SETT at HOME, a Parallel Programming Paradigm

Maximilian Becker and Gautam Peri

June 3 2010

1 Introduction

Recent innovations in modern technology have made it technically feasible to an-
swer the question that has captured the imagination of mankind since we first looked
to the skys: are we alone? SETI, the Search for Extra-Terrestrial Intelligence, is a
non-profit research organization that has pooled the resources and brainpower of sci-
entists around the globe to answer this question. Since 1985 SETI employees and vol-
unteers have developed projects to analyze cosmic electromagnetic signals in hopes of
finding transmissions from an intelligent alien civilization, obtaining sponsorship and
funding from large corporations, scientific foundations, and U.S. government agencies.
One experiment, SETI@Home, has allowed computer users to donate unused CPU cycles
to aid in this analysis. Touted as the largest distributed computation project in exis-
tence, SETI@Home spawned the Berkeley Open Infrastructure for Network Computing
(BOINC), a platform that is now widely used for many other scientific projects reliant on
volunteer resources. Users run BOINC and the SETI@Home project in the background of
their normal processing activities and during idle processor time with the SETIQHome
screensaver application. This program allows full utilization of the computational re-
sources provided by the user without ever causing an inconvenience. With SETI@Home,
individuals have the pleasure of aiding in the quest for interstellar companionship while
participating in one of the largest parallel computation projects ever designed.

2 Background/Oveview

In the 20th century, advances in radio technology gave scientists the chance to probe
for electromagnetic signals that would further our understanding of the universe. The
Arecibo radio telescope in Puerto Rico, built in 1963 as a cooperative effort between
Cornell University and the National Science Foundation, was designed to study these
signals, and still stands as the largest radio telescope on Earth. SETIQHome utilizes a
fraction of the Arecibo telescopes observational time, passively gathering data while the
telescope is not used for other scientific endeavors.

The scientists at SETI gather and analyze data based on a set of assumptions and
restrictions. Because it is more feasible to send an intergalactic message over a nar-
row frequency band (considering power constraints and noise issues), scientists postulate
that an intelligent species would deliberately concentrate their signal. This means the
data can be quantized over specific frequency ranges, and analyzed for signal strength.
To account for terrestrial electromagnetic signals, SETT further distinguishes meaningful
signals as those that rise and fall in intensity over a 12 second period, or the time it takes
for the telescope to scan a portion of the sky. Accommodating for frequency changes due
to doppler shifting is also necessary, as is capturing digitized, or chirped data.

Over the course of 2 years, the telescope scans its visible portion of the sky 3 times,
generating massive amounts of electromagnetic data. This data is stored on 35 giga-

byte DLT tapes, each holding 15.5 hours of data using 2-bit complex samples (Korpela).
These tapes are then sent to Berkeley, where the data is split into fixed-size work units
and sent to SETI@QHome users over the internet.

Because the data is finite and can be quantized, distributing it to users is simple.
The information analyzed from the telescope is centered at the 1420 MHz Hydrogen line,
within a frequency range that is banned for use by man-made transmissions. The band
collected is 2.5 MHz wide, enough to accommodate for the relative doppler shift of inter-
galactic bodies. This band is broken up into 256 chunks, each around 10 kHz wide, and
users are sent 107 seconds of this data. Paired with additional protocol data, each work
unit ends up being 340 kilo-bytes. SETI@QHome machines are sent work units from the

Berkeley servers when they are idle, perform the necessary analyses, and send the data
back.

3 Why the need for parallel processing?

The SETIQHome project involves real-time analysis of mountains of data, becoming
much more difficult than finding a needle in a haystack. Because of the vast diversity
and inherent weakness of potential signals, SETI would require massive amounts of com-
putational resources to accomplish the task of finding an extra-terrestrial transmission.
For this reason, they rely on distributed computation. As described above, the raw data
is easily quantized according to the necessary restrictions, and the problem becomes em-
barrassingly parallel. Clients are free from communicating with eachother, only sending
and receiving data from the server when necessary. Redundancy can be implemented to
account for malicious or erroneous client results, and the trick becomes systematically
gathering and categorizing the data after it has been analyzed.

The SETI@Home project is inherently parallel in nature, and has adapted to changes
in consumer computing potential. Users with NVIDIA GPUs can take advantage of their
processing power with a recent version that utilizes CUDA to improve computational per-
formance up to 10 times that of a standard CPU. We will focus on SETI@Homes use
of the CUDA language to increase parallelism, as well as the potential problems in their
approach.

4 How the problem is parallelized

As discussed above, SETT analyzes a frequency range of 2.5 MHz. SETI@Home begins
by splitting up that band into 256 manageable chunks of 9766 Hz (or approximately 10
KHz), each of which amounts to about 107 seconds of data. Sampling at the Nyquist rate
of 20 kbps, each chunk occupies about 0.25 megabytes of memory. Each of these chunks
is called a ”work-unit” that is then sent to the participating users for processing. Along

with the work-unit is transmitted information about the work-unit and the necessary pro-
cessing to be performed. Each user will receive about 340 kbytes of data in total for each
work-unit they work on. As the Arecibo telescope remains fixed, the time it takes for a
target to cross the beam is about 12 seconds. Thus, the expected signal that the program
is looking for is a Gaussian that peaks around the six-second mark. The work-units also
overlap by 20 to 30 seconds as to accomodate a 12-second margin that is in the transition.

After receiving a work-unit, a user performs various tests on the data sample to find
any possible signals that fit SETI’s search criterion of continuous or discrete (pulsed)
Gaussians (Figures la and 1b). As the signals are transmitted across vast distances,
they are subject to the Doppler effect, or ”chirping” as SETT calls it (Figures 1c¢ and 1d).
The program begins by ”dechriping” the data, that is to negate the skewing of the signal
from the Doppler effect. SETI neatly describes this process as follows.

At the finest resolution, we have to do this a total of 20,000 times, from
-10 Hz/sec to +10 Hz/sec in steps of .002 Hz/sec. At each chirp-rate, the 107
seconds of data s de-chirped and then divided into § blocks of 13.375 seconds
each. Fach 13.375 second block is then examined with a bandwidth of .07 Hz
for peaks

These dechriping tests are then performed in the range of £10 Hz/s to £ 50 Hz/s to
ensure a clean signal. Once the data has been dechirped, tests are then performed at
wider bandwidths at 0.15, 0.3, 0.6, 1.2, 2.5, 5, 10, 20, 40, 75, 150, 300, 600, and 1200 Hz.

SETTI uses two algorithms to find pulsed signals in the data. The first, called the
triplet test, looks for two pulses that are above a threshold value, and looks to find a
similar pulse exactly in between the two. The second, called the ”fast folding” algorithm,”
is a rather clever solution for finding pulses. As these pulses may be very weak, SETI
breaks up the data into chunks that are analyzed with respect to time and power. Given
the right period in a time-slice, if all of the slices are summed, the resulting summed
power will grow and be distinct from the background noise.

Given the nature of the problem of analyzing a band of frequencies, it is seen that the
frequency ranges are independent of one another when split up into slightly overlapping
chunks. This embarrassingly parallel problem is then perfect to split up into the work-
units as SETI has. Given the details of the calculations that each user performs (10 to
50 hours of work, as SETT estimates), it is boldly apparent that even within work-units
there is an exceeding amount of parallelism to be acheived. Parallelism is acheived at
most points in the calculations, during dechirping the data, in processing FFT calcula-
tions, in fitting Gaussians to the selected data, and in finding pulses. Indeed, the CUDA
version of SETI@QHome acheives all of this.

Narrowband signal Narrowband pulsed signal

R N T T T T T R

Frequency

e P BECONS ———

Frequency

(a) Continuous Gaussian Signal (b) Discrete Gaussian Signal
"Chirped! signal "Chirped"and pulsed signal

Ending Frequency Ending Frequency

T
»

Starting Frequency Starting Frequency

Frequency

CONHS m—— i | D SECONTS i

==
[&]
| vl
= |
8
y

(¢) Continuous Chirped Gaussian Signal (d) Discrete Chirped Gaussian Signal

Figure 1: Types of singals the program looks for

5 Problems and Solutions

The first apparent problem with SETT’s implementation of parallelizing for the CUDA
architecture is in their utilization of the entirety of the GPU’s resources. As shown
below, all CUDA kernel calls are made with the configuration of 64 threads per block in
one dimension. Similarly, the grid structure also only utilizes a one-dimensional block
arrangement. Assigning 64 threads to a block indicates a close tie with the structure
of CUDA’s execution of 32 threads per warp. It can be seen that the grid structure is
configured for a set of data points to be assigned to a block in which two warps work on
the sampled set. Recommendations for improving performance in dechriping, as well as
in other portions of computations, are given in the section below.

dim3 block(64, 1, 1);
dim3 grid((cudaAcc_NumDataPoints + block.x - 1) / block.x, 1, 1);

If we consider the dechirping algorithm. Each thread is used to analyze a time slice to
figure out the chirp angle with respect to that slice. There is a potential for bank conflicts

in this implementation, as each 13.375-second block is accessed by many threads in the
process of computing chirp angles.

__global__ void cudaAcc_CalcChirpData_kernel (int NumDataPoints, float chirp_rate,
float recip_sample_rate, float2* cx_DataArray, float2* cx_ChirpDataArray) {
const int i = blockIdx.x * blockDim.x + threadldx.x;

if (i < NumDataPoints) {
float2 cx = cx_DataArrayl[i];
float c, d, real, imag;

float time= i * recip_sample_rate;

// since ang is getting moded by 2pi, we calculate "ang mod 2pi"
// before the call to sincos() inorder to reduce roundoff error.
// (Bug submitted by Tetsuji "Maverick" Rai)

float ang = chirp_rate*time*time;

However, the issue of bank conflicts and how to avoid them are already prediagnosed
by the developers at SETT in other portions of the computations. The programmers have
implemented an algorithm that does the task of scanning the datapoints in O(lg(n)) with
an option to explicitly avoid all bank conflicts (see the comments in https://setisvn.
ssl.berkeley.edu/svn/branches/seti_cuda/seti_boinc/client/cuda/cudalAcc_scanLargeArr:
kernel.cu). The source code proves to be incredibly complex, utilizing advanced CUDA
techniques to achieve superior parallelism.

6 Recommendations

One can look at the breakdown of the algorithms used to analyze data and find that
some computations could potentially utilize more of the GPU resources. Looking at the
de-chirping algorithm, we find that it is broken into 3 distinct layers of analysis: chrip-
rate, granularity and bandwidth. These can easily translate into the 3 dimensions of a
block, with one thread per calculation. Overall, there are 200 billion de-chirping calcu-
lations to be performed in a work unit, but further dividing these calculations among
blocks could prove to maximize the GPU resource utilization and efficiency. Expanding
block usage into two dimensions, we could assign multiple time-slices to individual block
rows to analyze time-slices concurrently.

Another potential improvement is the use of shared memory. We observed close to no
use of shared memory, and found cases (such as the de-chirping computations) where it
might be appropriate. In the dechirping code, calculations access a global matrix in each
thread, potentially causing a significant slowdown. Using our idea noted above, we could
utilize shared memory in our 3-dimensional structure to perform concurrent calculations
by copying necessary portions of the globa matrix into shared memory. Threads would
then concurrently work on different chirp-rates, bandwidths, and granularities on that

https://setisvn.ssl.berkeley.edu/svn/branches/seti_cuda/seti_boinc/client/cuda/cudaAcc_scanLargeArray_kernel.cu
https://setisvn.ssl.berkeley.edu/svn/branches/seti_cuda/seti_boinc/client/cuda/cudaAcc_scanLargeArray_kernel.cu
https://setisvn.ssl.berkeley.edu/svn/branches/seti_cuda/seti_boinc/client/cuda/cudaAcc_scanLargeArray_kernel.cu

portion of the matrix that is shared. Subsequent accesses to the shared portion, once it
is copied from the global memory, will yield performance boosts.

Considering the limitations of shared memory in CUDA, it becomes apparent why
SETI developers are reluctant to use it. With large floating point data sets, the over-
head of moving data between global and shared memory reduces the benefits of shared
memory use.

7 Different Architectures

One of the intriguing factors of SETI@Home is that it runs on top of BOINC, a dis-
tributed parallel platform. MPI is an alternative distributed platform that operates in a
similar fashion, but they are quite different. For one, the BOINC system communicates
through the HT'TP protocol, as the programmers wanted no conflicts with firewalls or ses-
sion interruptions. While they use different application-layer protocols, both paradigms
use TCP to send and receive data. BOINC is designed to handle dynamic nodes, and
distribute the data as needed. In MPI (as far as we know), you cannot accomodate
for new or failed nodes at run time. You could potentially use MPI on a set of clients,
developing a complex protocol to serve data and collect it on a distributed network of
workstations.

In a MPI implementation, it is apparent that the server (node 0) would distribute
and gather the data. We could accomodate node failure by reassigning chunks to nodes
that are currently active and have finished their assigned computation. Another issue to
consider is the gathering and monitoring of finished work-units. In the BOINC imple-
mentation, a work-unit is simply shipped out to a user for computation, who then returns
the results to Berkeley. There is no time limit, nor there is any issue of monitoring the
"end” of all computation. However, this is quite the opposite in MPI, as one would
need to actively monitor the current state of all data gathered to effectively "end” the
program. Pseudocode for an MPI implementation is given as follows:

node O:
q = current queue of work units
n = # of active nodes
for(i = 0 to n)
send node i work unit from g
while(q 'empty || n != 0)
for(i = 0 to n)
receive node i state
if (failed)
put node i work unit back in q
n=n-1

if (done)
send request for data gather
receive completed work unit data
send next item from q to node i

other nodes:
receive work unit
during every portion of computation, send state information
send work unit data when requested

Of course, this is a very simple illustration, and the MPI code would become increas-
ingly complex to handle node failure appropriately and distribution and gathering of data.

Because of the nature of the computation required, it is much more intuitive to imag-
ine this problem in a distributed setting than with shared memory. With shared memory,
you would need massive amounts of storage for the data, but the real bottleneck is the
amount of processing power as you're only limited to 4 or 8 cores (at the most), and
therefore 4 or 8 concurrent threads. Instead of having hundreds of machines performing
calculations concurrently, you could only split the computation between the individual
CPUs at one time, yielding much less parallelism. One can imagine that with massive
amounts of storage and hundreds of CPUs, SETI@QHome could be implemented in a
shared memory setting, but it is much more natural to place the computation in a dis-
tributed setting.

8 Conclusion

The SETIQHome project is an impressive parallel platform, utilizing distributed
workstations and GPU architectures simultaneously to perform computations on a mas-
sive and ever-increasing data set. The great minds at SETT have devoted much time and
effort into creating an efficient and necessarily complex program, and the user commu-
nity is continuously involved in improving the platform and in aiding with computational
power. SETI@QHome has been an active project for more than a decade, with the intellec-
tual community at Berkeley ever improving upon the software. The only limiting factor,
it seems, is in the progress of consumer technology available to process the data ever
faster. As with the advent of nVidia’s CUDA, the SETI@Home team quickly incorpo-
rated the platform into their program. Further developments as such are sure to engage
the community in expanding the project to allow computation on the latest and fastest
technologies that enter the market. Will there be a limit to the computational power of
the largest distributed computational project in existence? Will this large-scale search
for extraterrestrial intelligence prove fruitful? Are we alone? The truth is out there...

9 Sources

- The CUDA source code for the SETTQHome project:
https://setisvn.ssl.berkeley.edu/svn/branches/seti_cuda/seti_boinc/client/
cuda/

- Articles and resources that we consulted:
http://setiathome.berkeley.edu/sah_papers/CISE.pdf
http://setiathome.berkeley.edu/sah_papers/cacm.php

- SETI resources:
http://setiathome.berkeley.edu/
http://seticlassic.ssl.berkeley.edu/about_seti/about_seti_at_home_1.html

https://setisvn.ssl.berkeley.edu/svn/branches/seti_cuda/seti_boinc/client/cuda/
https://setisvn.ssl.berkeley.edu/svn/branches/seti_cuda/seti_boinc/client/cuda/
http://setiathome.berkeley.edu/sah_papers/CISE.pdf
http://setiathome.berkeley.edu/sah_papers/cacm.php
http://setiathome.berkeley.edu/
http://seticlassic.ssl.berkeley.edu/about_seti/about_seti_at_home_1.html

	Introduction
	Background/Oveview
	Why the need for parallel processing?
	How the problem is parallelized
	Problems and Solutions
	Recommendations
	Different Architectures
	Conclusion
	Sources

