 \$blockid, %ctaid.x; // Calculate i from thread/block IDs
cvt.u32.u16 \$blocksize, %ntid.x;
xtid, %tid.x;
mad24.lo.u32 \$i, \$blockid, \$blocksize, \$tid;
ld.param.u32 \$n, [N]; // Nothing to do if n ≤ i
setp.le.u32 \$p1, \$n, \$i;
@\$p1 bra \$L_finish;

mul.lo.u32 \$offset, \$i, 4; // Load y[i]
ld.param.u32 \$yaddr, [Y];
add.u32 \$yaddr, \$yaddr, \$offset;
ld.global.f32 \$y_i, [\$yaddr+0];
ld.param.u32 \$xaddr, [X]; // Load x[i]
add.u32 \$xaddr, \$xaddr, \$offset;
ld.global.f32 \$x_i, [\$xaddr+0];

ld.param.f32 \$alpha, [ALPHA]; // Compute and store alpha*x[i] + y[i]
mad.f32 \$y_i, \$alpha, \$x_i, \$y_i;
st.global.f32 [\$yaddr+0], \$y_i;

\$L_finish: exit;

- Sparse matrices have relatively few non-zero entries
- Frequently **O**(**n**) rather than **O**(**n**²)
- Only store & operate on these non-zero entries

Example: Compressed Sparse Row (CSR) Format

(3	Λ	1	U)					Rov	0 1	R	OW	2	Rov	v 3	
0	0	и О	0	Non-zero values	Av[7]	=	{	З,	1,	2,	4,	1,	1,	1	};
0	2	4	1	Non-zero values Column indices	Aj[7]	=	{	0,	2,	1,	2,	3,	0,	3	};
1	0	0	1	Row pointers											

float sum = 0;

```
for(uint column=0; column<rowsize; ++column)
    sum += Av[column] * x[Aj[column]];</pre>
```

```
return sum;
    Row 0
    Row 2
    Row 3
    Non-zero values Av[7] = { 3, 1, 2, 4, 1, 1, 1 };
    Column indices Aj[7] = { 0, 2, 1, 2, 3, 0, 3 };
    Row pointers Ap[5] = { 0, 2, 2, 5, 7 };
```

float multiply_row(uint size, uint *Aj,
float *Av, float *x);

```
void csrmul serial(uint *Ap, uint *Aj, float *Av,
                   uint num rows, float *x, float *y)
    for(uint row=0; row<num rows; ++row)</pre>
    Ł
        uint row begin = Ap[row];
        uint row end = Ap[row+1];
        y[row] = multiply row(row end-row begin,
                               Aj+row begin,
                               Av+row begin,
                               x);
```

float multiply_row(uint size, uint *Aj,
float *Av, float *x);

```
global
void csrmul kernel(uint *Ap, uint *Aj, float *Av,
                   uint num rows, float *x, float *y)
{
    uint row = blockIdx.x*blockDim.x + threadIdx.x;
    if( row<num rows )</pre>
        uint row begin = Ap[row];
        uint row end = Ap[row+1];
        y[row] = multiply row(row end-row begin,
                         Aj+row begin, Av+row begin, x);
```

Adding a simple caching scheme

```
_global__ void csrmul_cached(.... ... ... .....) {
    uint begin = blockIdx.x*blockDim.x, end = begin+blockDim.x;
    uint row = begin + threadIdx.x;
```

	ache[blocksize];	// array to ca	iche rows
if(row <num_rows)< th=""><th>cache[threadIdx.x]</th><th>= x[row];</th><th>// fetch to cache</th></num_rows)<>	cache[threadIdx.x]	= x[row];	// fetch to cache

```
if( row<num_rows ) {
    uint row_begin = Ap[row], row_end = Ap[row+1]; float sum = 0;</pre>
```

```
for(uint col=row_begin; col<row_end; ++col) {
    uint j = Aj[col];</pre>
```

```
// Fetch from cached rows when possible
float x_j = (j>=begin && j<end) ? cache[j-begin] : x[j];
sum += Av[col] * x_j;</pre>
```

```
y[row] = sum;
```

}

}

Basic Efficiency Rules

• Develop algorithms with a data parallel mindset

• Minimize divergence of execution within blocks

• Maximize locality of global memory accesses

• Exploit per-block shared memory as scratchpad

• Expose enough parallelism

Summing Up

- CUDA = C + a few simple extensions
 - makes it easy to start writing basic parallel programs

• Three key abstractions:

hierarchy of parallel threads

corresponding levels of synchronization

corresponding memory spaces

• Supports massive parallelism of manycore GPUs