Name:

Directions: Work only on this sheet (on both sides, if
needed); do not turn in any supplementary sheets of pa-
per. There is actually plenty of room for your answers, as
long as you organize yourself BEFORE starting writing.

1. (20) Our PLNs use the network timeout example sev-
eral times. Consider the one that makes use of interrupts.
Here is a portion of that code:

29 activate(G.T0,G.TO.Run())

30 # wait for ACK, but could be timeout
31 yield hold,self,G.Rnd.expovariate(1.0)
32 if self.interrupted():

33 self .NTimeQuts += 1

34 else: self.cancel(G.TO)

Show the line in Simulation.py (give the line number
and the actual Python statement) that is executed just
before line 32 is executed.

2. (20) Consider the end of a SimPy simulation. Assum-
ing it was not triggered by some event such as a call to
stopSimulation(), the end will occur when some event
has a scheduled time past the specified simulation time
limit. Add a single line of code to Simulation.py that
prints out the scheduled time for that event.

3. (20) Write a Python function (full, working code) with
heading

def triangle(self):

that generates random variables for the density which has
value 2 - 2t on (0,1), 0 elsewhere. The function is to be a
method within the random class. Use any method that
works.

4. Consider the pseudocode in our PLN that generates
random variables from a normal distribution with mean
0 and variance 1.

(a) (10) Implement the pseudocode as a Python genera-
tor. The function is to be a method within the ran-
dom class. (You'll need the Python functions log(),
sqrt(), sin() and cos() from the math module.)

(b) (10) Using the generator you write in (a), write code
that finds the approximate value of the probability
that a N(0,1) random variable is greater than 0.5.

5. Consider a single-server queue with buffer space for
just one job. (So, at any given time there were be either
0, 1 or 2 jobs in the system.) Let A be interarrival time
and S be service time. We wish to find a valid set of
regeneration points.

(a) (10) For each of the candidate sets of regeneration
points below, state which random variables, among
A and S, must be exponentially distributed for the
set of points to be valid. For instance, the answer “A

no, S yes” would mean that we need S to be expo-
nentially distributed but A can have any distribution.
The answer “impossible” means that even with both
A and S exponentially distributed, the candidate set
of points is still not valid.

(i) The times at which an arriving job encounters
an empty system.

(ii) The times at which an arriving job encounters a
full system, i.e. finds there is a job in service and
another in the buffer (and immediately leaves).

(iii) The times at which a job completes and the
buffer is empty.

(10) Now suppose there is reneging in the system. A
job waiting in the buffer will leave the system without
service if it has waited R amount of time, where R
is a random variable. Consider the possible set of
regeneration points consisting of the times at which
jobs renege. As in (a), answer which of A, S and R
must have an exponential distribution in order for
this set of points to be valid.

Solutions:
1. Line 340,

resultTuple = nextEvent._nextpoint.next()

2. Print _t after the while loop in simulate().

3. The inverse transformation method is too unwieldly
here, so use the acceptance/rejection method:

def triangle(self):
while True:
ul = self.uniform(0,1)
u2 = self.uniform(0,1)
if (u2 <= (2-2%ul)/2: return ul

4.a The key point is to implement the static nature of n
and Y. This is easily resolved by using the fact that local
variables retain their values between calls in a generator
function. The most elegant solution, though, dispenses
with n entirely:

def nO1(self):
while True:

ul = self.uniform(0,1)

u2 = self.uniform(0,1)

R = math.sqrt(-2*math.log(ul))
T = 2*math.pi*u2

X = R*math.cos(T)

Y = R*math.sin(T)

yield X

yield Y

4.b Generate, say, 10000 variates from your function in
(a), and compute the proportion of those values that are
greater than 0.5.

5.a.i A no, S no. This is basically the example in the
PLN.



5.a.ii A no, S yes. Since a job has just arrived, time
starts over from the point of view of the arrival process.
However, the amount of time the job being served has
been in service will affect how much service time remains
unless S has an exponential distribution.

5.a.iii A yes, S no. We don’t need exponential service
times, for the same reason we didn’t need exponential
interarrival times in (ii). But when the service completed,
a certain amount of time had passed since the last arrival,
so unless we have exponential interarrival times, these
points won’t be valid regeneration points.

5.b A yes, S yes, R no. (Note that only one set of regen-
eration points is being considered here, not three.) The
factors are similar to those above.




