From Algorithms to Z-Scores:
Probabilistic and Statistical Modeling in Computer Science

Norm Matloff, University of California, Davis

\[f_X(t) = ce^{-0.5(t-\mu)^T\Sigma^{-1}(t-\mu)} \]

library(MASS)
x <- mvrnorm(mu, sgm)

See Creative Commons license at

The author has striven to minimize the number of errors, but no guarantee is made as to accuracy of the contents of this book.
Contents
Preface

Why is this book different from all other books on mathematical probability and statistics? The key aspect is the book’s consistently applied approach, especially important for engineering students.

The applied nature comes is manifested in a number of senses. First, there is a strong emphasis on intuition, with less mathematical formalism. In my experience, defining probability via sample spaces, the standard approach, is a major impediment to doing good applied work. The same holds for defining expected value as a weighted average. Instead, I use the intuitive, informal approach of long-run frequency and long-run average. I believe this is especially helpful when explaining conditional probability and expectation, concepts that students tend to have trouble with. (They often think they understand until they actually have to work a problem using the concepts.)

On the other hand, in spite of the relative lack of formalism, all models and so on are described precisely in terms of random variables and distributions. And the material is actually somewhat more mathematical than most at this level in the sense that it makes extensive usage of linear algebra.

Second, the book stresses real-world applications. Many similar texts, notably the elegant and interesting book for computer science students by Mitzenmacher, focus on probability, in fact discrete probability. Their intended class of “applications” is the theoretical analysis of algorithms. I instead focus on the actual use of the material in the real world; which tends to be more continuous than discrete, and more in the realm of statistics than probability. This should prove especially valuable, as “big data” and machine learning now play a significant role in applications of computers.

Third, there is a strong emphasis on modeling. Considerable emphasis is placed on questions such as: What do probabilistic models really mean, in real-life terms? How does one choose a model? How do we assess the practical usefulness of models? This aspect is so important that there is a separate chapter for this, titled Introduction to Model Building. Throughout the text, there is considerable discussion of the real-world meaning of probabilistic concepts. For instance, when probability density functions are introduced, there is an extended discussion regarding the intuitive meaning of densities in light of the inherently-discrete nature of real data, due to the finite precision of measurement.
Finally, the R statistical/data analysis language is used throughout. Again, several excellent texts on probability and statistics have been written that feature R, but this book, by virtue of having a computer science audience, uses R in a more sophisticated manner. My open source tutorial on R programming, *R for Programmers* (http://heather.cs.ucdavis.edu/~matloff/R/RProg.pdf), can be used as a supplement. (More advanced R programming is covered in my book, *The Art of R Programming*, No Starch Press, 2011.)

There is a large amount of material here. For my one-quarter undergraduate course, I usually cover Chapters 2, 3, 6, 7, 8, 10, 16, ??, ??, ??, ?? and ?? . My lecture style is conversational, referring to material in the book and making lots of supplementary remarks (“What if we changed the assumption here to such-and-such?” etc.). Students read the details on their own. For my one-quarter graduate course, I cover Chapters 10, 11, ??, 12, 14, ??, ??, ??, ??, ??, ??, ??, ??, ??, ??, ??, ??, ?? and ?? .

As prerequisites, the student must know calculus, basic matrix algebra, and have some skill in programming. As with any text in probability and statistics, it is also necessary that the student has a good sense of math intuition, and does not treat mathematics as simply memorization of formulas.

The \LaTeX source .tex files for this book are in http://heather.cs.ucdavis.edu/~matloff/132/PLN, so readers can copy the R code and experiment with it. (It is not recommended to copy-and-paste from the PDF file, as hidden characters may be copied.) The PDF file is searchable.

The following, among many, provided valuable feedback for which I am very grateful: Ibrahim Ahmed; Ahmed Ahmedin; Stuart Ambler; Earl Barr; Benjamin Beasley; Matthew Butner; Michael Clifford; Dipak Ghosal; Noah Gift; Laura Matloff; Nelson Max, Connie Nguyen, Jack Norman, Richard Oehrle, Michael Rea, Sana Vaziri, Yingkang Xie, and Ivana Zetko. The cover picture, by the way, is inspired by an example in Romaine Francois’ old R Graphics Gallery, sadly now defunct.

Many of the data sets used in the book are from the UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/ml/. Thanks to UCI for making available this very valuable resource.

The book contains a number of references for further reading. Since the audience includes a number of students at my institution, the University of California, Davis, I often refer to work by current or former UCD faculty, so that students can see what their professors do in research.

This work is licensed under a Creative Commons Attribution-No Derivative Works 3.0 United States License. The details may be viewed at http://creativecommons.org/licenses/by-nd/3.0/us/, but in essence it states that you are free to use, copy and distribute the work, but you must attribute the work to me and not “alter, transform, or build upon” it. If you are using the book, either in teaching a class or for your own learning, I would appreciate your informing me. I retain copyright in all non-U.S. jurisdictions, but permission to use these materials in teaching is still granted, provided the licensing information here is displayed.
Chapter 1

Time Waste Versus Empowerment

I took a course in speed reading, and read War and Peace in 20 minutes. It’s about Russia—comedian Woody Allen

I learned very early the difference between knowing the name of something and knowing something—Richard Feynman, Nobel laureate in physics

The main goal [of this course] is self-actualization through the empowerment of claiming your education—UCSC (and former UCD) professor Marc Mangel, in the syllabus for his calculus course

What does this really mean? Hmm, I’ve never thought about that—UCD PhD student in statistics, in answer to a student who asked the actual meaning of a very basic concept

You have a PhD in engineering. You may have forgotten technical details like \(\frac{d}{dt} \sin(t) = \cos(t) \), but you should at least understand the concepts of rates of change—the author, gently chiding a friend who was having trouble following a simple quantitative discussion of trends in California’s educational system

Give me six hours to chop down a tree and I will spend the first four sharpening the axe—Abraham Lincoln

The field of probability and statistics (which, for convenience, I will refer to simply as “statistics” below) impacts many aspects of our daily lives—business, medicine, the law, government and so on. Consider just a few examples:

- The statistical models used on Wall Street made the “quants” (quantitative analysts) rich—but also contributed to the worldwide financial crash of 2008.

- In a court trial, large sums of money or the freedom of an accused may hinge on whether the
CHAPTER 1. TIME WASTE VERSUS EMPOWERMENT

judge and jury understand some statistical evidence presented by one side or the other.

- Wittingly or unconsciously, you are using probability every time you gamble in a casino—and every time you buy insurance.
- Statistics is used to determine whether a new medical treatment is safe/effective for you.
- Statistics is used to flag possible terrorists—but sometimes unfairly singling out innocent people while other times missing ones who really are dangerous.

Clearly, statistics matters. But it only has value when one really understands what it means and what it does. Indeed, blindly plugging into statistical formulas can be not only valueless but in fact highly dangerous, say if a bad drug goes onto the market.

Yet most people view statistics as exactly that—mindless plugging into boring formulas. If even the statistics graduate student quoted above thinks this, how can the students taking the course be blamed for taking that attitude?

I once had a student who had an unusually good understanding of probability. It turned out that this was due to his being highly successful at playing online poker, winning lots of cash. No blind formula-plugging for him! He really had to understand how probability works.

Statistics is not just a bunch of formulas. On the contrary, it can be mathematically deep, for those who like that kind of thing. (Much of statistics can be viewed as the Pythagorean Theorem in n-dimensional or even infinite-dimensional space.) But the key point is that anyone who has taken a calculus course can develop true understanding of statistics, of real practical value. As Professor Mangel says, that’s empowering.

Statistics is based on probabilistic models. So, in order to become effective at data analysis, one must really master the principles of probability; this is where Lincoln’s comment about “sharpening the axe” truly applies.

So as you make your way through this book, always stop to think, “What does this equation really mean? What is its goal? Why are its ingredients defined in the way they are? Might there be a better way? How does this relate to our daily lives?” Now THAT is empowering.
Chapter 2

Basic Probability Models

This chapter will introduce the general notions of probability. Most of it will seem intuitive to you, but pay careful attention to the general principles which are developed; in more complex settings intuition may not be enough, and the tools discussed here will be very useful.

2.1 ALOHA Network Example

Throughout this book, we will be discussing both “classical” probability examples involving coins, cards and dice, and also examples involving applications to computer science. The latter will involve diverse fields such as data mining, machine learning, computer networks, software engineering and bioinformatics.

In this section, an example from computer networks is presented which will be used at a number of points in this chapter. Probability analysis is used extensively in the development of new, faster types of networks.

Today’s Ethernet evolved from an experimental network developed at the University of Hawaii, called ALOHA. A number of network nodes would occasionally try to use the same radio channel to communicate with a central computer. The nodes couldn’t hear each other, due to the obstruction of mountains between them. If only one of them made an attempt to send, it would be successful, and it would receive an acknowledgement message in response from the central computer. But if more than one node were to transmit, a collision would occur, garbling all the messages. The sending nodes would timeout after waiting for an acknowledgement which never came, and try sending again later. To avoid having too many collisions, nodes would engage in random backoff, meaning that they would refrain from sending for a while even though they had something to send.

One variation is slotted ALOHA, which divides time into intervals which I will call “epochs.” Each
epoch will have duration 1.0, so epoch 1 extends from time 0.0 to 1.0, epoch 2 extends from 1.0 to 2.0 and so on. In the version we will consider here, in each epoch, if a node is active, i.e. has a message to send, it will either send or refrain from sending, with probability \(p \) and 1-\(p \). The value of \(p \) is set by the designer of the network. (Real Ethernet hardware does something like this, using a random number generator inside the chip.)

The other parameter \(q \) in our model is the probability that a node which had been inactive generates a message during an epoch, i.e. the probability that the user hits a key, and thus becomes “active.” Think of what happens when you are at a computer. You are not typing constantly, and when you are not typing, the time until you hit a key again will be random. Our parameter \(q \) models that randomness.

Let \(n \) be the number of nodes, which we’ll assume for simplicity is two. Assume also for simplicity that the timing is as follows. Arrival of a new message happens in the middle of an epoch, and the decision as to whether to send versus back off is made near the end of an epoch, say 90% into the epoch.

For example, say that at the beginning of the epoch which extends from time 15.0 to 16.0, node A has something to send but node B does not. At time 15.5, node B will either generate a message to send or not, with probability \(q \) and 1-\(q \), respectively. Suppose B does generate a new message. At time 15.9, node A will either try to send or refrain, with probability \(p \) and 1-\(p \), and node B will do the same. Suppose A refrains but B sends. Then B’s transmission will be successful, and at the start of epoch 16 B will be inactive, while node A will still be active. On the other hand, suppose both A and B try to send at time 15.9; both will fail, and thus both will be active at time 16.0, and so on.

Be sure to keep in mind that in our simple model here, during the time a node is active, it won’t generate any additional new messages.

(Note: The definition of this ALOHA model is summarized concisely on page 10.)

Let’s observe the network for two epochs, epoch 1 and epoch 2. Assume that the network consists of just two nodes, called node 1 and node 2, both of which start out active. Let \(X_1 \) and \(X_2 \) denote the numbers of active nodes at the very end of epochs 1 and 2, after possible transmissions. We’ll take \(p \) to be 0.4 and \(q \) to be 0.8 in this example.

Let’s find \(P(X_1 = 2) \), the probability that \(X_1 = 2 \), and then get to the main point, which is to ask what we really mean by this probability.

How could \(X_1 = 2 \) occur? There are two possibilities:

- both nodes try to send; this has probability \(p^2 \)
- neither node tries to send; this has probability \((1 - p)^2 \)
2.2. THE CRUCIAL NOTION OF A REPEATABLE EXPERIMENT

Thus

\[P(X_1 = 2) = p^2 + (1 - p)^2 = 0.52 \]

(2.1)

2.2 The Crucial Notion of a Repeatable Experiment

It’s crucial to understand what that 0.52 figure really means in a practical sense. To this end, let’s put the ALOHA example aside for a moment, and consider the “experiment” consisting of rolling two dice, say a blue one and a yellow one. Let X and Y denote the number of dots we get on the blue and yellow dice, respectively, and consider the meaning of \[P(X + Y = 6) = \frac{5}{36} \].

In the mathematical theory of probability, we talk of a sample space, which (in simple cases) consists of the possible outcomes \((X, Y)\), seen in Table 2.1. In a theoretical treatment, we place weights of \(1/36\) on each of the points in the space, reflecting the fact that each of the 36 points is equally likely, and then say, “What we mean by \(P(X + Y = 6) = \frac{5}{36}\) is that the outcomes \((1, 5), (2, 4), (3, 3), (4, 2), (5, 1)\) have total weight \(\frac{5}{36}\).”

Unfortunately, the notion of sample space becomes mathematically tricky when developed for more complex probability models. Indeed, it requires graduate-level math, called measure theory.

And much worse, under the sample space approach, one loses all the intuition. In particular, there is no good way using set theory to convey the intuition underlying conditional probability (to be introduced in Section 2.3). The same is true for expected value, a central topic to be introduced in Section 3.5.

In any case, most probability computations do not rely on explicitly writing down a sample space. In this particular example it is useful for us as a vehicle for explaining the concepts, but we will NOT use it much. Those who wish to get a more theoretical grounding can get a start in Section...
But the intuitive notion—which is FAR more important—of what \(P(X + Y = 6) = \frac{5}{36} \) means is the following. Imagine doing the experiment many, many times, recording the results in a large notebook:

- Roll the dice the first time, and write the outcome on the first line of the notebook.
- Roll the dice the second time, and write the outcome on the second line of the notebook.
- Roll the dice the third time, and write the outcome on the third line of the notebook.
- Roll the dice the fourth time, and write the outcome on the fourth line of the notebook.
- Imagine you keep doing this, thousands of times, filling thousands of lines in the notebook.

The first 9 lines of the notebook might look like Table 2.2. Here 2/9 of these lines say Yes. But after many, many repetitions, approximately 5/36 of the lines will say Yes. For example, after doing the experiment 720 times, approximately \(\frac{5}{36} \times 720 = 100 \) lines will say Yes.

This is what probability really is: In what fraction of the lines does the event of interest happen?

It sounds simple, but if you always think about this “lines in the notebook” idea, probability problems are a lot easier to solve. And it is the fundamental basis of computer simulation.
2.3 Our Definitions

These definitions are intuitive, rather than rigorous math, but intuition is what we need. Keep in mind that we are making definitions below, not listing properties.

- We assume an “experiment” which is (at least in concept) repeatable. The experiment of rolling two dice is repeatable, and even the ALOHA experiment is so. (We simply watch the network for a long time, collecting data on pairs of consecutive epochs in which there are two active stations at the beginning.) On the other hand, the econometricians, in forecasting 2009, cannot “repeat” 2008. Yet all of the econometricians’ tools assume that events in 2008 were affected by various sorts of randomness, and we think of repeating the experiment in a conceptual sense.

- We imagine performing the experiment a large number of times, recording the result of each repetition on a separate line in a notebook.

- We say A is an event for this experiment if it is a possible boolean (i.e. yes-or-no) outcome of the experiment. In the above example, here are some events:

 * \(X+Y = 6 \)
 * \(X = 1 \)
 * \(Y = 3 \)
 * \(X-Y = 4 \)

- A random variable is a numerical outcome of the experiment, such as \(X \) and \(Y \) here, as well as \(X+Y \), \(2XY \) and even \(\sin(XY) \).

- For any event of interest A, imagine a column on A in the notebook. The \(k^{th} \) line in the notebook, \(k = 1,2,3,..., \) will say Yes or No, depending on whether A occurred or not during the \(k^{th} \) repetition of the experiment. For instance, we have such a column in our table above, for the event \(\{A = \text{blue+yellow} = 6 \} \).

- For any event of interest A, we define \(P(A) \) to be the long-run fraction of lines with Yes entries.

- For any events A, B, imagine a new column in our notebook, labeled “A and B.” In each line, this column will say Yes if and only if there are Yes entries for both A and B. \(P(A \text{ and } B) \) is then the long-run fraction of lines with Yes entries in the new column labeled “A and B.”\(^1\)

\(^1\)In most textbooks, what we call “A and B” here is written \(A \cap B \), indicating the intersection of two sets in the sample space. But again, we do not take a sample space point of view here.
For any events A, B, imagine a new column in our notebook, labeled “A or B.” In each line, this column will say Yes if and only if at least one of the entries for A and B says Yes.

For any events A, B, imagine a new column in our notebook, labeled “$A \mid B$” and pronounced “A given B.” In each line:

- This new column will say “NA” (“not applicable”) if the B entry is No.
- If it is a line in which the B column says Yes, then this new column will say Yes or No, depending on whether the A column says Yes or No.

Think of probabilities in this “notebook” context:

- $P(A)$ means the long-run fraction of lines in the notebook in which the A column says Yes.
- $P(A \text{ or } B)$ means the long-run fraction of lines in the notebook in which the A-or-B column says Yes.
- $P(A \text{ and } B)$ means the long-run fraction of lines in the notebook in which the A-and-B column says Yes.
- $P(A \mid B)$ means the long-run fraction of lines in the notebook in which the $A \mid B$ column says Yes—among the lines which do NOT say NA.

A hugely common mistake is to confuse $P(A \text{ and } B)$ and $P(A \mid B)$. This is where the notebook view becomes so important. Compare the quantities $P(X = 1 \text{ and } S = 6) = \frac{1}{36}$ and $P(X = 1 \mid S = 6) = \frac{1}{5}$, where $S = X + Y$.

- After a large number of repetitions of the experiment, approximately $1/36$ of the lines of the notebook will have the property that both $X = 1$ and $S = 6$ (since $X = 1$ and $S = 6$ is equivalent to $X = 1$ and $Y = 5$).
- After a large number of repetitions of the experiment, if we look only at the lines in which $S = 6$, then among those lines, approximately $1/5$ of those lines will show $X = 1$.

The quantity $P(A \mid B)$ is called the conditional probability of A, given B.

Note that and has higher logical precedence than or. For example, $P(A \text{ and } B \text{ or } C)$ means $P[(A \text{ and } B) \text{ or } C]$. Also, not has higher precedence than and.

Here are some more very important definitions and properties:

2In the sample space approach, this is written $A \cup B$.

3Think of adding an S column to the notebook too.
2.3. **OUR DEFINITIONS**

- **Definition 1** Suppose A and B are events such that it is impossible for them to occur in the same line of the notebook. They are said to be **disjoint** events.

- If A and B are disjoint events, then

 \[
P(A \text{ or } B) = P(A) + P(B) \tag{2.2}
 \]

 Again, this terminology *disjoint* stems from the set-theoretic sample space approach, where it means that $A \cap B = \phi$. That mathematical terminology works fine for our dice example, but in my experience people have major difficulty applying it correctly in more complicated problems. This is another illustration of why I put so much emphasis on the “notebook” framework.

 By writing

 \[
 \{A \text{ or } B \text{ or } C\} = \{A \text{ or } [B \text{ or } C]\} = \tag{2.3}
 \]

 \[\text{(2.2)}\] can be iterated, e.g.

 \[
P(A \text{ or } B \text{ or } C) = P(A) + P(B) + P(C) \tag{2.4}
 \]

- If A and B are not disjoint, then

 \[
P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \tag{2.5}
 \]

 In the disjoint case, that subtracted term is 0, so \[\text{(2.5)}\] reduces to \[\text{(2.2)}\].

- **Definition 2** Events A and B are said to be **stochastically independent**, usually just stated as **independent** if

 \[
P(A \text{ and } B) = P(A) \cdot P(B) \tag{2.6}
 \]

- In calculating an “and” probability, how does one know whether the events are independent? The answer is that this will typically be clear from the problem. If we toss the blue and yellow dice, for instance, it is clear that one die has no impact on the other, so events involving the blue die are independent of events involving the yellow die. On the other hand, in the ALOHA example, it’s clear that events involving X_1 are NOT independent of those involving X_2.

\[4\text{The term stochastic is just a fancy synonym for random.}\]
• If A and B are not independent, the equation (2.6) generalizes to

\[P(A \text{ and } B) = P(A)P(B|A) \]

(2.7)

This should make sense to you. Suppose 30% of all UC Davis students are in engineering, and 20% of all engineering majors are female. That would imply that 0.30 x 0.20 = 0.06, i.e. 6% of all UCD students are female engineers.

Note that if A and B actually are independent, then \(P(B|A) = P(B) \), and (2.7) reduces to (2.6).

Note too that (2.7) implies

\[P(B|A) = \frac{P(A \text{ and } B)}{P(A)} \]

(2.8)

2.4 “Mailing Tubes”

If I ever need to buy some mailing tubes, I can come here—friend of the author’s, while browsing through an office supplies store

Examples of the above properties, e.g. (2.6) and (2.7), will be given starting in Section 2.5. But first, a crucial strategic point in learning probability must be addressed.

Some years ago, a friend of mine was in an office supplies store, and he noticed a rack of mailing tubes. My friend made the remark shown above. Well, (2.6) and (2.7) are “mailing tubes”—make a mental note to yourself saying, “If I ever need to find a probability involving and, one thing I can try is (2.6) and (2.7).” Be ready for this!

This mailing tube metaphor will be mentioned often, such as in Section 3.5.5.

2.5 Example: ALOHA Network

Please keep in mind that the notebook idea is simply a vehicle to help you understand what the concepts really mean. This is crucial for your intuition and your ability to apply this material in the real world. But the notebook idea is NOT for the purpose of calculating probabilities. Instead, we use the properties of probability, as seen in the following.

Let’s look at all of this in the ALOHA context. Here’s a summary:
2.5. EXAMPLE: ALOHA NETWORK

- We have n network nodes, sharing a common communications channel.
- Time is divided in epochs. \(X_k \) denotes the number of active nodes at the end of epoch \(k \), which we will sometimes refer to as the state of the system in epoch \(k \).
- If two or more nodes try to send in an epoch, they collide, and the message doesn’t get through.
- We say a node is active if it has a message to send.
- If a node is active node near the end of an epoch, it tries to send with probability \(p \).
- If a node is inactive at the beginning of an epoch, then at the middle of the epoch it will generate a message to send with probability \(q \).
- In our examples here, we have \(n = 2 \) and \(X_0 = 2 \), i.e. both nodes start out active.

Now, in Equation (2.1) we found that

\[
P(X_1 = 2) = p^2 + (1 - p)^2 = 0.52
\] \hspace{1cm} (2.9)

How did we get this? Let \(C_i \) denote the event that node \(i \) tries to send, \(i = 1,2 \). Then using the definitions above, our steps would be

\[
P(X_1 = 2) = P(C_1 \text{ and } C_2 \text{ or not } C_1 \text{ and not } C_2) \hspace{1cm} (2.10)
\]

\[
= P(C_1 \text{ and } C_2) + P(\text{not } C_1 \text{ and } \text{not } C_2) \text{ (from (2.2))} \hspace{1cm} (2.11)
\]

\[
= P(C_1)P(C_2) + P(\text{not } C_1)P(\text{not } C_2) \text{ (from (2.6))} \hspace{1cm} (2.12)
\]

\[
= p^2 + (1 - p)^2 \hspace{1cm} (2.13)
\]

(The underbraces in (2.10) do not represent some esoteric mathematical operation. There are there simply to make the grouping clearer, corresponding to events G and H defined below.)

Here are the reasons for these steps:

(2.10): We listed the ways in which the event \(\{X_1 = 2\} \) could occur.

(2.11): Write \(G = C_1 \text{ and } C_2, H = D_1 \text{ and } D_2 \), where \(D_i = \text{not } C_i \), \(i = 1,2 \). Then the events G and H are clearly disjoint; if in a given line of our notebook there is a Yes for G, then definitely there will be a No for H, and vice versa.
The two nodes act physically independently of each other. Thus the events C_1 and C_2 are stochastically independent, so we applied (2.6). Then we did the same for D_1 and D_2.

Now, what about $P(X_2 = 2)$? Again, we break big events down into small events, in this case according to the value of X_1:

\[
P(X_2 = 2) = P(X_1 = 0 \text{ and } X_2 = 2 \text{ or } X_1 = 1 \text{ and } X_2 = 2 \text{ or } X_1 = 2 \text{ and } X_2 = 2)
\]
\[
= P(X_1 = 0 \text{ and } X_2 = 2) + P(X_1 = 1 \text{ and } X_2 = 2) + P(X_1 = 2 \text{ and } X_2 = 2)
\]

(2.14)

Since X_1 cannot be 0, that first term, $P(X_1 = 0 \text{ and } X_2 = 2)$ is 0. To deal with the second term, $P(X_1 = 1 \text{ and } X_2 = 2)$, we’ll use (2.7). Due to the time-sequential nature of our experiment here, it is natural (but certainly not “mandated,” as we’ll often see situations to the contrary) to take A and B to be \{$X_1 = 1$\} and \{$X_2 = 2$\}, respectively. So, we write

\[
P(X_1 = 1 \text{ and } X_2 = 2) = P(X_1 = 1)P(X_2 = 2|X_1 = 1)
\]

(2.15)

To calculate $P(X_1 = 1)$, we use the same kind of reasoning as in Equation (2.1). For the event in question to occur, either node A would send and B wouldn’t, or A would refrain from sending and B would send. Thus

\[
P(X_1 = 1) = 2p(1 - p) = 0.48
\]

(2.16)

Now we need to find $P(X_2 = 2|X_1 = 1)$. This again involves breaking big events down into small ones. If $X_1 = 1$, then $X_2 = 2$ can occur only if both of the following occur:

- Event A: Whichever node was the one to successfully transmit during epoch 1—and we are given that there indeed was one, since $X_1 = 1$—now generates a new message.
- Event B: During epoch 2, no successful transmission occurs, i.e. either they both try to send or neither tries to send.

Recalling the definitions of p and q in Section 2.1, we have that

\[
P(X_2 = 2|X_1 = 1) = q[p^2 + (1 - p)^2] = 0.41
\]

(2.17)
Thus \(P(X_1 = 1 \text{ and } X_2 = 2) = 0.48 \times 0.41 = 0.20 \).

We go through a similar analysis for \(P(X_1 = 2 \text{ and } X_2 = 2) \): We recall that \(P(X_1 = 2) = 0.52 \) from before, and find that \(P(X_2 = 2|X_1 = 2) = 0.52 \) as well. So we find \(P(X_1 = 2 \text{ and } X_2 = 2) \) to be \(0.52^2 = 0.27 \). Putting all this together, we find that \(P(X_2 = 2) = 0.47 \).

Let’s do another; let’s find \(P(X_1 = 1|X_2 = 2) \). [Pause a minute here to make sure you understand that this is quite different from \(P(X_2 = 2|X_1 = 1) \).] From (2.8), we know that

\[
P(X_1 = 1|X_2 = 2) = \frac{P(X_1 = 1 \text{ and } X_2 = 2)}{P(X_2 = 2)} \tag{2.18}
\]

We computed both numerator and denominator here before, in Equations (2.15) and (2.14), so we see that \(P(X_1 = 1|X_2 = 2) = 0.20/0.47 = 0.43 \).

So, in our notebook view, if we were to look only at lines in the notebook for which \(X_2 = 2 \), a fraction 0.43 of those lines would have \(X_1 = 1 \).

You might be bothered that we are looking “backwards in time” in (2.18), kind of guessing the past from the present. There is nothing wrong or unnatural about that. Jurors in court trials do it all the time, though presumably not with formal probability calculation. And evolutionary biologists do use formal probability models to guess the past.

And one more calculation: \(P(X_1 = 2 \text{ or } X_2 = 2) \). From (2.5),

\[
P(X_1 = 2 \text{ or } X_2 = 2) = P(X_1 = 2) + P(X_2 = 2) - P(X_1 = 2 \text{ and } X_2 = 2) \tag{2.19}
\]

Luckily, we’ve already calculated all three probabilities on the right-hand side to be 0.52, 0.47 and 0.27, respectively. Thus \(P(X_1 = 2 \text{ or } X_2 = 2) = 0.72 \).

Note by the way that events involving \(X_2 \) are NOT independent of those involving \(X_1 \). For instance, we found in (2.18) that

\[
P(X_1 = 1|X_2 = 2) = 0.43 \tag{2.20}
\]

yet from (2.16) we have

\[
P(X_1 = 1) = 0.48. \tag{2.21}
\]
2.6 Bayes’ Rule

(This section should not be confused with Section ???. The latter is highly controversial, while the material in this section is not controversial at all.)

Following (2.18) above, we noted that the ingredients had already been computed, in (2.15) and (2.14). If we go back to the derivations in those two equations and substitute in (2.18), we have

\[
P(X_1 = 1|X_2 = 2) = \frac{P(X_1 = 1 \text{ and } X_2 = 2)}{P(X_2 = 2)} \tag{2.22}
\]

\[
= \frac{P(X_1 = 1 \text{ and } X_2 = 2)}{P(X_1 = 1 \text{ and } X_2 = 2) + P(X_1 = 2 \text{ and } X_2 = 2)} \tag{2.23}
\]

\[
= \frac{P(X_1 = 1)P(X_2 = 2|X_1 = 1)}{P(X_1 = 1)P(X_2 = 2|X_1 = 1) + P(X_1 = 2)P(X_2 = 2|X_1 = 2)} \tag{2.24}
\]

Looking at this in more generality, for events A and B we would find that

\[
P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(\text{not } A)P(B|\text{not } A)} \tag{2.25}
\]

This is known as Bayes’ Theorem or Bayes’ Rule. It can be extended easily to cases with several terms in the denominator, arising from situations that need to be broken down into several subevents rather than just A and not-A.

2.7 ALOHA in the Notebook Context

Think of doing the ALOHA “experiment” many, many times.

- Run the network for two epochs, starting with both nodes active, the first time, and write the outcome on the first line of the notebook.
- Run the network for two epochs, starting with both nodes active, the second time, and write the outcome on the second line of the notebook.
- Run the network for two epochs, starting with both nodes active, the third time, and write the outcome on the third line of the notebook.
- Run the network for two epochs, starting with both nodes active, the fourth time, and write the outcome on the fourth line of the notebook.
Imagine you keep doing this, thousands of times, filling thousands of lines in the notebook. The first seven lines of the notebook might look like Table 2.3. We see that:

- Among those first seven lines in the notebook, 4/7 of them have $X_1 = 2$. After many, many lines, this fraction will be approximately 0.52.
- Among those first seven lines in the notebook, 3/7 of them have $X_2 = 2$. After many, many lines, this fraction will be approximately 0.47\footnote{Don’t make anything of the fact that these probabilities nearly add up to 1.}
- Among those first seven lines in the notebook, 3/7 of them have $X_1 = 2$ and $X_2 = 2$. After many, many lines, this fraction will be approximately 0.27.
- Among the first seven lines in the notebook, four of them do not say NA in the $X_2 = 2 | X_1 = 2$ column. Among these four lines, two say Yes, a fraction of 2/4. After many, many lines, this fraction will be approximately 0.52.

2.8 A Note on Modeling

Here is a question to test your understanding of the ALOHA model—not the calculation of probabilities, but rather the meaning of the model itself. What kinds of properties are we trying to capture in the model?

So, consider this question:
Consider the ALOHA network model. Say we have two such networks, A and B. In A, the network typically is used for keyboard input, such as a user typing e-mail or editing a file. But in B, users tend to do a lot of file uploading, not just typing. Fill in the blanks: In B, the model parameter _______ is ___________ than in A, and in order to accommodate this, we should set the parameter _______ to be relatively ________ in B.

In network B we have heavy traffic. Thus, when a node becomes idle, it is quite likely to have a new message to send right away. Thus q is large.

That means we need to be especially worried about collisions, so we probably should set p to a low value.

2.9 Solution Strategies

The example in Section 2.5 shows typical strategies in exploring solutions to probability problems, such as:

- Name what seem to be the important variables and events, in this case X_1, X_2, C_1, C_2 and so on.
- Write the given probability in terms of those named variables, e.g.
 \[
P(X_1 = 2) = P(C_1 \text{ and } C_2 \text{ or } \text{not } C_1 \text{ and } \text{not } C_2)\]
 (2.26)
 above.
- Ask the famous question, “How can it happen?” Break big events down into small events; in the above case the event $X_1 = 2$ can happen if C_1 and C_2 or not C_1 and not C_2.
- But when you do break things down like this, make sure to neither expand or contract the scope of the probability. Say you write something like
 \[
P(A) = P(B)\]
 (2.27)
 where B might be some complicated event expression such as in the right-hand side of (2.10). Make SURE that A and B are equivalent—meaning that in every notebook line in which A occurs, then B also occurs, and vice versa.

6The file is likely read in chunks called disk sectors, so there may be a slight pause between the uploading of chunks. Our model here is too coarse to reflect such things.
Do not write/think nonsense. For example: the expression “P(A) or P(B)” is nonsense—do you see why? Probabilities are numbers, not boolean expressions, so “P(A) or P(B)” is like saying, “0.2 or 0.5”—meaningless!

Similarly, say we have a random variable X. The “probability” P(X) is invalid. Say X is the number of dots we get when we roll a single die. Then P(X) would mean “the probability that the number of dots,” which is nonsense English! P(X = 3) is valid, but P(X) is meaningless. Please note that = is not like a comma, or equivalent to the English word therefore. It needs a left side and a right side; “a = b” makes sense, but “= b” doesn’t.

Similarly, don’t use “formulas” that you didn’t learn and that are in fact false. For example, in an expression involving a random variable X, one can NOT replace X by its mean. (How would you like it if your professor were to lose your exam, and then tell you, “Well, I’ll just assign you a score that is equal to the class mean”?)

Adhere to convention! Use capital letters for random variables and names of events. Use P() notation, not p() (which will mean something else in this book).

In the beginning of your learning probability methods, meticulously write down all your steps, with reasons, as in the computation of \(P(X_1 = 2) \) in Equations (2.10)ff. After you gain more experience, you can start skipping steps, but not in the initial learning period.

Solving probability problems—and even more so, building useful probability models—is like computer programming: It’s a creative process.

One can NOT—repeat, NOT—teach someone how to write programs. All one can do is show the person how the basic building blocks work, such as loops, if-else and arrays, then show a number of examples. But the actual writing of a program is a creative act, not formula-based. The programmer must creatively combined the various building blocks to produce the desired result. The teacher cannot teach the student how to do this.

The same is true for solving probability problems. The basic building blocks were presented above in Section 2.5, and many more “mailing tubes” will be presented in the rest of this book. But it is up to the student to try using the various building blocks in a way that solves the problem. Sometimes use of one block may prove to be unfruitful, in which case one must try other blocks.

For instance, in using probability formulas like \(P(A \text{ and } B) = P(A) P(B \mid A) \), there is no magic rule as to how to choose A and B.

Moreover, if you need \(P(B \mid A) \), there is no magic rule on how to find it. On the one hand, you might calculate it from (2.8), as we did in (2.18), but on the other hand you may be able to reason out the value of \(P(B \mid A) \), as we did following (2.16). Just try some cases until you find one that works, in the sense that you can evaluate both factors. It’s the same as trying various programming ideas until you find one that works.
CHAPTER 2. BASIC PROBABILITY MODELS

2.10 Example: Divisibility of Random Integers

Suppose at step \(i\) we generate a random integer between 1 and 1000, and check whether it’s evenly divisible by \(i\), \(i = 5, 4, 3, 2, 1\). Let \(N\) denote the number of steps needed to reach an evenly divisible number.

Let’s find \(P(N = 2)\). Let \(q(i)\) denote the fraction of numbers in 1...,1000 that are evenly divisible by \(i\), so that for instance \(q(5) = 200/1000 = 1/5\) while \(q(3) = 333/1000\). Let’s label the steps 5,4,..., so that the first step is number 5. Then since the random numbers are independent from step to step, we have

\[
P(N = 2) = P(\text{fail in step 5 and succeed in step 4}) \quad \text{("How can it happen?") (2.28)}
\]
\[
= P(\text{fail in step 5}) \cdot P(\text{succeed in step 4 | fail in step 5}) \quad \text{((2.7)) (2.29)}
\]
\[
= [1 - q(5)]q(4) \quad \text{(2.30)}
\]
\[
= \frac{4}{5} \cdot \frac{1}{4} \quad \text{(2.31)}
\]
\[
= \frac{1}{5} \quad \text{(2.32)}
\]

But there’s more.

First, note that \(q(i)\) is either equal or approximately equal to \(1/i\). Then following the derivation in (2.28), you’ll find that

\[
P(N = j) \approx \frac{1}{5} \quad \text{(2.33)}
\]

for ALL \(j\) in 1,...,5.

That may seem counterintuitive. Yet the example here is in essence the same as one found as an exercise in many textbooks on probability:

A man has five keys. He knows one of them opens a given lock, but he doesn’t know which. So he tries the keys one at a time until he finds the right one. Find \(P(N = j)\), \(j = 1,...,5\), where \(N\) is the number of keys he tries until he succeeds.

Here too the answer is 1/5 for all \(j\). But this one makes intuitive sense: Each of the keys has chance 1/5 of being the right key, so each of the values 1,...,5 is equally likely for \(N\).

This is then an example of the fact that sometimes we can gain insight into one problem by considering a mathematically equivalent problem in a quite different setting.
2.11 Example: A Simple Board Game

Consider a board game, which for simplicity we’ll assume consists of two squares per side, on four sides. A player’s token advances around the board. The squares are numbered 0-7, and play begins at square 0.

A token advances according to the roll of a single die. If a player lands on square 3, he/she gets a bonus turn. Let’s find the probability that a player has yet to make a complete circuit of the board—i.e. has not yet reached or passed 0—after the first turn (including the bonus, if any). Let R denote his first roll, and let B be his bonus if there is one, with B being set to 0 if there is no bonus. Then (using commas as a shorthand notation for and)

\[
P(\text{doesn’t reach or pass 0}) = P(R + B \leq 7) = P(R \leq 6, R \neq 3 \text{ or } R = 3, B \leq 4) = P(R \leq 6, R \neq 3) + P(R = 3, B \leq 4) = \frac{5}{6} \cdot \frac{1}{6} + \frac{1}{6} \cdot \frac{4}{6} = \frac{17}{18}
\]

Now, here’s a shorter way (there are always multiple ways to do a problem):

\[
P(\text{don’t reach or pass 0}) = 1 - P(\text{do reach or pass 0}) = 1 - P(R + B > 7) = 1 - P(R = 3, B > 4) = 1 - \frac{1}{6} \cdot \frac{2}{6} = \frac{17}{18}
\]

Now suppose that, according to a telephone report of the game, you hear that on the player’s first turn, his token ended up at square 4. Let’s find the probability that he got there with the aid of a bonus roll.

Note that this a conditional probability—we’re finding the probability that the player got a bonus roll, given that we know he ended up at square 4. The word given wasn’t there in the statement of the problem, but it was implied.
A little thought reveals that we cannot end up at square 4 after making a complete circuit of the board, which simplifies the situation quite a bit. So, write

\[
P(B > 0 \mid R + B = 4) = \frac{P(R + B = 4, B > 0)}{P(R + B = 4)}
\]

(2.45)

\[
= \frac{P(R + B = 4, B > 0)}{P(R + B = 4, B > 0 \text{ or } R + B = 4, B = 0)}
\]

(2.46)

\[
= \frac{P(R + B = 4, B > 0) + P(R + B = 4, B = 0)}{P(R = 3, B = 1)}
\]

(2.47)

\[
= \frac{\frac{1}{5} \cdot \frac{1}{5}}{\frac{1}{5} \cdot \frac{1}{5} + \frac{1}{6}}
\]

(2.48)

\[
= \frac{1}{7}
\]

(2.49)

(2.50)

We could have used Bayes’ Rule to shorten the derivation a little here, but will prefer to derive everything, at least in this introductory chapter.

Pay special attention to that third equality above, as it is a frequent mode of attack in probability problems. In considering the probability \(P(R+B = 4, B > 0)\), we ask, what is a simpler—but still equivalent!—description of this event? Well, we see that \(R+B = 4, B > 0\) boils down to \(R = 3, B = 1\), so we replace the above probability with \(P(R = 3, B = 1)\).

Again, this is a very common approach. But be sure to take care that we are in an “if and only if” situation. Yes, \(R+B = 4, B > 0\) implies \(R = 3, B = 1\), but we must make sure that the converse is true as well. In other words, we must also confirm that \(R = 3, B = 1\) implies \(R+B = 4, B > 0\). That’s trivial in this case, but one can make a subtle error in some problems if one is not careful; otherwise we will have replaced a higher-probability event by a lower-probability one.

2.12 Example: Bus Ridership

Consider the following analysis of bus ridership. (In order to keep things easy, it will be quite oversimplified, but the principles will be clear.) Here is the model:

- At each stop, each passenger alights from the bus, independently, with probability 0.2 each.
- Either 0, 1 or 2 new passengers get on the bus, with probabilities 0.5, 0.4 and 0.1, respectively. Passengers at successive stops are independent.
2.12. **EXAMPLE: BUS RIDERSHIP**

- Assume the bus is so large that it never becomes full, so the new passengers can always get on.
- Suppose the bus is empty when it arrives at its first stop.

Let \(L_i \) denote the number of passengers on the bus as it leaves its \(i \)th stop, \(i = 1,2,3,... \) Let \(B_i \) denote the number of new passengers who board the bus at the \(i \)th stop.

First, let’s find the probability that no passengers board the bus at the first three stops. That’s easy:

\[
P(B_1 = 0 \text{ and } B_2 = 0 \text{ and } B_3 = 0) = 0.5^3
\]

(2.51)

Now let’s compute \(P(L_2 = 0) \).

\[
P(L_2 = 0) = P(B_1 = 0 \text{ and } L_2 = 0 \text{ or } B_1 = 1 \text{ and } L_2 = 0 \text{ or } B_1 = 2 \text{ and } L_2 = 0)
\]

(2.52)

\[
= \sum_{i=0}^{2} P(B_1 = i \text{ and } L_2 = 0)
\]

(2.53)

\[
= \sum_{i=0}^{2} P(B_1 = i)P(L_2 = 0|B_1 = i)
\]

(2.54)

\[
= 0.5^2 + (0.4)(0.2)(0.5) + (0.1)(0.2^2)(0.5)
\]

(2.55)

\[
= 0.292
\]

(2.56)

For instance, where did that first term, \(0.5^2 \), come from? Well, \(P(B_1 = 0) = 0.5 \), and what about \(P(L_2 = 0|B_1 = 0) \)? If \(B_1 = 0 \), then the bus approaches the second stop empty. For it to then leave that second stop empty, it must be the case that \(B_2 = 0 \), which has probability 0.5. In other words, \(P(L_2 = 0|B_1 = 0) = 0.5 \).

As another example, suppose we are told that the bus arrives empty at the third stop. What is the probability that exactly two people boarded the bus at the first stop?

Note first what is being asked for here: \(P(B_1 = 2|L_2 = 0) \). Then we have

\[
P(B_1 = 2 \mid L_2 = 0) = \frac{P(B_1 = 2 \text{ and } L_2 = 0)}{P(L_2 = 0)}
\]

(2.57)

\[
= P(B_1 = 2) \frac{P(L_2 = 0 \mid B_1 = 2)}{0.292}
\]

(2.58)

\[
= 0.1 \cdot 0.2^2 \cdot 0.5/0.292
\]

(2.59)
(the 0.292 had been previously calculated in (2.56)).

Now let’s find the probability that fewer people board at the second stop than at the first:

\[
P(B_2 < B_1) = P(B_1 = 1 \text{ and } B_2 < B_1 \text{ or } B_1 = 2 \text{ and } B_2 < B_1) \tag{2.60}
\]

\[
= 0.4 \cdot 0.5 + 0.1 \cdot (0.5 + 0.4) \tag{2.61}
\]

Also: Someone tells you that as she got off the bus at the second stop, she saw that the bus then left that stop empty. Let’s find the probability that she was the only passenger when the bus left the first stop:

We are given that \(L_2 = 0 \). But we are also given that \(L_1 > 0 \). Then

\[
P(L_1 = 1 | L_2 = 0 \text{ and } L_1 > 0) = \frac{P(L_1 = 1 \text{ and } L_2 = 0)}{P(L_2 = 0 \text{ and } L_1 > 0)} \tag{2.62}
\]

\[
= \frac{P(B_1 = 1 \text{ and } L_2 = 0)}{P(B_1 = 1 \text{ and } L_2 = 0 \text{ or } B_1 = 2 \text{ and } L_2 = 0)} \tag{2.63}
\]

\[
= \frac{(0.4)(0.2)(0.5)}{(0.4)(0.2)(0.5) + (0.1)(0.2)^2(0.5)} \tag{2.64}
\]

Equation (2.63) requires some explanation. Let’s first consider how we got the numerator from the preceding equation.

Ask the usual question: How can it happen? In this case, how can the event

\(L_1 = 1 \text{ and } L_2 = 0 \) occur? Since we know a lot about the probabilistic behavior of the \(B_i \), let’s try to recast that event. A little thought shows that the event is equivalent to the event

\(B_1 = 0 \text{ and } L_2 = 0 \) \tag{2.65}

So, how did the denominator in (2.63) come from the preceding equation? In other words, how did we recast the event

\(L_2 = 0 \text{ and } L_1 > 0 \) \tag{2.66}
in terms of the B_i? Well, $L_1 > 0$ means that B_1 is either 1 or 2. Thus we broke things down accordingly in the denominator of (2.63).

The remainder of the computation is similar to what we did earlier in this example.

2.13 Random Graph Models

A graph consists of vertices and edges. To understand this, think of a social network. Here the vertices represent people and the edges represent friendships. For the time being, assume that friendship relations are mutual, i.e. if person i says he is friends with person j, then j will say the same about i.

For any graph, its adjacency matrix consists of 1 and 0 entries, with a 1 in row i, column j meaning there is an edge from vertex i to vertex j. For instance, say we have a simple tiny network of three people, with adjacency matrix

$$
\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}
$$

Row 1 of the matrix says that Person 1 is friends with persons 2 and 3, but we see from the other rows that Persons 2 and 3 are not friends with each other.

In any graph, the degree of a vertex is its number of edges. So, the degree of vertex i is the number of 1s in row i. In the little model above, vertex 1 has degree 2 but the other two vertices each have degree 1.

The assumption that friendships are mutual is described in graph theory as having a undirected graph. Note that that implies that the adjacency matrix is symmetric. However, we might model some other networks as directed, with adjacency matrices that are not necessarily symmetric. In a large extended family, for example, we could define edges in terms of being an elder sibling; there would be an edge from Person i to Person j if j is an older sibling of i.

Graphs need not represent people. They are used in myriad other settings, such as analysis of Web site relations, Internet traffic routing, genetics research and so on.

2.13.1 Example: Preferential Attachment Graph Model

A famous graph model is Preferential Attachment. Think of it again as an undirected social network, with each edge representing a “friend” relation. The number of vertices grows over time, one vertex per time step. At time 0, we have just two vertices, v_1 and v_2, with a link between them.
Thus at time 0, each of the two vertices has degree 1. Whenever a new vertex is added to the graph, it randomly chooses an existing vertex to attach to, creating a new edge with that existing vertex. In making that random choice, it follows probabilities in proportion to the degrees of the existing edges.

As an example of how the Preferential Attachment Model works, suppose that at time 2, when \(v_4 \) is added, the adjacency matrix for the graph is \((2.68) \). Then there will be an edge created between \(v_4 \) with \(v_1 \), \(v_2 \) or \(v_3 \), with probability \(2/4 \), \(1/4 \) and \(1/4 \), respectively. Let’s find \(P(v_4 \text{ attaches to } v_1) \)

Let \(N_i \) denote the node that \(v_i \) attaches to, \(i = 3, 4, \ldots \). Then, following the solution strategy “break big event down into small events,” let’s break this question about \(v_4 \) according to what happens with \(v_3 \):

\[
P(N_4 = 1) = P(N_3 = 1 \text{ and } N_4 = 1) + P(N_3 = 2 \text{ and } N_4 = 1) \tag{2.69}
\]

\[
= (1/2)(2/4) + (1/2)(1/4) \tag{2.70}
\]

\[
= 3/8 \tag{2.71}
\]

2.14 Simulation

To simulate whether a simple event occurs or not, we typically use R function `runif()`. This function generates random numbers from the interval \((0,1)\), with all the points inside being equally likely. So for instance the probability that the function returns a value in \((0,0.5)\) is 0.5. Thus here is code to simulate tossing a coin:

```r
if (runif(1) < 0.5) heads <- TRUE else heads <- FALSE
```

The argument 1 means we wish to generate just one random number from the interval \((0,1)\).

2.14.1 Example: Rolling Dice

If we roll three dice, what is the probability that their total is 8? We count all the possibilities, or we could get an approximate answer via simulation:

```r
# roll d dice; find P(total = k)
probtotk <- function(d,k,nreps) {
  count <- 0
  # do the experiment nreps times
  for (rep in 1:nreps) {
    if (runif(1) < 0.5) heads <- TRUE else heads <- FALSE
  }
  # count the number of times heads occurred
  count
}
```

1. # roll d dice; find P(total = k)
2. probtotk <- function(d,k,nreps) {
3. count <- 0
4. # do the experiment nreps times
5. for (rep in 1:nreps) {
6. # count the number of times heads occurred

2.14. SIMULATION

2.14. SIMULATION

```r
7 sum <- 0
8 # roll d dice and find their sum
9 for (j in 1:d) sum <- sum + roll()
10 if (sum == k) count <- count + 1
11 }
12 return(count/nreps)
13 }
14
15 # simulate roll of one die; the possible return values are 1,2,3,4,5,6,
16 # all equally likely
17 roll <- function() return(sample(1:6,1))
18
19 # example
20 probtotk(3,8,1000)
```

The call to the built-in R function `sample()` here says to take a sample of size 1 from the sequence of numbers 1,2,3,4,5,6. That’s just what we want to simulate the rolling of a die. The code

```r
for (j in 1:d) sum <- sum + roll()
```

then simulates the tossing of a die d times, and computing the sum.

2.14.2 First Improvement

Since applications of R often use large amounts of computer time, good R programmers are always looking for ways to speed things up. Here is an alternate version of the above program:

```r
1 # roll d dice; find P(total = k)
2 probtotk <- function(d,k,nreps) {
3 count <- 0
4 # do the experiment nreps times
5 for (rep in 1:nreps)
6 total <- sum(sample(1:6,d,replace=TRUE))
7 if (total == k) count <- count + 1
8 }
9 return(count/nreps)
10 }
```

Let’s first discuss the code.

`sample(1:6,d,replace=TRUE)`

The call to `sample()` here says, “Generate d random numbers, chosen randomly (i.e. with equal probability) from the integers 1 through 6, with replacement.” Well, of course, that simulates
tossing the die d times. So, that call returns a d-element array, and we then call R’s built-in function `sum()` to find the total of the d dice.

Note the call to R’s `sum()` function, a nice convenience.

This second version of the code here eliminates one explicit loop, which is the key to writing fast code in R. But just as important, it is more compact and clearer in expressing what we are doing in this simulation.

2.14.3 Second Improvement

Further improvements are possible. Consider this code:

```r
# roll d dice; find P(total = k)
# simulate roll of nd dice; the possible return values are 1,2,3,4,5,6, all equally likely
roll <- function(nd) return(sample(1:6,nd,replace=TRUE))

probtotk <- function(d,k,nreps) {
    sums <- vector(length=nreps)
    # do the experiment nreps times
    for (rep in 1:nreps) sums[rep] <- sum(roll(d))
    return(mean(sums==k))
}
```

There is quite a bit going on here.

We are storing the various “notebook lines” in a vector `sums`. We first call `vector()` to allocate space for it.

But the heart of the above code is the expression `sums==k`, which involves the very essence of the R idiom, vectorization. At first, the expression looks odd, in that we are comparing a vector (remember, this is what languages like C call an array), `sums`, to a scalar, `k`. But in R, every “scalar” is actually considered a one-element vector.

Fine, `k` is a vector, but wait! It has a different length than `sums`, so how can we compare the two vectors? Well, in R a vector is recycled—extended in length, by repeating its values—in order to conform to longer vectors it will be involved with. For instance:

```r
> c(2,5) + 4:6
[1] 6 10 8
```

Here we added the vector `(2,5)` to `(4,5,6)`. The former was first recycled to `(2,5,2)`, resulting in a
So, in evaluating the expression \(\text{sums}==k \), R will recycle \(k \) to a vector consisting of \(\text{nreps} \) copies of \(k \), thus conforming to the length of \(\text{sums} \). The result of the comparison will then be a vector of length \(\text{nreps} \), consisting of TRUE and FALSE values. In numerical contexts, these are treated at 1s and 0s, respectively. R’s \text{mean()}\) function will then average those values, resulting in the fraction of 1s! That’s exactly what we want.

2.14.4 Third Improvement

Even better:

```r
roll <- function(nd) return(sample(1:6,nd,replace=TRUE))

probtotk <- function(d,k,nreps) {
  # do the experiment \text{nreps} times
  sums <- replicate(nreps,sum(roll(d)))
  return(mean(sums==k))
}
```

R’s \text{replicate()}\) function does what its name implies, in this case executing the call \text{sum(roll(d))}. That produces a vector, which we then assign to \text{sums}. And note that we don’t have to allocate space for \text{sums}; \text{replicate()}\) produces a vector, allocating space, and then we merely point \text{sums} to that vector.

The various improvements shown above compactify the code, and in many cases, make it much faster\(^7\). Note, though, that this comes at the expense of using more memory.

2.14.5 Simulation of Conditional Probability in Dice Problem

Suppose three fair dice are rolled. We wish to find the approximate probability that the first die shows fewer than 3 dots, given that the total number of dots for the 3 dice is more than 8, using simulation.

Here is the code:

```r
dicesim <- function(nreps) {
  count1 <- 0
  count2 <- 0
  ...
}
```

\(^7\)There was also a warning message, not shown here. The circumstances under which warnings are or are not generated are beyond our scope here, but recycling is a very common R operation.

\(^8\)You can measure times using R’s \text{system.time()}\) function, e.g., via the call \text{system.time(probtotk(3,7,10000))}.

for (i in 1:nreps) {
 d <- sample(1:6, 3, replace=T)
 if (sum(d) > 8) {
 count1 <- count1 + 1
 if (d[1] < 3) count2 <- count2 + 1
 }
}
return(count2 / count1)

Note carefully that we did NOT use (2.8). That would defeat the purpose of simulation, which is the model the actual process.

2.14.6 Simulation of the ALOHA Example

Following is a computation via simulation of the approximate values of $P(X_1 = 2)$, $P(X_2 = 2)$ and $P(X_2 = 2 | X_1 = 1)$.

finds $P(X_1 = 2)$, $P(X_2 = 2)$ and $P(X_2 = 2 | X_1 = 1)$ in ALOHA example
sim <- function(p,q,nreps) {
 countx2eq2 <- 0
 countx1eq2 <- 0
 countx2eq2givx1eq1 <- 0
 # simulate nreps repetitions of the experiment
 for (i in 1:nreps) {
 numsend <- 0 # no messages sent so far
 # simulate A and B's decision on whether to send in epoch 1
 for (j in 1:2)
 if (runif(1) < p) numsend <- numsend + 1
 if (numsend == 1) X1 <- 1
 else X1 <- 2
 if (X1 == 2) countx1eq2 <- countx1eq2 + 1
 # now simulate epoch 2
 # if X1 = 1 then one node may generate a new message
 numactive <- X1
 if (X1 == 1 && runif(1) < q) numactive <- numactive + 1
 # send?
 if (numactive == 1)
 if (runif(1) < p) X2 <- 0
 else X2 <- 1
 else { # numactive == 0
 numsend <- 2
 for (i in 1:2)
 if (runif(1) < p) numsend <- numsend + 1
 if (numsend == 1) X2 <- 1
 else X2 <- 2
 }
 }
 if (X2 == 2) countx2eq2 <- countx2eq2 + 1
2.14. SIMULATION

if (X1 == 1) { # do tally for the cond. prob.
 countx1eq1 <- countx1eq1 + 1
 if (X2 == 2) countx2eq2givx1eq1 <- countx2eq2givx1eq1 + 1
}

print results
print(countx1eq1)
print(countx2eq2givx1eq1)

Note that each of the nreps iterations of the main for loop is analogous to one line in our hypothetical notebook. So, to find (the approximate value of) $P(X_1 = 2)$, divide the count of the number of times $X_1 = 2$ occurred by the number of iterations.

Again, note especially that the way we calculated $P(X_2 = 2 \mid X_1 = 1)$ was to count the number of times $X_2 = 2$, among those times that $X_1 = 1$, just like in the notebook case.

Also: Keep in mind that we did NOT use (2.25) or any other formula in our simulation. We stuck to basics, the “notebook” definition of probability. This is really important if you are using simulation to confirm something you derived mathematically. On the other hand, if you are using simulation because you CAN’T derive something mathematically (the usual situation), using some of the mailing tubes might speed up the computation.

2.14.7 Example: Bus Ridership, cont’d.

Consider the example in Section 2.12. Let’s find the probability that after visiting the tenth stop, the bus is empty. This is too complicated to solve analytically, but can easily be simulated:

Note the different usage of the sample() function in the call
Here we take a sample of size 1 from the set \{0,1,2\}, but with probabilities 0.5 and so on. Since the third argument for \texttt{sample()} is \texttt{replace}, not \texttt{prob}, we need to specify the latter in our call.

2.14.8 Example: Board Game con’d.

Recall the board game in Section 2.11. Below is simulation code to find the probability in (2.45):

```r
boardsim <- function(nreps) {
  count4 <- 0
  countbonusgiven4 <- 0
  for (i in 1:nreps) {
    position <- sample(1:6,1)
    if (position == 3) {
      bonus <- TRUE
      position <- (position + sample(1:6,1)) %% 8
    } else bonus <- FALSE
    if (position == 4) {
      count4 <- count4 + 1
      if (bonus) countbonusgiven4 <- countbonusgiven4 + 1
    }
  }
  return(countbonusgiven4/count4)
}
```

2.14.9 Example: Broken Rod

Say a glass rod drops and breaks into 5 random pieces. Let’s find the probability that the smallest piece has length below 0.02.

First, what does “random” mean here? Let’s assume that the break points, treating the left end as 0 and the right end as 1, can be modeled with \texttt{runif()}. Here then is code to do the job:

```r
# random breaks the rod in k pieces, returning the length of the shortest one
minpiece <- function(k) {
  breakpts <- sort(runif(k-1))
  lengths <- diff(c(0,breakpts,1))
  min(lengths)

  # returns the approximate probability that the smallest of k pieces will have length less than q
```
2.15. **COMBINATORICS-BASED PROBABILITY COMPUTATION**

```
bkrod <- function(nreps, k, q) {
  minpieces <- replicate(nreps, minpiece(k))
  mean(minpieces < q)
}

> bkrod(10000, 5, 0.02)
[1] 0.35
```

So, we generate the break points according to the model, then sort them in order to call R’s `diff()` function. The latter finds differences between successive values of its argument, which in our case will give us the lengths of the pieces. We then find the minimum length.

2.14.10 How Long Should We Run the Simulation?

Clearly, the large the value of `nreps` in our examples above, the more accurate our simulation results are likely to be. But how large should this value be? Or, more to the point, what measure is there for the degree of accuracy one can expect (whatever that means) for a given value of `nreps`? These questions will be addressed in Chapter ??.

2.15 **Combinatorics-Based Probability Computation**

And though the holes were rather small, they had to count them all—from the Beatles song, *A Day in the Life*

In some probability problems all the outcomes are equally likely. The probability computation is then simply a matter of counting all the outcomes of interest and dividing by the total number of possible outcomes. Of course, sometimes even such counting can be challenging, but it is simple in principle. We’ll discuss two examples here.

2.15.1 Which Is More Likely in Five Cards, One King or Two Hearts?

Suppose we deal a 5-card hand from a regular 52-card deck. Which is larger, P(1 king) or P(2 hearts)? Before continuing, take a moment to guess which one is more likely.

Now, here is how we can compute the probabilities. **The key point is that all possible hands are equally likely, which implies that all we need to do is count them.** There are \(\binom{52}{5} \) possible hands, so this is our denominator. For P(1 king), our numerator will be the number of hands consisting of one king and four non-kings. Since there are four kings in the deck, the number
of ways to choose one king is \(\binom{4}{1} = 4 \). There are 48 non-kings in the deck, so there are \(\binom{48}{4} \) ways to choose them. Every choice of one king can be combined with every choice of four non-kings, so the number of hands consisting of one king and four non-kings is \(4 \cdot \binom{48}{4} \). Thus

\[
P(1 \text{ king}) = \frac{4 \cdot \binom{48}{4}}{\binom{52}{5}} = 0.299
\] (2.72)

The same reasoning gives us

\[
P(2 \text{ hearts}) = \frac{\binom{13}{2} \cdot \binom{39}{3}}{\binom{52}{5}} = 0.274
\] (2.73)

So, the 1-king hand is just slightly more likely.

Note that an unstated assumption here was that all 5-card hands are equally likely. That is a realistic assumption, but it’s important to understand that it plays a key role here.

By the way, I used the R function `choose()` to evaluate these quantities, running R in interactive mode, e.g.:

```r
> choose(13,2) * choose(39,3) / choose(52,5)
[1] 0.2742797
```

R also has a very nice function `combn()` which will generate all the \(\binom{n}{k} \) combinations of k things chosen from n, and also will at your option call a user-specified function on each combination. This allows you to save a lot of computational work. See the examples in R’s online documentation.

Here’s how we could do the 1-king problem via simulation:

```r
# use simulation to find P(1 king) when deal a 5-card hand from a
# standard deck
# think of the 52 cards as being labeled 1-52, with the 4 kings having
# numbers 1-4

sim <- function(nreps) {
  count1king <- 0 # count of number of hands with 1 king
  for (rep in 1:nreps) {
    hand <- sample(1:52,5,replace=FALSE) # deal hand
    kings <- intersect(1:4,hand) # find which kings, if any, are in hand
    if (length(kings) == 1) count1king <- count1king + 1
  }
  print(count1king/nreps)
}
```
Here the **intersect()** function performs set intersection, in this case the set 1,2,3,4 and the one in the variable **hand**. Applying the **length()** function then gets us number of kings.

2.15.2 Example: Random Groups of Students

A class has 68 students, 48 of which are CS majors. The 68 students will be randomly assigned to groups of 4. Find the probability that a random group of 4 has exactly 2 CS majors.

\[
\frac{\binom{48}{2} \binom{20}{2}}{\binom{68}{4}}
\]

2.15.3 Example: Lottery Tickets

Twenty tickets are sold in a lottery, numbered 1 to 20, inclusive. Five tickets are drawn for prizes. Let’s find the probability that two of the five winning tickets are even-numbered.

Since there are 10 even-numbered tickets, there are \(\binom{10}{2} \) sets of two such tickets. Continuing along these lines, we find the desired probability to be.

\[
\frac{\binom{10}{2} \binom{10}{3}}{\binom{20}{5}}
\]

(2.74)

Now let’s find the probability that two of the five winning tickets are in the range 1 to 5, two are in 6 to 10, and one is in 11 to 20.

Picture yourself picking your tickets. Again there are \(\binom{20}{5} \) ways to choose the five tickets. How many of those ways satisfy the stated condition?

Well, first, there are \(\binom{5}{2} \) ways to choose two tickets from the range 1 to 5. Once you’ve done that, there are \(\binom{5}{2} \) ways to choose two tickets from the range 6 to 10, and so on. So, The desired probability is then

\[
\frac{\binom{5}{2} \binom{5}{2} \binom{10}{1}}{\binom{20}{5}}
\]

(2.75)
2.15.4 “Association Rules” in Data Mining

The field of data mining is a branch of computer science, but it is largely an application of various statistical methods to really huge databases.

One of the applications of data mining is called the market basket problem. Here the data consists of records of sales transactions, say of books at Amazon.com. The business’ goal is exemplified by Amazon’s suggestion to customers that “Patrons who bought this book also tended to buy the following books.” The goal of the market basket problem is to sift through sales transaction records to produce association rules, patterns in which sales of some combinations of books imply likely sales of other related books.

The notation for association rules is $A, B \Rightarrow C, D, E$, meaning in the book sales example that customers who bought books A and B also tended to buy books C, D and E. Here A and B are called the antecedents of the rule, and C, D and E are called the consequents. Let’s suppose here that we are only interested in rules with a single consequent.

We will present some methods for finding good rules in another chapter, but for now, let’s look at how many possible rules there are. Obviously, it would be impractical to use rules with a large number of antecedents. Suppose the business has a total of 20 products available for sale. What percentage of potential rules have three or fewer antecedents?

For each $k = 1, \ldots, 19$, there are $\binom{20}{k}$ possible sets of k antecedents, and for each such set there are $\binom{20-k}{1}$ possible consequents. The fraction of potential rules using three or fewer antecedents is then

\[
\frac{\sum_{k=1}^{3} \binom{20}{k} \cdot \binom{20-k}{1}}{\sum_{k=1}^{19} \binom{20}{k} \cdot \binom{20-k}{1}} = \frac{23180}{10485740} = 0.0022
\]

So, this is just scratching the surface. And note that with only 20 products, there are already over ten million possible rules. With 50 products, this number is 2.81×10^{16}! Imagine what happens in a case like Amazon, with millions of products. These staggering numbers show what a tremendous challenge data miners face.

9Some customers appreciate such tips, while others view it as insulting or an invasion of privacy, but we’ll not address such issues here.

10In addition, there are serious statistical problems that would arise, to be discussed in another chapter.

11Be sure to note that this is also a probability, namely the probability that a randomly chosen rule will have three or fewer antecedents.
2.15.5 Multinomial Coefficients

Question: We have a group consisting of 6 Democrats, 5 Republicans and 2 Independents, who will participate in a panel discussion. They will be sitting at a long table. How many seating arrangements are possible, with regard to political affiliation? (So we do not care, for instance, about permuting the individual Democrats within the seats assigned to Democrats.)

Well, there are \(\binom{13}{6} \) ways to choose the Democratic seats. Once those are chosen, there are \(\binom{7}{5} \) ways to choose the Republican seats. The Independent seats are then already determined, i.e. there will be only way at that point, but let’s write it as \(\binom{2}{2} \). Thus the total number of seating arrangements is

\[
\frac{13!}{6!7!} \cdot \frac{7!}{5!2!} \cdot \frac{2!}{2!0!}
\]

That reduces to

\[
\frac{13!}{6!5!2!}
\]

The same reasoning yields the following:

Multinomial Coefficients: Suppose we have \(c \) objects and \(r \) bins. Then the number of ways to choose \(c_1 \) of them to put in bin 1, \(c_2 \) of them to put in bin 2, ..., and \(c_r \) of them to put in bin \(r \) is

\[
\frac{c!}{c_1! ... c_r!}, \quad c_1 + ... + c_r = c
\]

Of course, the “bins” may just be metaphorical. In the political party example above, the “bins” were political parties, and “objects” were seats.

2.15.6 Example: Probability of Getting Four Aces in a Bridge Hand

A standard deck of 52 cards is dealt to four players, 13 cards each. One of the players is Millie. What is the probability that Millie is dealt all four aces?

Well, there are

\[
\frac{52!}{13!13!13!13!}
\]
possible deals. (the “objects” are the 52 cards, and the “bins” are the 4 players.) The number of
deals in which Millie holds all four aces is the same as the number of deals of 48 cards, 9 of which
go to Millie and 13 each to the other three players, i.e.

\[
\frac{48!}{13!\cdot 13!\cdot 13!\cdot 9!}
\] (2.81)

Thus the desired probability is

\[
\frac{\frac{48!}{13!\cdot 13!\cdot 13!\cdot 9!}}{\frac{52!}{13!\cdot 13!\cdot 13!\cdot 13!}} = 0.00264
\] (2.82)

Exercises

1. This problem concerns the ALOHA network model of Section 2.1. Feel free to use (but cite)
computations already in the example.

 (a) \(P(X_1 = 2 \text{ and } X_2 = 1) \), for the same values of \(p \) and \(q \) in the examples.

 (b) Find \(P(X_2 = 0) \).

 (c) Find \((P(X_1 = 1|X_2 = 1) \).

2. Urn I contains three blue marbles and three yellow ones, while Urn II contains five and seven
of these colors. We draw a marble at random from Urn I and place it in Urn II. We then draw a
marble at random from Urn II.

 (a) Find \(P(\text{second marble drawn is blue}) \).

 (b) Find \(P(\text{first marble drawn is blue|second marble drawn is blue}) \).

3. Consider the example of association rules in Section 2.15.4. How many two-antecedent, two-
consequent rules are possible from 20 items? Express your answer in terms of combinatorial (“n
choose k”) symbols.

4. Suppose 20% of all C++ programs have at least one major bug. Out of five programs, what is
the probability that exactly two of them have a major bug?

5. Assume the ALOHA network model as in Section 2.1 i.e. \(m = 2 \) and \(X_0 = 2 \), but with general
values for \(p \) and \(q \). Find the probability that a new message is created during epoch 2.
6. You bought three tickets in a lottery, for which 60 tickets were sold in all. There will be five prizes given. Find the probability that you win at least one prize, and the probability that you win exactly one prize.

7. Two five-person committees are to be formed from your group of 20 people. In order to foster communication, we set a requirement that the two committees have the same chair but no other overlap. Find the probability that you and your friend are both chosen for some committee.

8. Consider a device that lasts either one, two or three months, with probabilities 0.1, 0.7 and 0.2, respectively. We carry one spare. Find the probability that we have some device still working just before four months have elapsed.

9. A building has six floors, and is served by two freight elevators, named Mike and Ike. The destination floor of any order of freight is equally likely to be any of floors 2 through 6. Once an elevator reaches any of these floors, it stays there until summoned. When an order arrives to the building, whichever elevator is currently closer to floor 1 will be summoned, with elevator Ike being the one summoned in the case in which they are both on the same floor.

Find the probability that after the summons, elevator Mike is on floor 3. Assume that only one order of freight can fit in an elevator at a time. Also, suppose the average time between arrivals of freight to the building is much larger than the time for an elevator to travel between the bottom and top floors; this assumption allows us to neglect travel time.

10. Without resorting to using the fact that \(\binom{n}{k} = n!/[k!(n-k)!] \), find \(c \) and \(d \) such that

\[
\binom{n}{k} = \binom{n-1}{k} + \binom{c}{d}
\] (2.83)

11. Consider the ALOHA example from the text, for general \(p \) and \(q \), and suppose that \(X_0 = 0 \), i.e. there are no active nodes at the beginning of our observation period. Find \(P(X_1 = 0) \).

12. Consider a three-sided die, as opposed to the standard six-sided type. The die is cylinder-shaped, and gives equal probabilities to one, two and three dots. The game is to keep rolling the die until we get a total of at least 3. Let \(N \) denote the number of times we roll the die. For example, if we get a 3 on the first roll, \(N = 1 \). If we get a 2 on the first roll, then \(N \) will be 2 no matter what we get the second time. The largest \(N \) can be is 3. The rule is that one wins if one’s final total is exactly 3.

(a) Find the probability of winning.

(b) Find \(P(\text{our first roll was a 1} \mid \text{we won}) \).

(c) How could we construct such a die?
13. Consider the ALOHA simulation example in Section 2.14.6.

(a) Suppose we wish to find \(P(X_2 = 1 | X_1 = 1) \) instead of \(P(X_2 = 2 | X_1 = 1) \). What line(s) would we change, and how would we change them?

(b) In which line(s) are we in essence checking for a collision?

14. Jack and Jill keep rolling a four-sided and a three-sided die, respectively. The first player to get the face having just one dot wins, except that if they both get a 1, it’s a tie, and play continues. Let \(N \) denote the number of turns needed. Find the following:

(a) \(P(N = 1) \), \(P(N = 2) \).

(b) \(P(\text{the first turn resulted in a tie} | N = 2) \)

15. In the ALOHA network example in Sec. 1.1, suppose \(X_0 = 1 \), i.e. we start out with just one active node. Find \(P(X_2 = 0) \), as an expression in \(p \) and \(q \).

16. Suppose a box contains two pennies, three nickels and five dimes. During transport, two coins fall out, unseen by the bearer. Assume each type of coin is equally likely to fall out. Find: \(P(\text{at least } \$0.10 \text{ worth of money is lost}) \); \(P(\text{both lost coins are of the same denomination}) \)

17. Suppose we have the track record of a certain weather forecaster. Of the days for which he predicts rain, a fraction \(c \) actually do have rain. Among days for which he predicts no rain, he is correct a fraction \(d \) of the time. Among all days, he predicts rain \(g \) of the time, and predicts no rain \(1-g \) of the time. Find \(P(\text{he predicted rain} | \text{it does rain}) \), \(P(\text{he predicts wrong}) \) and \(P(\text{it does rain — he was wrong}) \). Write R simulation code to verify. (Partial answer: For the case \(c = 0.8 \), \(d = 0.6 \) and \(g = 0.2 \), \(P(\text{he predicted rain} | \text{it does rain}) = 1/3. \))

18. The Game of Pit is really fun because there are no turns. People shout out bids at random, chaotically. Here is a slightly simplified version of the game:

There are four suits, Wheat, Barley, Corn and Rye, with nine cards each, 36 cards in all. There are four players. At the opening, the cards are all dealt out, nine to each player. The players hide their cards from each other’s sight.

Players then start trading. In computer science terms, trading is asynchronous, no turns; a player can bid at any time. The only rule is that a trade must be homogeneous in suit, e.g. all Rye. (The player trading Rye need not trade all the Rye he has, though.) The player bids by shouting out the number she wants to trade, say “2!” If another player wants to trade two cards (again, homogeneous in suit), she yells out, “OK, 2!” and they trade. When one player acquires all nine of a suit, he shouts “Corner!”
Consider the situation at the time the cards have just been dealt. Imagine that you are one of the players, and Jane is another. Find the following probabilities:

(a) $P(\text{you have no Wheats})$.
(b) $P(\text{you have seven Wheats})$.
(c) $P(\text{Jane has two Wheats — you have seven Wheats})$.
(d) $P(\text{you have a corner})$ (note: someone else might too; whoever shouts it out first wins).

19. In the board game example in Section 2.11 suppose that the telephone report is that A ended up at square 1 after his first turn. Find the probability that he got a bonus.

20. Consider the bus ridership example in Section 2.12 of the text. Suppose the bus is initially empty, and let X_n denote the number of passengers on the bus just after it has left the n^{th} stop, $n = 1, 2, \ldots$. Find the following:

(a) $P(X_2 = 1)$
(b) $P(\text{at least one person boarded the bus at the first stop} \mid X_2 = 1)$

21. Suppose committees of sizes 3, 4 and 5 are to be chosen at random from 20 people, among whom are persons A and B. Find the probability that A and B are on the same committee.

22. Consider the ALOHA simulation in Section 28.

(a) On what line do we simulate the possible creation of a new message?
(b) Change line 10 so that it uses $\text{sample}()$ instead of $\text{runif}()$.
Chapter 3

Discrete Random Variables

This chapter will introduce entities called *discrete random variables*. Some properties will be derived for means of such variables, with most of these properties actually holding for random variables in general. Well, all of that seems abstract to you at this point, so let’s get started.

3.1 Random Variables

Definition 3 *A random variable is a numerical outcome of our experiment.*

For instance, consider our old example in which we roll two dice, with X and Y denoting the number of dots we get on the blue and yellow dice, respectively. Then X and Y are random variables, as they are numerical outcomes of the experiment. Moreover, X+Y, 2XY, \(\sin(XY)\) and so on are also random variables.

In a more mathematical formulation, with a formal sample space defined, a random variable would be defined to be a real-valued function whose domain is the sample space.

3.2 Discrete Random Variables

In our dice example, the random variable X could take on six values in the set \{1,2,3,4,5,6\}. We say that the **support** of X is \{1,2,3,4,5,6\}. This is a finite set.

In the ALOHA example, \(X_1\) and \(X_2\) each have support \{0,1,2\}, again a finite set.\(^1\)

\(^1\)We could even say that \(X_1\) takes on only values in the set \{1,2\}, but if we were to look at many epochs rather than just two, it would be easier not to make an exceptional case.
CHAPTER 3. DISCRETE RANDOM VARIABLES

Now think of another experiment, in which we toss a coin until we get heads. Let N be the number of tosses needed. Then the support of N is the set \{1,2,3,...\} This is a countably infinite set.\footnote{This is a concept from the fundamental theory of mathematics. Roughly speaking, it means that the set can be assigned an integer labeling, i.e. item number 1, item number 2 and so on. The set of positive even numbers is countable, as we can say 2 is item number 1, 4 is item number 2 and so on. It can be shown that even the set of all rational numbers is countable.}

Now think of one more experiment, in which we throw a dart at the interval (0,1), and assume that the place that is hit, R, can take on any of the values between 0 and 1. Here the support is an uncountably infinite set.

We say that X, X_1, X_2 and N are discrete random variables, while R is continuous. We’ll discuss continuous random variables in a later chapter.

3.3 Independent Random Variables

We already have a definition for the independence of events; what about independence of random variables? Here it is:

Random variables X and Y are said to be independent if for any sets I and J, the events \{X is in I\} and \{Y is in J\} are independent, i.e. \[P(X \text{ is in } I \text{ and } Y \text{ is in } J) = P(X \text{ is in } I) \cdot P(Y \text{ is in } J).\]

Sounds innocuous, but the notion of independent random variables is absolutely central to the field of probability and statistics, and will pervade this entire book.

3.4 Example: The Monty Hall Problem

This is an example of how the use of random variables in “translating” a probability problem to mathematical terms can simplify and clarify one’s thinking. Imagine, this simple device of introducing named random variables into our analysis makes a problem that has vexed famous mathematicians quite easy to solve!

The Monty Hall Problem, which gets its name from a popular TV game show host, involves a contestant choosing one of three doors. Behind one door is a new automobile, while the other two doors lead to goats. The contestant chooses a door and receives the prize behind the door.

The host knows which door leads to the car. To make things interesting, after the contestant chooses, the host will open one of the other doors not chosen, showing that it leads to a goat.
Should the contestant now change her choice to the remaining door, i.e. the one that she didn’t choose and the host didn’t open?

Many people answer No, reasoning that the two doors not opened yet each have probability 1/2 of leading to the car. But the correct answer is actually that the remaining door (not chosen by the contestant and not opened by the host) has probability 2/3, and thus the contestant should switch to it. Let’s see why.

Let

- $C =$ contestant’s choice of door (1, 2 or 3)
- $H =$ host’s choice of door (1, 2 or 3)
- $A =$ door that leads to the automobile

We can make things more concrete by considering the case $C = 1, H = 2$. The mathematical formulation of the problem is then to find

$$P(A = 3 \mid C = 1, H = 2) = \frac{P(A = 3, C = 1, H = 2)}{P(C = 1, H = 2)} \quad (3.1)$$

The key point, commonly missed even by mathematically sophisticated people, is the role of the host. Write the numerator above as

$$P(A = 3, C = 1) P(H = 2 \mid A = 3, C = 1) \quad (3.2)$$

Since C and A are independent random variables, the value of the first factor in (3.2) is

$$\frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9} \quad (3.3)$$

What about the second factor? Remember, the host knows that $A = 3$, and since the contestant has chosen door 1, the host will open the only remaining door that conceals a goat, i.e. door 2. In other words,

$$P(H = 2 \mid A = 3, C = 1) = 1 \quad (3.4)$$

On the other hand, if say $A = 1$, the host would randomly choose between doors 2 and 3, so that

$$P(H = 2 \mid A = 1, C = 1) = \frac{1}{2} \quad (3.5)$$
It is left to the reader to complete the analysis, calculating the denominator of (3.1), and then showing in the end that

$$P(A = 3 \mid C = 1, H = 2) = \frac{2}{3}$$

(3.6)

According to the “Monty Hall problem” entry in Wikipedia, even Paul Erdős, one of the most famous mathematicians in history, gave the wrong answer to this problem. Presumably he would have avoided this by writing out his analysis in terms of random variables, as above, rather than say, a wordy, imprecise and ultimately wrong solution.

3.5 Expected Value

3.5.1 Generality—Not Just for Discrete Random Variables

The concepts and properties introduced in this section form the very core of probability and statistics. **Except for some specific calculations, these apply to both discrete and continuous random variables.**

The properties developed for *variance*, defined later in this chapter, also hold for both discrete and continuous random variables.

3.5.1.1 What Is It?

The term “expected value” is one of the many misnomers one encounters in tech circles. The expected value is actually not something we “expect” to occur. On the contrary, it’s often pretty unlikely.

For instance, let H denote the number of heads we get in tossing a coin 1000 times. The expected value, you’ll see later, is 500. This is not surprising, given the symmetry of the situation, but $P(H = 500)$ turns out to be about 0.025. In other words, we certainly should not “expect” H to be 500.

Of course, even worse is the example of the number of dots that come up when we roll a fair die. The expected value is 3.5, a value which not only rarely comes up, but in fact never does.

In spite of being misnamed, expected value plays an absolutely central role in probability and statistics.
3.5. **EXPECTED VALUE**

3.5.2 **Definition**

Consider a repeatable experiment with random variable \(X \). We say that the **expected value** of \(X \) is the long-run average value of \(X \), as we repeat the experiment indefinitely.

In our notebook, there will be a column for \(X \). Let \(X_i \) denote the value of \(X \) in the \(i^{th} \) row of the notebook. Then the long-run average of \(X \) is

\[
\lim_{n \to \infty} \frac{X_1 + \ldots + X_n}{n}
\]

(3.7)

Suppose for instance our experiment is to toss 10 coins. Let \(X \) denote the number of heads we get out of 10. We might get four heads in the first repetition of the experiment, i.e. \(X_1 = 4 \), seven heads in the second repetition, so \(X_2 = 7 \), and so on. Intuitively, the long-run average value of \(X \) will be 5. (This will be proven below.) Thus we say that the expected value of \(X \) is 5, and write \(\text{E}(X) = 5 \).

3.5.3 **Existence of the Expected Value**

The above definition puts the cart before the horse, as it presumes that the limit exists. Theoretically speaking, this might not be the case. However, it does exist if the \(X_i \) have finite lower and upper bounds, which is always true in the real world. For instance, no person has height of 50 feet, say, and no one has negative height either.

For the remainder of this book, we will usually speak of “the” expected value of a random variable without adding the qualifier “if it exists.”

3.5.4 **Computation and Properties of Expected Value**

Continuing the coin toss example above, let \(K_{in} \) be the number of times the value \(i \) occurs among \(X_1, \ldots, X_n \), \(i = 0, \ldots, 10 \), \(n = 1, 2, 3, \ldots \) For instance, \(K_{4,20} \) is the number of times we get four heads, in the first 20 repetitions of our experiment. Then

\[
\text{E}(X) = \lim_{n \to \infty} \frac{X_1 + \ldots + X_n}{n}
\]

(3.8)

\[
= \lim_{n \to \infty} \frac{0 \cdot K_{0,n} + 1 \cdot K_{1,n} + 2 \cdot K_{2,n} + \ldots + 10 \cdot K_{10,n}}{n}
\]

(3.9)

\[
= \sum_{i=0}^{10} i \cdot \lim_{n \to \infty} \frac{K_{in}}{n}
\]

(3.10)
CHAPTER 3. DISCRETE RANDOM VARIABLES

To understand that second equation, suppose when $n = 5$ we have 2, 3, 1, 2 and 1 for our values of X_1, X_2, X_3, X_4, X_5. Then we can group the 2s together and group the 1s together, and write

$$2 + 3 + 1 + 2 + 1 = 2 \times 2 + 2 \times 1 + 1 \times 3$$ \hspace{1cm} (3.11)

But $\lim_{n \to \infty} \frac{K_{in}}{n}$ is the long-run fraction of the time that $X = i$. In other words, it’s $P(X = i)!$ So,

$$E(X) = \sum_{i=0}^{10} i \cdot P(X = i)$$ \hspace{1cm} (3.12)

So in general we have:

Property A:

The expected value of a discrete random variable X which takes values in the set A is

$$E(X) = \sum_{c \in A} c \cdot P(X = c)$$ \hspace{1cm} (3.13)

Note that (3.13) is the formula we’ll use. The preceding equations were derivation, to motivate the formula. Note too that (3.13) is not the definition of expected value; that was in (3.7). It is quite important to distinguish between all of these, in terms of goals.³

By the way, note the word *discrete* above. For the case of continuous random variables, the sum in (3.13) will become an integral.

It will be shown in Section 4.3 that in our example above in which X is the number of heads we get in 10 tosses of a coin,

$$P(X = i) = {10 \choose i} 0.5^i (1 - 0.5)^{10-i}$$ \hspace{1cm} (3.14)

So

$$E(X) = \sum_{i=0}^{10} i \left({10 \choose i} 0.5^i (1 - 0.5)^{10-i} \right)$$ \hspace{1cm} (3.15)

It turns out that $E(X) = 5$.

³The matter is made a little more confusing by the fact that many books do in fact treat (3.13) as the definition, with (3.7) being the consequence.
For X in our dice example,

$$E(X) = \sum_{c=1}^{6} c \cdot \frac{1}{6} = 3.5$$ \hspace{1cm} (3.16)$$

It is customary to use capital letters for random variables, e.g. X here, and lower-case letters for values taken on by a random variable, e.g. c here. Please adhere to this convention.

By the way, it is also customary to write EX instead of $E(X)$, whenever removal of the parentheses does not cause any ambiguity. An example in which it would produce ambiguity is $E(U^2)$. The expression EU^2 might be taken to mean either $E(U^2)$, which is what we want, or $(EU)^2$, which is not what we want.

For $S = X+Y$ in the dice example,

$$E(S) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + 4 \cdot \frac{3}{36} + ... + 12 \cdot \frac{1}{36} = 7$$ \hspace{1cm} (3.17)$$

In the case of N, tossing a coin until we get a head:

$$E(N) = \sum_{c=1}^{\infty} c \cdot \frac{1}{2^c} = 2$$ \hspace{1cm} (3.18)$$

(We will not go into the details here concerning how the sum of this particular infinite series is computed. See Section 4.2.)

Some people like to think of $E(X)$ using a center of gravity analogy. Forget that analogy! Think notebook! **Intuitively, $E(X)$ is the long-run average value of X among all the lines of the notebook.** So for instance in our dice example, $E(X) = 3.5$, where X was the number of dots on the blue die, means that if we do the experiment thousands of times, with thousands of lines in our notebook, the average value of X in those lines will be about 3.5. With $S = X+Y$, $E(S) = 7$. This means that in the long-run average in column S in Table 3.1 is 7.

Of course, by symmetry, $E(Y)$ will be 3.5 too, where Y is the number of dots showing on the yellow die. That means we wasted our time calculating in Equation (3.17); we should have realized beforehand that $E(S)$ is $2 \times 3.5 = 7$.

In other words:

Property B:

For any random variables U and V, the expected value of a new random variable $D = U+V$ is the
CHAPTER 3. DISCRETE RANDOM VARIABLES

<table>
<thead>
<tr>
<th>notebook line</th>
<th>outcome</th>
<th>blue+yellow = 6?</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>blue 2, yellow 6</td>
<td>No</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>blue 3, yellow 1</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>blue 1, yellow 1</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>blue 4, yellow 2</td>
<td>Yes</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>blue 1, yellow 1</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>blue 3, yellow 4</td>
<td>No</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>blue 5, yellow 1</td>
<td>Yes</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>blue 3, yellow 6</td>
<td>No</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>blue 2, yellow 5</td>
<td>No</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 3.1: Expanded Notebook for the Dice Problem

sum of the expected values of U and V:

$$E(U + V) = E(U) + E(V) \quad (3.19)$$

Note carefully that U and V do NOT need to be independent random variables for this relation to hold. You should convince yourself of this fact intuitively by thinking about the notebook notion. Say we look at 10000 lines of the notebook, which has columns for the values of U, V and $U+V$. It makes no difference whether we average $U+V$ in that column, or average U and V in their columns and then add—either way, we’ll get the same result.

While you are at it, use the notebook notion to convince yourself of the following:

Properties C:

- For any random variable U and constant a, then

$$E(aU) = aEU \quad (3.20)$$

- For random variables X and Y—not necessarily independent—and constants a and b, we have

$$E(aX + bY) = aEX + bEY \quad (3.21)$$

This follows by taking $U = aX$ and $V = bY$ in (3.19), and then using (3.20).
3.5. EXPECTED VALUE

By induction, for constants a_1, \ldots, a_k and random variables X_1, \ldots, X_k, form the new random variable $a_1X_1 + \ldots + a_kX_k$. Then

$$E(a_1X_1 + \ldots + a_nX_n) = a_1EX_1 + \ldots + a_nEX_n \tag{3.22}$$

- For any constant b, we have

$$E(b) = b \tag{3.23}$$

For instance, say U is temperature in Celsius. Then the temperature in Fahrenheit is $W = \frac{9}{5}U + 32$. So, W is a new random variable, and we can get its expected value from that of U by using (3.21) with $a = \frac{9}{5}$ and $b = 32$.

If you combine (3.23) with (3.21), we have an important special case:

$$E(aX + b) = aEX + b \tag{3.24}$$

Another important point:

Property D: If U and V are independent, then

$$E(UV) = EU \cdot EV \tag{3.25}$$

In the dice example, for instance, let D denote the product of the numbers of blue dots and yellow dots, i.e. $D = XY$. Then

$$E(D) = 3.5^2 = 12.25 \tag{3.26}$$

Equation (3.25) doesn’t have an easy “notebook proof.” It is proved in Section ??.

Consider a function $g()$ of one variable, and let $W = g(X)$. W is then a random variable too. Say X has support A, as in (3.13). Then W has support $B = \{g(c) : c \in A\}$. (

For instance, say $g()$ is the squaring function, and X takes on the values -1, 0 and 1, with probability 0.5, 0.4 and 0.1. Then

$$A = \{-1, 0, 1\} \tag{3.27}$$
and

\[B = \{0, 1\} \]
\quad (3.28)

Define

\[A_d = \{c : c \in A, g(c) = d\} \]
\quad (3.29)

In our above squaring example, we will have

\[A_0 = \{0\}, \quad A_1 = \{-1, 1\} \]
\quad (3.30)

Then

\[P(W = d) = P(X \in A_d) \]
\quad (3.31)

so

\[
E[g(X)] = E(W) \\
= \sum_{d \in B} d P(W = d) \\
= \sum_{d \in B} \sum_{c \in A_d} P(X = c) \\
= \sum_{c \in A} g(c) P(X = c)
\]
\quad (3.32-3.35)

(Going from the next-to-last equation here to the last one is rather tricky. Work through for the case of our squaring function example above in order to see why the final equation does follow.

Property E:

If \(E[g(X)] \) exists, then

\[
E[g(X)] = \sum_{c \in A} g(c) \cdot P(X = c)
\]
\quad (3.36)

where the sum ranges over all values \(c \) that can be taken on by \(X \).
For example, suppose for some odd reason we are interested in finding $E(\sqrt{X})$, where X is the number of dots we get when we roll one die. Let $W = \sqrt{X}$. Then W is another random variable, and is discrete, since it takes on only a finite number of values. (The fact that most of the values are not integers is irrelevant.) We want to find EW.

Well, W is a function of X, with $g(t) = \sqrt{t}$. So, (3.36) tells us to make a list of values in the support of W, i.e. $\sqrt{1}, \sqrt{2}, ..., \sqrt{6}$, and a list of the corresponding probabilities for X, which are all $\frac{1}{6}$. Substituting into (3.36), we find that

$$E(\sqrt{X}) = \frac{1}{6} \sum_{i=1}^{6} \sqrt{i}$$

What about a function of several variables? Say for instance you are finding $E(UV)$, where U has support, say, 1,2 and V has support 5,12,13. In order to find $E(UV)$, you need to know the support of UV, recognizing that it, the product UV, is a new random variable in its own right. Let’s call it W. Then in this little example, W has support 5,12,13,10,24,26. Then compute

$$5P(W = 5) + 12P(W = 12) + ... = 5P(U = 1, V = 5) + 12P(U = 1, V = 12) + ...$$

Note: Equation (3.36) will be one of the most heavily used formulas in this book. Make sure you keep it in mind.

3.5.5 “Mailing Tubes”

The properties of expected value discussed above are key to the entire remainder of this book. You should notice immediately when you are in a setting in which they are applicable. For instance, if you see the expected value of the sum of two random variables, you should instinctively think of (3.19) right away.

As discussed in Section 2.4, these properties are “mailing tubes.” For instance, (3.19) is a “mailing tube”—make a mental note to yourself saying, “If I ever need to find the expected value of the sum of two random variables, I can use (3.19).” Similarly, (3.36) is a mailing tube; tell yourself, “If I ever see a new random variable that is a function of one whose probabilities I already know, I can find the expected value of the new random variable using (3.36).”

You will encounter “mailing tubes” throughout this book. For instance, (3.49) below is a very important “mailing tube.” Constantly remind yourself—“Remember the ‘mailing tubes’!”
3.5.6 Casinos, Insurance Companies and “Sum Users,” Compared to Others

The expected value is intended as a measure of central tendency (also called a measure of location) i.e. as some sort of definition of the probabilistic “middle” in the range of a random variable. There are various other such measures one can use, such as the median, the halfway point of a distribution, and today they are recognized as being superior to the mean in certain senses. For historical reasons, the mean plays an absolutely central role in probability and statistics. Yet one should understand its limitations. (This discussion will be general, not limited to discrete random variables.)

(Warning: The concept of the mean is likely so ingrained in your consciousness that you simply take it for granted that you know what the mean means, no pun intended. But try to take a step back, and think of the mean afresh in what follows.)

First, the term expected value itself is a misnomer. We do not expect the number of dots D to be 3.5 in the die example in Section 3.5.1.1; in fact, it is impossible for W to take on that value.

Second, the expected value is what we call the mean in everyday life. And the mean is terribly overused. Consider, for example, an attempt to describe how wealthy (or not) people are in the city of Davis. If suddenly Bill Gates were to move into town, that would skew the value of the mean beyond recognition.

But even without Gates, there is a question as to whether the mean has that much meaning. After all, what is so meaningful about summing our data and dividing by the number of data points? The median has an easy intuitive meaning, but although the mean has familiarity, one would be hard pressed to justify it as a measure of central tendency.

What, for example, does Equation (3.7) mean in the context of people’s heights in Davis? We would sample a person at random and record his/her height as \(X_1\). Then we’d sample another person, to get \(X_2\), and so on. Fine, but in that context, what would (3.7) mean? The answer is, not much. So the significance of the mean height of people in Davis would be hard to explain.

For a casino, though, (3.7) means plenty. Say \(X\) is the amount a gambler wins on a play of a roulette wheel, and suppose (3.7) is equal to $1.88. Then after, say, 1000 plays of the wheel (not necessarily by the same gambler), the casino knows from (3.7) it will have paid out a total of about $1,880. So if the casino charges, say $1.95 per play, it will have made a profit of about $70 over those 1000 plays. It might be a bit more or less than that amount, but the casino can be pretty sure that it will be around $70, and they can plan their business accordingly.

The same principle holds for insurance companies, concerning how much they pay out in claims. With a large number of customers, they know (“expect”!) approximately how much they will pay out, and thus can set their premiums accordingly. Here the mean has a tangible, practical meaning.

The key point in the casino and insurance companies examples is that they are interested in totals,
such as total payouts on a blackjack table over a month’s time, or total insurance claims paid in a year. Another example might be the number of defectives in a batch of computer chips; the manufacturer is interested in the total number of defectives chips produced, say in a month. Since the mean is by definition a total (divided by the number of data points), the mean will be of direct interest to casinos etc.

By contrast, in describing how wealthy people of a town are, the total height of all the residents is not relevant. Similarly, in describing how well students did on an exam, the sum of the scores of all the students doesn’t tell us much. (Unless the professor gets $10 for each point in the exam scores of each of the students!) A better description for heights and exam scores might be the median height or score.

Nevertheless, the mean has certain mathematical properties, such as (3.19), that have allowed the rich development of the fields of probability and statistics over the years. The median, by contrast, does not have nice mathematical properties. In many cases, the mean won’t be too different from the median anyway (barring Bill Gates moving into town), so you might think of the mean as a convenient substitute for the median. The mean has become entrenched in statistics, and we will use it often.

3.6 Variance

As in Section 3.5, the concepts and properties introduced in this section form the very core of probability and statistics. Except for some specific calculations, these apply to both discrete and continuous random variables.

3.6.1 Definition

While the expected value tells us the average value a random variable takes on, we also need a measure of the random variable’s variability—how much does it wander from one line of the notebook to another? In other words, we want a measure of dispersion. The classical measure is variance, defined to be the mean squared difference between a random variable and its mean:

Definition 4 For a random variable U for which the expected values written below exist, the variance of U is defined to be

$$Var(U) = E[(U - EU)^2] \quad (3.38)$$
CHAPTER 3. DISCRETE RANDOM VARIABLES

For X in the die example, this would be

$$Var(X) = E[(X - 3.5)^2]$$ \hspace{1cm} (3.39)

Remember what this means: We have a random variable X, and we’re creating a new random variable, $W = (X - 3.5)^2$, which is a function of the old one. We are then finding the expected value of that new random variable W.

In the notebook view, $E[(X - 3.5)^2]$ is the long-run average of the W column:

<table>
<thead>
<tr>
<th>line</th>
<th>X</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2.25</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2.25</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6.25</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2.25</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6.25</td>
</tr>
</tbody>
</table>

To evaluate this, apply (3.36) with $g(c) = (c - 3.5)^2$:

$$Var(X) = \sum_{c=1}^{6} (c - 3.5)^2 \cdot \frac{1}{6} = 2.92$$ \hspace{1cm} (3.40)

You can see that variance does indeed give us a measure of dispersion. In the expression $Var(U) = E[(U - EU)^2]$, if the values of U are mostly clustered near its mean, then $(U - EU)^2$ will usually be small, and thus the variance of U will be small; if there is wide variation in U, the variance will be large.

Property F:

$$Var(U) = E(U^2) - (EU)^2$$ \hspace{1cm} (3.41)

The term $E(U^2)$ is again evaluated using (3.36).

Thus for example, if X is the number of dots which come up when we roll a die. Then, from (3.41),

$$Var(X) = E(X^2) - (EX)^2$$ \hspace{1cm} (3.42)
3.6. VARIANCE

Let’s find that first term (we already know the second is 3.5^2). From (3.36),

$$E(X^2) = \sum_{i=1}^{6} i^2 \cdot \frac{1}{6} = \frac{91}{6} \quad (3.43)$$

Thus $Var(X) = E(X^2) - (EX)^2 = \frac{91}{6} - 3.5^2$

Remember, though, that (3.41) is a shortcut formula for finding the variance, not the definition of variance.

Below is the derivation of (3.41). Keep in mind that EU is a constant.

$$Var(U) = E[(U - EU)^2] \quad (3.44)$$

$$= E[U^2 - 2EU \cdot U + (EU)^2] \quad (3.45)$$

$$= E(U^2) + E(-2EU \cdot U) + E[(EU)^2] \quad (3.46)$$

$$= E(U^2) - 2EU \cdot EU + (EU)^2 \quad (3.47)$$

$$= E(U^2) - (EU)^2 \quad (3.48)$$

An important behavior of variance is:

Property G:

$$Var(cU) = c^2Var(U) \quad (3.49)$$

for any random variable U and constant c. It should make sense to you: If we multiply a random variable by 5, say, then its average squared distance to its mean should increase by a factor of 25.

Let’s prove (3.49). Define $V = cU$. Then

$$Var(V) = E[(V - EV)^2] \quad (3.50)$$

$$= E\{[cU - E(cU)]^2\} \quad (3.51)$$

$$= E\{c^2U - cEU\}^2 \quad (3.52)$$

$$= c^2E\{(U - EU)^2\} \quad (3.53)$$

$$= c^2Var(U) \quad (3.54)$$

$$= c^2Var(U) \quad (3.55)$$

Shifting data over by a constant does not change the amount of variation in them:
CHAPTER 3. DISCRETE RANDOM VARIABLES

Property H:

\[\text{Var}(U + d) = \text{Var}(U) \quad (3.56) \]

for any constant \(d \).

Intuitively, the variance of a constant is 0—after all, it never varies! You can show this formally using (3.41):

\[\text{Var}(c) = E(c^2) - [E(c)]^2 = c^2 - c^2 = 0 \quad (3.57) \]

The square root of the variance is called the standard deviation.

Again, we use variance as our main measure of dispersion for historical and mathematical reasons, not because it’s the most meaningful measure. The squaring in the definition of variance produces some distortion, by exaggerating the importance of the larger differences. It would be more natural to use the mean absolute deviation (MAD), \(E(|U - EU|) \). However, this is less tractable mathematically, so the statistical pioneers chose to use the mean squared difference, which lends itself to lots of powerful and beautiful math, in which the Pythagorean Theorem pops up in abstract vector spaces. (See Section ?? for details.)

As with expected values, the properties of variance discussed above, and also in Section 16.1.1 below, are key to the entire remainder of this book. You should notice immediately when you are in a setting in which they are applicable. For instance, if you see the variance of the sum of two random variables, you should instinctively think of (3.75) right away, and check whether they are independent.

3.6.2 More Practice with the Properties of Variance

Suppose \(X \) and \(Y \) are independent random variables, with \(EX = 1 \), \(EY = 2 \), \(\text{Var}(X) = 3 \) and \(\text{Var}(Y) = 4 \). Let’s find \(\text{Var}(XY) \). (The reader should make sure to supply the reasons for each step, citing equation numbers from the material above.)

\[
\text{Var}(XY) = E(X^2Y^2) - [E(XY)]^2 \quad (3.58)
\]

\[
= E(X^2)E(Y^2) - (EX \cdot EY)^2 \quad (3.59)
\]

\[
= [\text{Var}(X) + (EX)^2] \cdot [\text{Var}(Y) + (EY)^2] - (EX \cdot EY)^2 \quad (3.60)
\]

\[
= (3 + 1^2)(4 + 2^2) - (1 \cdot 2)^2 \quad (3.61)
\]

\[
= 28 \quad (3.62)
\]
3.6.3 Central Importance of the Concept of Variance

No one needs to be convinced that the mean is a fundamental descriptor of the nature of a random variable. But the variance is of central importance too, and will be used constantly throughout the remainder of this book.

The next section gives a quantitative look at our notion of variance as a measure of dispersion.

3.6.4 Intuition Regarding the Size of Var(X)

A billion here, a billion there, pretty soon, you’re talking real money—attributed to the late Senator Everitt Dirksen, replying to a statement that some federal budget item cost “only” a billion dollars

Recall that the variance of a random variable X is supposed to be a measure of the dispersion of X, meaning the amount that X varies from one instance (one line in our notebook) to the next. But if Var(X) is, say, 2.5, is that a lot of variability or not? We will pursue this question here.

3.6.4.1 Chebychev’s Inequality

This inequality states that for a random variable X with mean μ and variance σ^2,

$$P(|X - \mu| \geq c\sigma) \leq \frac{1}{c^2} \quad (3.63)$$

In other words, X strays more than, say, 3 standard deviations from its mean at most only $1/9$ of the time. This gives some concrete meaning to the concept of variance/standard deviation.

You’ve probably had exams in which the instructor says something like “An A grade is 1.5 standard deviations above the mean.” Here c in (3.63) would be 1.5.

We’ll prove the inequality in Section 3.14.

3.6.4.2 The Coefficient of Variation

Continuing our discussion of the magnitude of a variance, look at our remark following (3.63):

In other words, X does not often stray more than, say, 3 standard deviations from its mean. This gives some concrete meaning to the concept of variance/standard deviation.
Or, think of the price of, say, widgets. If the price hovers around a $1 million, but the variation around that figure is only about a dollar, you’d say there is essentially no variation. But a variation of about a dollar in the price of a hamburger would be a lot.

These considerations suggest that any discussion of the size of \(\text{Var}(X) \) should relate to the size of \(E(X) \). Accordingly, one often looks at the coefficient of variation, defined to be the ratio of the standard deviation to the mean:

\[
\text{coef. of var.} = \frac{\sqrt{\text{Var}(X)}}{E(X)} \tag{3.64}
\]

This is a scale-free measure (e.g. inches divided by inches), and serves as a good way to judge whether a variance is large or not.

3.7 A Useful Fact

For a random variable \(X \), consider the function

\[
g(c) = E[(X - c)^2] \tag{3.65}
\]

Remember, the quantity \(E[(X - c)^2] \) is a number, so \(g(c) \) really is a function, mapping a real number \(c \) to some real output.

We can ask the question, What value of \(c \) minimizes \(g(c) \)? To answer that question, write:

\[
g(c) = E[(X - c)^2] = E(X^2 - 2cX + c^2) = E(X^2) - 2cEX + c^2 \tag{3.66}
\]

where we have used the various properties of expected value derived in recent sections.

To make this concrete, suppose we are guessing people’s weights—without seeing them and without knowing anything about them at all. (This is a somewhat artificial question, but it will become highly practical in Chapter ??.) Since we know nothing at all about these people, we will make the same guess for each of them.

What should that guess-in-common be? Your first inclination would be to guess everyone to be the mean weight of the population. If that value in our target population is, say, 142.8 pounds, then we’ll guess everyone to be that weight. Actually, that guess turns out to be optimal in a certain sense, as follows.
Say X is a person’s weight. It’s a random variable, because these people are showing up at random from the population. Then $X - c$ is our prediction error. How well will do in our predictions? We can’t measure that as

$$E(\text{error})$$

because that quantity is 0! (What mailing tube is at work here?)

A reasonable measure would be

$$E(|X - c|)$$

However, due to tradition, we use

$$E[(X - c)^2]$$

Now differentiate with respect to c, and set the result to 0. Remembering that $E(X^2)$ and EX are constants, we have

$$0 = -2EX + 2c$$

so the minimizing c is $c = EX$!

In other words, the minimum value of $E[(X - c)^2]$ occurs at $c = EX$. Our intuition was right!

Moreover: Plugging $c = EX$ into (3.66) shows that the minimum value of $g(c)$ is $E(X - EX)^2$, which is $\text{Var}(X)$!

In notebook terms, think of guessing many, many people, meaning many lines in the notebook, one per person. Then (3.69) is the long-run average squared error in our guesses, and we find that we minimize that by guessing everyone’s weight to be the population mean weight.

But why look at average squared error? It accentuates the large errors. Instead, we could minimize (3.68). It turns out that the best c here is the population median weight.

3.8 Covariance

This is a topic we’ll cover fully in Chapter [16] but at least introduce here.
A measure of the degree to which U and V vary together is their covariance,

$$\text{Cov}(U,V) = E[(U - EU)(V - EV)]$$ (3.71)

Except for a divisor, this is essentially correlation. If U is usually large (relative to its expectation) at the same time V is small (relative to its expectation), for instance, then you can see that the covariance between them will be negative. On the other hand, if they are usually large together or small together, the covariance will be positive.

For example, suppose U and V are the height and weight, respectively, of a person chosen at random from some population, and think in notebook terms. Each line shows the data for one person, and we’ll have columns for U, V, $U - EU$, $V - EV$ and $(U - EU)(V - EV)$. Then (3.71) is the long-run average of that last column. Will it be positive or negative? Reason as follows:

Think of the lines in the notebook for people who are taller than average, i.e. for whom $U - EU > 0$. Most such people are also heavier than average, i.e. $V - EV > 0$, so that $(U - EU)(V - EV) > 0$. On the other hand, shorter people also tend to be lighter, so most lines with shorter people will have $U - EU < 0$ and $V - EV < 0$—but still $(U - EU)(V - EV) > 0$. In other words, the long-run average of the $(U - EU)(V - EV)$ column will be positive.

The point is that, if two variables are positively related, e.g. height and weight, their covariance should be positive. This is the intuitive underlying defining covariance as in (3.71).

Again, one can use the properties of $E()$ to show that

$$\text{Cov}(U,V) = E(UV) - EU \cdot EV$$ (3.72)

Again, this will be derived fully in Chapter ??, but you think about how to derive it yourself. Just use our old mailing tubes, e.g. $E(X+Y) = EX + EY$, $E(cX)$ for a constant c, etc. Note that EU and EV are constants!

Also

$$\text{Var}(U + V) = \text{Var}(U) + \text{Var}(V) + 2\text{Cov}(U, V)$$ (3.73)

and more generally,

$$\text{Var}(aU + bV) = a^2\text{Var}(U) + b^2\text{Var}(V) + 2ab\text{Cov}(U, V)$$ (3.74)

for any constants a and b.
3.9 INDICATOR RANDOM VARIABLES, AND THEIR MEANS AND VARIANCES

(3.72) imply that Cov(U,V) = 0. In that case,

\[\text{Var}(U + V) = \text{Var}(U) + \text{Var}(V) \] \hspace{1cm} (3.75)

By the way, (3.75) is actually the Pythagorean Theorem in a certain esoteric, infinite-dimensional vector space (related to a similar remark made earlier). This is pursued in Section ?? for the mathematically inclined.

Generalizing (3.74), for constants \(a_1, ..., a_k \) and random variables \(X_1, ..., X_k \), form the new random variable \(a_1X_1 + ... + a_kX_k \). Then

\[\text{Var}(a_1X_1 + ... + a_kX_k) = \sum_{i=1}^{k} a_i^2 \text{Var}(X_i) + 2 \sum_{1 \leq i < j \leq k} a_ia_j \text{Cov}(X_i, X_j) \] \hspace{1cm} (3.76)

If the \(X_i \) are independent, then we have the special case

\[\text{Var}(a_1X_1 + ... + a_kX_k) = \sum_{i=1}^{k} a_i^2 \text{Var}(X_i) \] \hspace{1cm} (3.77)

3.9 Indicator Random Variables, and Their Means and Variances

Definition 5 A random variable that has the value 1 or 0, according to whether a specified event occurs or not is called an **indicator random variable** for that event.

You’ll often see later in this book that the notion of an indicator random variable is a very handy device in certain derivations. But for now, let’s establish its properties in terms of mean and variance.

Handy facts: Suppose \(X \) is an indicator random variable for the event \(A \). Let \(p \) denote \(\text{P}(A) \). Then

\[E(X) = p \] \hspace{1cm} (3.78)

\[\text{Var}(X) = p(1 - p) \] \hspace{1cm} (3.79)
These two facts are easily derived. In the first case we have, using our properties for expected value,

\[EX = 1 \cdot P(X = 1) + 0 \cdot P(X = 0) = P(X = 1) = P(A) = p \] (3.80)

The derivation for Var(X) is similar (use (3.41)).

For example, say Coin A has probability 0.6 of heads, Coin B is fair, and Coin C has probability 0.2 of heads. I toss A once, getting X heads, then toss B once, getting Y heads, then toss C once, getting Z heads. Let W = X + Y + Z, i.e. the total number of heads from the three tosses (W ranges from 0 to 3). Let’s find P(W = 1) and Var(W).

The first one uses old methods:

\[P(W = 1) = P(X = 1 \text{ and } Y = 0 \text{ and } Z = 0 \text{ or } ...) \] (3.81)

\[= 0.6 \cdot 0.5 \cdot 0.8 + 0.4 \cdot 0.5 \cdot 0.8 + 0.4 \cdot 0.5 \cdot 0.2 \] (3.82)

For Var(W), let’s use what we just learned about indicator random variables; each of X, Y and Z are such variables. Var(W) = Var(X) + Var(Y) + Var(Z), by independence and (3.75). Since X is an indicator random variable, \(Var(X) = 0.6 \cdot 0.4 \), etc. The answer is then

\[0.6 \cdot 0.4 + 0.5 \cdot 0.5 + 0.2 \cdot 0.8 \] (3.83)

3.9.1 Example: Return Time for Library Books

Suppose at some public library, patrons return books exactly 7 days after borrowing them, never early or late. However, they are allowed to return their books to another branch, rather than the branch where they borrowed their books. In that situation, it takes 9 days for a book to return to its proper library, as opposed to the normal 7. Suppose 50% of patrons return their books to a “foreign” library. Find Var(T), where T is the time, either 7 or 9 days, for a book to come back to its proper location.

Note that

\[T = 7 + 2I, \] (3.84)

where I is an indicator random variable for the event that the book is returned to a “foreign”
branch. Then

\[Var(T) = Var(T + 2I) = 4Var(I) = 4 \cdot 0.5(1 - 0.5) \quad (3.85) \]

Now let’s look at a somewhat more general model. Here we will assume that borrowers return books after 4, 5, 6 or 7 days, with probabilities 0.1, 0.2, 0.3, 0.4, respectively. As before, 50% of patrons return their books to a “foreign” branch, resulting in an extra 2-day delay before the book arrives back to its proper location. The library is open 7 days a week.

Suppose you wish to borrow a certain book, and inquire at the library near the close of business on Monday. Assume too that no one else is waiting for the book. You are told that it had been checked out the previous Thursday. Find the probability that you will need to wait until Wednesday evening to get the book. (You check every evening.)

Let B denote the time needed for the book to arrive back at its home branch, and define I as before. Then

\[P(B = 6 | B > 4) = \frac{P(B = 6 \text{ and } B > 4)}{P(B > 4)} \quad (3.86) \]

\[= \frac{P(B = 6)}{P(B > 4)} \quad (3.87) \]

\[= \frac{P(B = 6 \text{ and } I = 0 \text{ or } B = 6 \text{ and } I = 1)}{1 - P(B = 4)} \quad (3.88) \]

\[= \frac{0.5 \cdot 0.3 + 0.5 \cdot 0.1}{1 - 0.5 \cdot 0.1} \quad (3.89) \]

\[= \frac{4}{19} \quad (3.90) \]

Here is a simulation check:

```r
libsim <- function(nreps) {
    # patron return time
    prt <- sample(c(4, 5, 6, 7), nreps, replace=T, prob=c(0.1, 0.2, 0.3, 0.4))
    # indicator for foreign branch
    i <- sample(c(0, 1), nreps, replace=T)
    b <- prt + 2*i
    x <- cbind(prt, i, b)
    # look only at the relevant notebook lines
    bgt4 <- x[b > 4,]
    # among those lines, what proportion have B = 6?
}
```
3.9.2 Example: Indicator Variables in a Committee Problem

A committee of four people is drawn at random from a set of six men and three women. Suppose we are concerned that there may be quite a gender imbalance in the membership of the committee. Toward that end, let \(M \) and \(W \) denote the numbers of men and women in our committee, and let \(D = M - W \). Let’s find \(E(D) \), in two different ways.

\(D \) has support consisting of the values 4-0, 3-1, 2-2 and 1-3, i.e. 4, 2, 0 and -2. So from (3.13)

\[
E(D) = -2 \cdot P(D = -2) + 0 \cdot P(D = 0) + 2 \cdot P(D = 2) + 4 \cdot P(D = 4) \tag{3.91}
\]

Now, using reasoning along the lines in Section 2.15, we have

\[
P(D = -2) = P(M = 1 \text{ and } W = 3) = \binom{6}{1} \binom{3}{3} \binom{9}{4} \tag{3.92}
\]

After similar calculations for the other probabilities in (3.91), we find the \(ED = \frac{4}{3} \).

Note what this means: If we were to perform this experiment many times, i.e. choose committees again and again, on average we would have a little more than one more man than women on the committee.

Now let’s use our “mailing tubes” to derive \(ED \) a different way:

\[
ED = E(M - W) = E[M - (4 - M)] = E(2M - 4) = 2EM - 4 \quad \text{(from (3.21))} \tag{3.96}
\]

Now, let’s find \(EM \) by using indicator random variables. Let \(G_i \) denote the indicator random variable for the event that the \(i^{th} \) person we pick is male, \(i = 1,2,3,4 \). Then

\[
M = G_1 + G_2 + G_3 + G_4 \tag{3.97}
\]
3.9. INDICATOR RANDOM VARIABLES, AND THEIR MEANS AND VARIANCES

so

\[EM = E(G_1 + G_2 + G_3 + G_4) \] (3.98)
\[= EG_1 + EG_2 + EG_3 + EG_4 \quad [\text{from (3.19)}] \] (3.99)
\[= P(G_1 = 1) + P(G_2 = 1) + P(G_3 = 1) + P(G_4 = 1) \quad [\text{from (3.78)}] \] (3.100)

Note carefully that the second equality here, which uses (3.19), is true in spite of the fact that the \(G_i \) are not independent. Equation (3.19) does not require independence.

Another key point is that, due to symmetry, \(P(G_i = 1) \) is the same for all \(i \). Note that we did not write a conditional probability here! Once again, think of the notebook view: By definition, \((P(G_2 = 1) \) is the long-run proportion of the number of notebook lines in which \(G_2 = 1 \)—regardless of the value of \(G_1 \) in those lines.

Now, to see that \(P(G_i = 1) \) is the same for all \(i \), suppose the six men that are available for the committee are named Alex, Bo, Carlo, David, Eduardo and Frank. When we select our first person, any of these men has the same chance of being chosen (1/6). But that is also true for the second pick. Think of a notebook, with a column named “second pick.” In some lines, that column will say Alex, in some it will say Bo, and so on, and in some lines there will be women’s names. But in that column, Bo will appear the same fraction of the time as Alex, due to symmetry, and that will be the same fraction as for, say, Alice, again 1/6.

Now,

\[P(G_1 = 1) = \frac{6}{9} = \frac{2}{3} \] (3.101)

Thus

\[ED = 2 \cdot (4 \cdot \frac{2}{3}) - 4 = \frac{4}{3} \] (3.102)

3.9.3 Example: Spinner Game

In a certain game, Person A spins a spinner and wins \(S \) dollars, with mean 10 and variance 5. Person B flips a coin. If it comes up heads, Person A must give B whatever A won, but if it comes up tails, B wins nothing. Let \(T \) denote the amount B wins. Let’s find \(Var(T) \).

We can use (3.60), in this case with \(X = I \), where \(I \) is an indicator variable for the event that B
CHAPTER 3. DISCRETE RANDOM VARIABLES

gets a head, and with \(Y = S \). Then \(T = I \cdot S \), and \(I \) and \(S \) are independent, so

\[
Var(T) = Var(IS) = [Var(I) + (EI)^2] \cdot [Var(S) + (ES)^2] - (EI \cdot ES)^2
\]

(3.103)

Then use the facts that \(I \) has mean 0.5 and variance 0.5(1-0.5) (Equations (3.78) and (3.79), with \(S \) having the mean 10 and variance 5, as given in the problem.

3.10 Expected Value, Etc. in the ALOHA Example

Finding expected values etc. in the ALOHA example is straightforward. For instance,

\[
EX_1 = 0 \cdot P(X_1 = 0) + 1 \cdot P(X_1 = 1) + 2 \cdot P(X_1 = 2) = 1 \cdot 0.48 + 2 \cdot 0.52 = 1.52
\]

(3.104)

Here is R code to find various values approximately by simulation:

```r
# finds E(X1), E(X2), Var(X2), Cov(X1,X2)
sim <- function(p,q,nreps) {
  sumx1 <- 0
  sumx2 <- 0
  sumx2sq <- 0
  sumx1x2 <- 0
  for (i in 1:nreps) {
    numtrysend <-
      sum(sample(0:1,2,replace=TRUE,prob=c(1-p,p)))
    if (numtrysend == 1) X1 <- 1
    else X1 <- 2
    numactive <- X1
    if (X1 == 1 && runif(1) < q) numactive <- numactive + 1
    if (numactive == 1)
      if (runif(1) < p) X2 <- 0
    else X2 <- 1
    else {
      numactive = 2
      numtrysend <- 0
      for (i in 1:2)
        if (runif(1) < p) numtrysend <- numtrysend + 1
      if (numtrysend == 1) X2 <- 1
    else X2 <- 2
    }
  sumx1 <- sumx1 + X1
  sumx2 <- sumx2 + X2
  sumx2sq <- sumx2sq + X2^2
  sumx1x2 <- sumx1x2 + X1*X2
  }
  # print results
  meanx1 <- sumx1 /nreps
  cat("E(X1):",meanx1,"\n")
  meanx2 <- sumx2 /nreps
  cat("E(X2):",meanx2,"\n")
```
As a check on your understanding so far, you should find at least one of these values by hand, and see if it jibes with the simulation output.

3.11 Example: Measurements at Different Ages

Say a large research program measures boys’ heights at age 10 and age 15. Call the two heights X and Y. So, each boy has an X and a Y. Each boy is a “notebook line”, and the notebook has two columns, for X and Y. We are interested in Var(Y-X). Which of the following is true?

(i) $\text{Var}(Y - X) = \text{Var}(Y) + \text{Var}(X)$
(ii) $\text{Var}(Y - X) = \text{Var}(Y) - \text{Var}(X)$
(iii) $\text{Var}(Y - X) < \text{Var}(Y) + \text{Var}(X)$
(iv) $\text{Var}(Y - X) < \text{Var}(Y) - \text{Var}(X)$
(v) $\text{Var}(Y - X) > \text{Var}(Y) + \text{Var}(X)$
(vi) $\text{Var}(Y - X) > \text{Var}(Y) - \text{Var}(X)$
(vii) None of the above.

Use the mailing tube (3.74):

$$\text{Var}(Y - X) = \text{Var}[Y + (-X)] = \text{Var}(Y) + \text{Var}(X) - 2\text{Cov}(X, Y) \quad (3.105)$$

Since X and Y are positively correlated, their covariance is positive, so the answer is (iii).

3.12 Example: Bus Ridership Model

In the bus ridership model, Section 2.12 let’s find $\text{Var}(L_1)$:

$$\text{Var}(L_1) = E(L_1^2) - (EL_1)^2 \quad (3.106)$$
\[EL_1 = EB_1 = 0 \cdot 0.5 + 1 \cdot 0.4 + 2 \cdot 0.1 \] (3.107)

\[E(L_1^2) = 0^2 \cdot 0.5 + 1^2 \cdot 0.4 + 2^2 \cdot 0.1 \] (3.108)

Then put it all together.

3.13 Distributions

The idea of the **distribution** of a random variable is central to probability and statistics.

Definition 6 Let \(U \) be a discrete random variable. Then the distribution of \(U \) is simply the support of \(U \), together with the associated probabilities.

Example: Let \(X \) denote the number of dots one gets in rolling a die. Then the values \(X \) can take on are 1,2,3,4,5,6, each with probability 1/6. So

\[
\text{distribution of } X = \{(1, \frac{1}{6}), (2, \frac{1}{6}), (3, \frac{1}{6}), (4, \frac{1}{6}), (5, \frac{1}{6}), (6, \frac{1}{6})\} \tag{3.109}
\]

Example: Recall the ALOHA example. There \(X_1 \) took on the values 1 and 2, with probabilities 0.48 and 0.52, respectively (the case of 0 was impossible). So,

\[
\text{distribution of } X_1 = \{(0, 0.00), (1, 0.48), (2, 0.52)\} \tag{3.110}
\]

Example: Recall our example in which \(N \) is the number of tosses of a coin needed to get the first head. \(N \) has support 1,2,3,..., the probabilities of which we found earlier to be 1/2, 1/4, 1/8,... So,

\[
\text{distribution of } N = \{(1, \frac{1}{2}), (2, \frac{1}{4}), (3, \frac{1}{8}), ...\} \tag{3.111}
\]

It is common to express this in functional notation:

Definition 7 The **probability mass function** (pmf) of a discrete random variable \(V \), denoted \(p_V \), as

\[p_V(k) = P(V = k) \] (3.112)
for any value \(k \) in the support of \(V \).

(Please keep in mind the notation. It is customary to use the lower-case \(p \), with a subscript consisting of the name of the random variable.)

Note that \(p_V() \) is just a function, like any function (with integer domain) you’ve had in your previous math courses. For each input value, there is an output value.

3.13.1 Example: Toss Coin Until First Head

In (3.111),

\[
p_N(k) = \frac{1}{2^k}, k = 1, 2, ...
\]

3.13.2 Example: Sum of Two Dice

In the dice example, in which \(S = X+Y \),

\[
p_S(k) = \begin{cases}
\frac{1}{36}, & k = 2 \\
\frac{2}{36}, & k = 3 \\
\frac{3}{36}, & k = 4 \\
... & \\
\frac{1}{36}, & k = 12
\end{cases}
\]

(3.114)

It is important to note that there may not be some nice closed-form expression for \(p_V \) like that of (3.113). There was no such form in (3.114), nor is there in our ALOHA example for \(p_{X_1} \) and \(p_{X_2} \).

3.13.3 Example: Watts-Strogatz Random Graph Model

Random graph models are used to analyze many types of link systems, such as power grids, social networks and even movie stars. We saw our first example in Section 2.13.1 and here is another, a variation on a famous model of that type, due to Duncan Watts and Steven Strogatz.
3.13.3.1 The Model

We have a graph of n nodes, e.g. in which each node is a person. Think of them as being linked in a circle—we’re just talking about relations here, not physical locations—so we already have n links. One can thus reach any node in the graph from any other, by following the links of the circle. (We’ll assume all links are bidirectional.)

We now randomly add k more links (k is thus a parameter of the model), which will serve as “shortcuts.” There are $\binom{n}{2} = n(n-1)/2$ possible links between nodes, but remember, we already have n of those in the graph, so there are only $n(n-1)/2 - n = n^2/2 - 3n/2$ possibilities left. We’ll be forming k new links, chosen at random from those $n^2/2 - 3n/2$ possibilities.

Let M denote the number of links attached to a particular node, known as the degree of a node. M is a random variable (we are choosing the shortcut links randomly), so we can talk of its pmf, p_M, termed the degree distribution of M, which we’ll calculate now.

Well, $p_M(r)$ is the probability that this node has r links. Since the node already had 2 links before the shortcuts were constructed, $p_M(r)$ is the probability that $r-2$ of the k shortcuts attach to this node.

This problem is similar in spirit to (though admittedly more difficult to think about than) kings-and-hearts example of Section 2.15.1. Other than the two neighboring links in the original circle and the “link” of a node to itself, there are $n-3$ possible shortcut links to attach to our given node. We’re interested in the probability that $r-2$ of them are chosen, and that $k-(r-2)$ are chosen from the other possible links. Thus our probability is:

$$p_M(r) = \frac{\binom{n-3}{r-2} \binom{n^2/2-3n/2-(n-3)}{k-(r-2)}}{\binom{n^2/2-3n/2}{k}} = \frac{\binom{n-3}{r-2} \binom{n^2/2-5n/2+3}{k-(r-2)}}{\binom{n^2/2-3n/2}{k}}$$ (3.115)

3.13.3.2 Further Reading

4 The word graph here doesn’t mean “graph” in the sense of a picture. Here we are using the computer science sense of the word, meaning a system of vertices and edges. It’s common to call those nodes and links.
3.14 Proof of Chebychev’s Inequality (optional section)

To prove (3.63), let’s first state and prove Markov’s Inequality: For any nonnegative random variable Y and positive constant d,

$$P(Y \geq d) \leq \frac{EY}{d} \tag{3.116}$$

To prove (3.116), let Z be the indicator random variable for the event $Y \geq d$ (Section 3.9).

Now note that

$$Y \geq dZ \tag{3.117}$$

To see this, just think of a notebook, say with $d = 3$. Then the notebook might look like Table 3.2.

So

$$EY \geq dEZ \tag{3.118}$$

(Again think of the notebook. The long-run average in the Y column will be \geq the corresponding average for the dZ column.)

The right-hand side of (3.118) is $dP(Y \geq d)$, so (3.116) follows.

Now to prove (3.63), define

$$Y = (X - \mu)^2 \tag{3.119}$$

<table>
<thead>
<tr>
<th>notebook line</th>
<th>Y</th>
<th>dZ</th>
<th>$Y \geq dZ$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.36</td>
<td>0</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>3.6</td>
<td>3</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>2.6</td>
<td>0</td>
<td>yes</td>
</tr>
</tbody>
</table>

Table 3.2: Illustration of Y and Z
and set \(d = c^2 \sigma^2 \). Then (3.116) says

\[
P[(X - \mu)^2 \geq c^2 \sigma^2] \leq \frac{E[(X - \mu)^2]}{c^2 \sigma^2}
\]

(3.120)

Since

\[(X - \mu)^2 \geq c^2 \sigma^2 \text{ if and only if } |X - \mu| \geq c \sigma\]

(3.121)

the left-hand side of (3.120) is the same as the left-hand side of (3.63). The numerator of the right-hand size of (3.120) is simply \(\text{Var}(X) \), i.e. \(\sigma^2 \), so we are done.
Chapter 4

Discrete Parametric Distribution Families

The notion of a *parametric family* of distributions is a key concept that will recur throughout the book.

Consider plotting the curves $g_{a,b}(t) = (t-a)^2 + b$. For each a and b, we get a different parabola, as seen in this plot of three of the curves:
CHAPTER 4. DISCRETE PARAMETRIC DISTRIBUTION FAMILIES

This is a family of curves, thus a family of functions. We say the numbers a and b are the parameters of the family. Note carefully that t is not a parameter, but rather just an argument of each function. The point is that a and b are indexing the curves.

4.1 The Case of Importance to Us: Parameteric Families of pmfs

Probability mass functions are still functions. Thus they too can come in parametric families, indexed by one or more parameters. We had an example in Section 3.13.3. Since we get a different function p_M for each different values of k and n, that was a parametric family of pmfs, indexed by k and n.

Some parametric families of pmfs have been found to be so useful over the years that they’ve been given names. We will discuss some of those families here. But remember, they are famous just because they have been found useful, i.e. that they fit real data well in various settings. **Do not jump to the conclusion that we always “must” use pmfs from some family.**

4.2 The Geometric Family of Distributions

To explain our first parametric family of pmfs, recall our example of tossing a coin until we get the first head, with N denoting the number of tosses needed. In order for this to take k tosses, we need $k-1$ tails and then a head. Thus

$$p_N(k) = (1 - \frac{1}{2})^{k-1} \cdot \frac{1}{2}, k = 1, 2, ... \quad (4.1)$$

We might call getting a head a “success,” and refer to a tail as a “failure.” Of course, these words don’t mean anything; we simply refer to the outcome of interest (which of course we ourselves choose) as “success.”

Define M to be the number of rolls of a die needed until the number 5 shows up. Then

$$p_M(k) = \left(1 - \frac{1}{6}\right)^{k-1} \frac{1}{6}, k = 1, 2, ... \quad (4.2)$$

reflecting the fact that the event \{M = k\} occurs if we get $k-1$ non-5s and then a 5. Here “success” is getting a 5.

\footnote{The domains of these functions are typically the integers, but that is irrelevant; a function is a function.}
The tosses of the coin and the rolls of the die are known as **Bernoulli trials**, which is a sequence of independent events. We call the occurrence of the event **success** and the nonoccurrence **failure** (just convenient terms, not value judgments). The associated indicator random variable are denoted B_i, $i = 1, 2, 3, ...$. So B_i is 1 for success on the i^{th} trial, 0 for failure, with success probability p. For instance, p is 1/2 in the coin case, and 1/6 in the die example.

In general, suppose the random variable W is defined to be the number of trials needed to get a success in a sequence of Bernoulli trials. Then

$$p_W(k) = (1 - p)^{k-1} p, \ k = 1, 2, ...$$

Note that there is a different distribution for each value of p, so we call this a **parametric family** of distributions, indexed by the parameter p. We say that W is **geometrically distributed** with parameter p.

It should make good intuitive sense to you that

$$E(W) = \frac{1}{p}$$

This is indeed true, which we will now derive. First we’ll need some facts (which you should file mentally for future use as well):

Properties of Geometric Series:

(a) For any $t \neq 1$ and any nonnegative integers $r \leq s$,

$$\sum_{i=r}^{s} t^i = t^r \frac{1 - t^{s-r+1}}{1 - t}$$

This is easy to derive for the case $r = 0$, using mathematical induction. For the general case, just factor out t^r.

(b) For $|t| < 1$,

$$\sum_{i=0}^{\infty} t^i = \frac{1}{1 - t}$$

To prove this, just take $r = 0$ and let $s \to \infty$ in (4.5).

2Unfortunately, we have overloaded the letter p here, using it to denote the probability mass function on the left side, and the unrelated parameter p, our success probability on the right side. It’s not a problem as long as you are aware of it, though.
CHAPTER 4. DISCRETE PARAMETRIC DISTRIBUTION FAMILIES

(c) For \(|t| < 1 \),

\[
\sum_{i=1}^{\infty} it^{i-1} = \frac{1}{(1-t)^2} \tag{4.7}
\]

This is derived by applying \(\frac{d}{dt} \) to (4.6)\(^3\).

Deriving (4.4) is then easy, using (4.7):

\[
EW = \sum_{i=1}^{\infty} i(1-p)^{i-1}p
= p \sum_{i=1}^{\infty} i(1-p)^{i-1}
= p \cdot \frac{1}{[1-(1-p)]^2}
= \frac{1}{p} \tag{4.11}
\]

Using similar computations, one can show that

\[
Var(W) = \frac{1-p}{p^2} \tag{4.12}
\]

We can also find a closed-form expression for the quantities \(P(W \leq m) \), \(m = 1,2,... \) (This has a formal name \(F_W(m) \), as will be seen later in Section 7.3) For any positive integer \(m \) we have

\[
F_W(m) = P(W \leq m) = 1 - P(W > m) = 1 - P(\text{the first } m \text{ trials are all failures}) = 1 - (1-p)^m \tag{4.16}
\]

By the way, if we were to think of an experiment involving a geometric distribution in terms of our notebook idea, the notebook would have an infinite number of columns, one for each \(B_i \). Within each row of the notebook, the \(B_i \) entries would be 0 until the first 1, then NA (“not applicable”) after that.

\(^3\)To be more careful, we should differentiate (4.5) and take limits.
4.2. **THE GEOMETRIC FAMILY OF DISTRIBUTIONS**

4.2.1 **R Functions**

You can simulate geometrically distributed random variables via R’s `rgeom()` function. Its first argument specifies the number of such random variables you wish to generate, and the second is the success probability p.

For example, if you run

```r
> y <- rgeom(2, 0.5)
```

then it’s simulating tossing a coin until you get a head (`y[1]`) and then tossing the coin until a head again (`y[2]`). Of course, you could simulate on your own, say using `sample()` and `while()`, but R makes it convenient for you.

Here’s the full set of functions for a geometrically distributed random variable X with success probability p:

- `dgeom(i,p)`, to find $P(X = i)$
- `pgeom(i,p)`, to find $P(X \leq i)$
- `qgeom(q,p)`, to find c such that $P(X \leq c) = q$
- `rgeom(n,p)`, to generate n variates from this geometric distribution

Important note: Some books define geometric distributions slightly differently, as the number of failures before the first success, rather than the number of trials to the first success. The same is true for software—both R and Python define it this way. Thus for example in calling `dgeom()`, subtract 1 from the value used in our definition.

For example, here is $P(N = 3)$ for a geometric distribution under our defintion, with $p = 0.4$:

```r
> dgeom(2, 0.4)
[1] 0.144
> # check
> (1 - 0.4)^(3 - 1) * 0.4
[1] 0.144
```

Note that this also means one must *add* 1 to the result of `rgeom()`.
4.2.2 Example: a Parking Space Problem

Suppose there are 10 parking spaces per block on a certain street. You turn onto the street at the start of one block, and your destination is at the start of the next block. You take the first parking space you encounter. Let D denote the distance of the parking place you find from your destination, measured in parking spaces. Suppose each space is open with probability 0.15, with the spaces being independent. Find ED.

To solve this problem, you might at first think that D follows a geometric distribution. But don’t jump to conclusions! Actually this is not the case; D is a somewhat complicated distance. But clearly D is a function of N, where the latter denotes the number of parking spaces you see until you find an empty one—and N is geometrically distributed.

As noted, D is a function of N:

$$D = \begin{cases}
11 - N, & N \leq 10 \\
N - 11, & N > 10
\end{cases} \quad (4.17)$$

Since D is a function of N, we can use (3.36) with $g(t)$ as in (4.17):

$$ED = \sum_{i=1}^{10} (11 - i)(1 - 0.15)^{i-1}0.15 + \sum_{i=11}^{\infty} (i - 11)0.85^{i-1}0.15 \quad (4.18)$$

This can now be evaluated using the properties of geometric series presented above.

Alternatively, here’s how we could find the result by simulation:

```r
parksim <- function(nreps) {
  # do the experiment nreps times, recording the values of N
  nvals <- rgeom(nreps, 0.15) + 1
  # now find the values of D
  dvals <- ifelse(nvals <= 10, 11 - nvals, nvals - 11)
  # return ED
  mean(dvals)
}
```

Note the vectorized addition and recycling (Section 2.14.2) in the line

```
nvals <- rgeom(nreps, 0.15) + 1
```

The call to `ifelse()` is another instance of R’s vectorization, a vectorized if-then-else. The first argument evaluates to a vector of TRUE and FALSE values. For each TRUE, the corresponding
element of \texttt{dvals} will be set to the corresponding element of the vector \texttt{11-nvals} (again involving vectorized addition and recycling), and for each false, the element of \texttt{dvals} will be set to the element of \texttt{nvals-11}.

Let’s find some more, first $p_N(3)$:

$$p_N(3) = P(N = 3) = (1 - 0.15)^3 - 10.15$$

(4.19)

Next, find $P(D = 1)$:

$$P(D = 1) = P(N = 10 \text{ or } N = 12)$$

(4.20)

$$= (1 - 0.15)^{10 - 1}0.15 + (1 - 0.15)^{12 - 1}0.15$$

(4.21)

Say Joe is the one looking for the parking place. Paul is watching from a side street at the end of the first block (the one before the destination), and Martha is watching from an alley situated right after the sixth parking space in the second block. Martha calls Paul and reports that Joe never went past the alley, and Paul replies that he did see Joe go past the first block. They are interested in the probability that Joe parked in the second space in the second block. In mathematical terms, what probability is that? Make sure you understand that it is $P(N = 12 \mid N > 10 \text{ and } N \leq 16)$. It can be evaluated as above.

Also: Good news! I found a parking place just one space away from the destination. Find the probability that I am parked in the same block as the destination.

$$P(N = 12 \mid N = 10 \text{ or } N = 12) = \frac{P(N = 12)}{P(N = 10 \text{ or } N = 12)}$$

(4.22)

$$= \frac{(1 - 0.15)^{11}0.15}{(1 - 0.15)^90.15 + (1 - 0.15)^{11}0.15}$$

(4.23)

4.3 The Binomial Family of Distributions

A geometric distribution arises when we have Bernoulli trials with parameter p, with a variable number of trials (N) but a fixed number of successes (1). A binomial distribution arises when we have the opposite—a fixed number of Bernoulli trials (n) but a variable number of successes (say X).

\footnote{Note again the custom of using capital letters for random variables, and lower-case letters for constants.}
CHAPTER 4. DISCRETE PARAMETRIC DISTRIBUTION FAMILIES

For example, say we toss a coin five times, and let X be the number of heads we get. We say that X is binomially distributed with parameters n = 5 and p = 1/2. Let’s find P(X = 2). There are many orders in which that could occur, such as HHTTT, TTHHT, HTTHT and so on. Each order has probability \(0.5^2(1-0.5)^3\), and there are \(\binom{5}{2}\) orders. Thus

\[
P(X = 2) = \binom{5}{2} 0.5^2(1-0.5)^3 = \frac{5!}{2!3!} / 32 = 5/16 (4.24)
\]

For general n and p,

\[
p_X(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} (4.25)
\]

So again we have a parametric family of distributions, in this case a family having two parameters, n and p.

Let’s write X as a sum of those 0-1 Bernoulli variables we used in the discussion of the geometric distribution above:

\[
X = \sum_{i=1}^{n} B_i (4.26)
\]

where \(B_i\) is 1 or 0, depending on whether there is success on the \(i^{th}\) trial or not. Note again that the \(B_i\) are indicator random variables (Section 3.9), so

\[
EB_i = p (4.27)
\]

and

\[
Var(B_i) = p(1-p) (4.28)
\]

Then the reader should use our earlier properties of \(E()\) and \(Var()\) in Sections 3.5 and 3.6 to fill in the details in the following derivations of the expected value and variance of a binomial random variable:

\[
EX = E(B_1 + ..., + B_n) = EB_1 + ... + EB_n = np (4.29)
\]
4.3. THE BINOMIAL FAMILY OF DISTRIBUTIONS

and from (3.75),

\[\text{Var}(X) = \text{Var}(B_1 + \ldots + B_n) = \text{Var}(B_1) + \ldots + \text{Var}(B_n) = np(1 - p) \quad (4.30) \]

Again, (4.29) should make good intuitive sense to you.

4.3.1 R Functions

Relevant functions for a binomially distributed random variable \(X \) for \(k \) trials and with success probability \(p \) are:

- \(\hat{\text{dbinom}}(i, k, p) \), to find \(P(X = i) \)
- \(\hat{\text{pbinom}}(i, k, p) \), to find \(P(X \leq i) \)
- \(\hat{\text{qbinom}}(q, k, p) \), to find \(c \) such that \(P(X \leq c) = q \)
- \(\hat{\text{rbinom}}(n, k, p) \), to generate \(n \) independent values of \(X \)

Our definition above of \(\text{qbinom}() \) is not quite tight, though. Consider a random variable \(X \) which has a binomial distribution with \(n = 2 \) and \(p = 0.5 \). Then

\[F_X(0) = 0.25, \quad F_X(1) = 0.50 \quad (4.31) \]

So if \(q \) is, say, 0.33, there is no \(c \) such that \(P(X \leq c) = q \). For that reason, the actual definition of \(\text{qbinom}() \) is the smallest \(c \) satisfying \(P(X \leq c) \geq q \).

4.3.2 Example: Parking Space Model

Recall Section 4.2.2. Let’s find the probability that there are three open spaces in the first block.

Let \(M \) denote the number of open spaces in the first block. This fits the definition of binomially-distributed random variables: We have a fixed number (10) of independent Bernoulli trials, and we are interested in the number of successes. So, for instance,

\[p_M(3) = \binom{10}{3} 0.15^3 (1 - 0.15)^{10-3} \quad (4.32) \]
4.4 The Negative Binomial Family of Distributions

Recall that a typical example of the geometric distribution family (Section 4.2) arises as N, the number of tosses of a coin needed to get our first head. Now generalize that, with N now being the number of tosses needed to get our r^{th} head, where r is a fixed value. Let’s find $P(N = k), k = r, r+1, \ldots$ For concreteness, look at the case $r = 3, k = 5$. In other words, we are finding the probability that it will take us 5 tosses to accumulate 3 heads.

First note the equivalence of two events:

\[
\{N = 5\} = \{2 \text{ heads in the first 4 tosses and head on the } 5^{th} \text{ toss}\} \tag{4.33}
\]

That event described before the “and” corresponds to a binomial probability:

\[
P(2 \text{ heads in the first 4 tosses}) = \binom{4}{2} \left(\frac{1}{2} \right)^4 \tag{4.34}
\]

Since the probability of a head on the k^{th} toss is $1/2$ and the tosses are independent, we find that

\[
P(N = 5) = \binom{4}{2} \left(\frac{1}{2} \right)^5 = \frac{3}{16} \tag{4.35}
\]

The negative binomial distribution family, indexed by parameters r and p, corresponds to random variables that count the number of independent trials with success probability p needed until we get r successes. The pmf is

\[
p_N(k) = P(N = k) = \binom{k - 1}{r - 1} (1 - p)^{k-r} p^r, k = r, r + 1, \ldots \tag{4.36}
\]

We can write

\[
N = G_1 + \ldots + G_r \tag{4.37}
\]

where G_i is the number of tosses between the successes numbers $i-1$ and i. But each G_i has a geometric distribution! Since the mean of that distribution is $1/p$, we have that

\[
E(N) = r \cdot \frac{1}{p} \tag{4.38}
\]
In fact, those geometric variables are also independent, so we know the variance of N is the sum of their variances:

\[\text{Var}(N) = r \cdot \frac{1 - p}{p^2} \]
(4.39)

4.4.1 R Functions

Relevant functions for a negative binomial distributed random variable X with success parameter p are:

- `dnbinom(i,size=1,prob=p)`, to find \(P(X = i) \)
- `pnbinom(i,size=1,prob=p)`, to find \(P(X \leq i) \)
- `qbinom(q,size=1,prob=p)`, to find c such that \(P(X \leq c) = q \)
- `rnbinom(n,size=1,prob=p)`, to generate n independent values of X

4.4.2 Example: Backup Batteries

A machine contains one active battery and two spares. Each battery has a 0.1 chance of failure each month. Let L denote the lifetime of the machine, i.e. the time in months until the third battery failure. Find \(P(L = 12) \).

The number of months until the third failure has a negative binomial distribution, with \(r = 3 \) and \(p = 0.1 \). Thus the answer is obtained by (4.36), with \(k = 12 \):

\[P(L = 12) = \binom{11}{2} (1 - 0.1)^3 0.1^3 \]
(4.40)

4.5 The Poisson Family of Distributions

Another famous parametric family of distributions is the set of Poisson Distributions.

This family is a little different from the geometric, binomial and negative binomial families, in the sense that in those cases there were qualitative descriptions of the settings in which such distributions arise. Geometrically distributed random variables, for example occur as the number of Bernoulli trials needed to get the first success.
By contrast, the Poisson family does not really have this kind of qualitative description. It is merely something that people have found to be a reasonably accurate model of actual data in many cases. We might be interested, say, in the number of disk drive failures in periods of a specified length of time. If we have data on this, we might graph it, and if it looks like the pmf form below, then we might adopt it as our model.

The pmf is

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, k = 0, 1, 2, ... \quad (4.41)$$

It turns out that

$$EX = \lambda \quad (4.42)$$

$$Var(X) = \lambda \quad (4.43)$$

The derivations of these facts are similar to those for the geometric family in Section 4.2. One starts with the Maclaurin series expansion for e^t:

$$e^t = \sum_{i=0}^{\infty} \frac{t^i}{i!} \quad (4.44)$$

and finds its derivative with respect to t, and so on. The details are left to the reader.

The Poisson family is very often used to model count data. For example, if you go to a certain bank every day and count the number of customers who arrive between 11:00 and 11:15 a.m., you will probably find that that distribution is well approximated by a Poisson distribution for some λ.

There is a lot more to the Poisson story than we see in this short section. We’ll return to this distribution family in Section 9.1.

4.5.1 R Functions

Relevant functions for a Poisson distributed random variable X with parameter λ are:

- `dpois(i,lambda)`, to find $P(X = i)$

Some such descriptions are possible in the Poisson case, but they are complicated and difficult to verify.
4.6. THE POWER LAW FAMILY OF DISTRIBUTIONS

- \texttt{ppois(i,lambda)}, to find \(P(X \leq i) \)

- \texttt{qpois(q,lambda)}, to find \(c \) such that \(P(X \leq c) = q \)

- \texttt{rpois(n,lambda)}, to generate \(n \) independent values of \(X \)

4.5.2 Example: Broken Rod

Recall the example of a broken glass rod in Section 2.14.9. Suppose now that the number of breaks is random, not just the break points. A reasonable model to try would be Poisson. However, the latter’s support starts at 0, and we cannot have 0 pieces, so we need to model the number of pieces minus 1 (the number of break points) as Poisson.

The code is similar to that in Section 2.14.9 but we must first generate the number of break points:

```r
minpiecepois <- function(lambda) {
  nbreaks <- rpois(1, lambda)
  breakpts <- sort(runif(nbreaks))
  lengths <- diff(c(0, breakpts, 1))
  min(lengths)
}

bkrodpois <- function(nreps, lambda, q) {
  minpieces <- replicate(nreps, minpiecepois(lambda))
  mean(minpieces < q)
}

> bkrodpois(10000, 5, 0.02)
[1] 0.4655
```

Note that in each call to \texttt{minpiecepois()}, there will be a different number of breakpoints.

4.6 The Power Law Family of Distributions

This family has attracted quite a bit of attention in recent years, due to its use in random graph models.
4.6.1 The Model

Here

\[p_X(k) = c k^{-\gamma}, \quad k = 1, 2, 3, \ldots \]

(4.45)

It is required that \(\gamma > 1 \), as otherwise the sum of probabilities will be infinite. For \(\gamma \) satisfying that condition, the value \(c \) is chosen so that that sum is 1.0:

\[1.0 = \sum_{k=1}^{\infty} c k^{-\gamma} \approx c \int_{1}^{\infty} k^{-\gamma} \, dk = c/(\gamma - 1) \]

(4.46)

so \(c \approx \gamma - 1 \).

Here again we have a parametric family of distributions, indexed by the parameter \(\gamma \).

The power law family is an old-fashioned model (an old-fashioned term for distribution is law), but there has been a resurgence of interest in it in recent years. Analysts have found that many types of social networks in the real world exhibit approximately power law behavior in their degree distributions.

For instance, in a famous study of the Web (A. Barabasi and R. Albert, Emergence of Scaling in Random Networks, *Science*, 1999, 509-512), degree distribution on the Web (a directed graph, with incoming links being the ones of interest here) it was found that the number of links leading to a Web page has an approximate power law distribution with \(\gamma = 2.1 \). The number of links leading out of a Web page was found to be approximately power-law distributed, with \(\gamma = 2.7 \).

Much of the interest in power laws stems from their fat tails, a term meaning that values far from the mean are more likely under a power law than they would be under a normal distribution with the same mean. In recent popular literature, values far from the mean have often been called black swans. The financial crash of 2008, for example, is blamed by some on the ignorance by quants (people who develop probabilistic models for guiding investment) in underestimating the probabilities of values far from the mean.

Some examples of real data that are, or are not, fit well by power law models are given in the paper *Power-Law Distributions in Empirical Data*, by A. Clauset, C. Shalizi and M. Newman, at http://arxiv.org/abs/0706.1062. Methods for estimating the parameter \(\gamma \) are discussed and evaluated.

A variant of the power law model is the power law with exponential cutoff, which essentially
4.7. RECOGNIZING SOME PARAMETRIC DISTRIBUTIONS WHEN YOU SEE THEM

consists of a blend of the power law and a geometric distribution. Here

\[p_X(k) = c k^{-\gamma} q^k \]
(4.47)

This now is a two-parameter family, the parameters being \(\gamma \) and \(q \). Again \(c \) is chosen so that the pmf sums to 1.0.

This model is said to work better than a pure power law for some types of data. Note, though, that this version does not really have the fat tail property, as the tail decays exponentially now.

4.6.2 Further Reading

There is nice paper on fitting (or not fitting) power law models:

4.7 Recognizing Some Parametric Distributions When You See Them

Three of the discrete distribution families we’ve considered here arise in settings with very definite structure, all dealing with independent trials:

- the binomial family gives the distribution of the number of successes in a fixed number of trials
- the geometric family gives the distribution of the number of trials needed to obtain the first success
- the negative binomial family gives the distribution of the number of trials needed to obtain the \(k^{th} \) success

Such situations arise often, hence the fame of these distribution families.

By contrast, the Poisson and power law distributions have no underlying structure. They are famous for a different reason, that it has been found empirically that they provide a good fit to many real data sets.
In other words, the Poisson and power law distributions are typically fit to data, in an attempt to find a good model, whereas in the binomial, geometric and negative binomial cases, the fundamental nature of the setting implies one of those distributions.

You should make a strong effort to get to the point at which you automatically recognize such settings when your encounter them.

4.8 Example: a Coin Game

Life is unfair—former President Jimmy Carter

Consider a game played by Jack and Jill. Each of them tosses a coin many times, but Jack gets a head start of two tosses. So by the time Jack has had, for instance, 8 tosses, Jill has had only 6; when Jack tosses for the 15th time, Jill has her 13th toss; etc.

Let X_k denote the number of heads Jack has gotten through his k^{th} toss, and let Y_k be the head count for Jill at that same time, i.e. among only $k-2$ tosses for her. (So, $Y_1 = Y_2 = 0$.) Let’s find the probability that Jill is winning after the 6th toss, i.e. $P(Y_6 > X_6)$.

Your first reaction might be, “Aha, binomial distribution!” You would be on the right track, but the problem is that you would not be thinking precisely enough. Just WHAT has a binomial distribution? The answer is that both X_6 and Y_6 have binomial distributions, both with $p = 0.5$, but $n = 6$ for X_6 while $n = 4$ for Y_6.

Now, as usual, ask the famous question, “How can it happen?” How can it happen that $Y_6 > X_6$? Well, we could have, for example, $Y_6 = 3$ and $X_6 = 1$, as well as many other possibilities. Let’s write it mathematically:

$$P(Y_6 > X_6) = \sum_{i=1}^{4} \sum_{j=0}^{i-1} P(Y_6 = i \text{ and } X_6 = j)$$

(4.48)

Make SURE your understand this equation.

Now, to evaluate $P(Y_6 = i \text{ and } X_6 = j)$, we see the “and” so we ask whether Y_6 and X_6 are independent. They in fact are; Jill’s coin tosses certainly don’t affect Jack’s. So,

$$P(Y_6 = i \text{ and } X_6 = j) = P(Y_6 = i) \cdot P(X_6 = j)$$

(4.49)
4.9. **Example: Tossing a Set of Four Coins**

It is at this point that we finally use the fact that X_6 and Y_6 have binomial distributions. We have

$$P(Y_6 = i) = \binom{4}{i} 0.5^i (1 - 0.5)^{4-i} \quad (4.50)$$

and

$$P(X_6 = j) = \binom{6}{j} 0.5^j (1 - 0.5)^{6-j} \quad (4.51)$$

We would then substitute (4.50) and (4.51) in (4.48). We could then evaluate it by hand, but it would be more convenient to use R’s `dbinom()` function:

```r
prob <- 0
for (i in 1:4)
  for (j in 0:(i-1))
    prob <- prob + dbinom(i,4,0.5) * dbinom(j,6,0.5)
prob
```

We get an answer of about 0.17. If Jack and Jill were to play this game repeatedly, stopping each time after the 6th toss, then Jill would win about 17% of the time.

4.9 Example: Tossing a Set of Four Coins

Consider a game in which we have a set of four coins. We keep tossing the set of four until we have a situation in which exactly two of them come up heads. Let N denote the number of times we must toss the set of four coins.

For instance, on the first toss of the set of four, the outcome might be HTHH. The second might be TTTH, and the third could be THHT. In the situation, $N = 3$.

Let’s find $P(N = 5)$. Here we recognize that N has a geometric distribution, with “success” defined as getting two heads in our set of four coins. What value does the parameter p have here?

Well, p is $P(X = 2)$, where X is the number of heads we get from a toss of the set of four coins. We recognize that X is binomial! Thus

$$p = \binom{4}{2} 0.5^4 = \frac{3}{8} \quad (4.52)$$
Thus using the fact that \(N \) has a geometric distribution,

\[
P(N = 5) = (1 - p)^4 p = 0.057 \quad (4.53)
\]

4.10 Example: the ALOHA Example Again

As an illustration of how commonly these parametric families arise, let’s again look at the ALOHA example. Consider the general case, with transmission probability \(p \), message creation probability \(q \), and \(m \) network nodes. We will not restrict our observation to just two epochs.

Suppose \(X_i = m \), i.e. at the end of epoch \(i \) all nodes have a message to send. Then the number which attempt to send during epoch \(i+1 \) will be binomially distributed, with parameters \(m \) and \(p \).

For instance, the probability that there is a successful transmission is equal to the probability that exactly one of the \(m \) nodes attempts to send,

\[
\binom{m}{1} p(1 - p)^{m-1} = mp(1 - p)^{m-1} \quad (4.54)
\]

Now in that same setting, \(X_i = m \), let \(K \) be the number of epochs it will take before some message actually gets through. In other words, we will have \(X_i = m \), \(X_{i+1} = m \), \(X_{i+2} = m \),... but finally \(X_{i+K-1} = m - 1 \). Then \(K \) will be geometrically distributed, with success probability equal to \((4.54) \).

There is no Poisson distribution in this example, but it is central to the analysis of Ethernet, and almost any other network. We will discuss this at various points in later chapters.

4.11 Example: the Bus Ridership Problem Again

Recall the bus ridership example of Section 2.12. Let’s calculate some expected values, for instance \(E(B_1) \):

\[
E(B_1) = 0 \cdot P(B_1 = 0) + 1 \cdot P(B_1 = 1) + 2 \cdot P(B_1 = 2) = 0.4 + 2 \cdot 0.1 \quad (4.55)
\]

Now suppose the company charges $3 for passengers who board at the first stop, but charges $2 for those who join at the second stop. (The latter passengers get a possibly shorter ride, thus pay

\(^6\)Note that this is a conditional distribution, given \(X_i = m \).
less.) So, the total revenue from the first two stops is \(T = 3B_1 + 2B_2 \). Let’s find \(E(T) \). We’d write

\[
E(T) = 3E(B_1) + 2E(B_2)
\]

making use of (3.21). We’d then compute the terms as in 4.55.

Suppose the bus driver has the habit of exclaiming, “What? No new passengers?!” every time he comes to a stop at which \(B_i = 0 \). Let \(N \) denote the number of the stop (1,2,...) at which this first occurs. Find \(P(N = 3) \):

\(N \) has a geometric distribution, with \(p \) equal to the probability that there 0 new passengers at a stop, i.e. 0.5. Thus \(p_N(3) = (1 - 0.5)^2 0.5 \), by (4.3).

Let \(S \) denote the number of stops, out of the first 6, at which 2 new passengers board. For example, \(S \) would be 3 if \(B_1 = 2, B_2 = 2, B_3 = 0, B_4 = 1, B_5 = 0, \) and \(B_6 = 2 \). Find \(p_S(4) \):

\(S \) has a binomial distribution, with \(n = 6 \) and \(p = \) probability of 2 new passengers at a stop = 0.1. Then

\[
p_S(4) = \binom{6}{4} 0.1^4 (1 - 0.1)^{6-4}
\]

By the way, we can exploit our knowledge of binomial distributions to simplify the simulation code in Section 2.14.7. The lines

```python
for k in 1:passengers
    if (runif(1) < 0.2)
        passengers <- passengers - 1
```

simulate finding that number of passengers that alight at that stop. But that number is binomially distributed, so the above code can be compactified (and speeded up in execution) as

```python
passengers <- passengers - rbinom(1,passengers,0.2)
```

4.12 Example: Flipping Coins with Bonuses

A game involves flipping a coin \(k \) times. Each time you get a head, you get a bonus flip, not counted among the \(k \). (But if you get a head from a bonus flip, that does not give you its own bonus flip.) Let \(X \) denote the number of heads you get among all flips, bonus or not. Let’s find the distribution of \(X \).
CHAPTER 4. DISCRETE PARAMETRIC DISTRIBUTION FAMILIES

As with the parking space example above, we should be careful not to come to hasty conclusions.

The situation here “sounds” binomial, but X, based on a variable number of trials, doesn’t fit the
definition of binomial.

But let Y denote the number of heads you obtain through nonbonus flips. Y then has a binomial
distribution with parameters k and 0.5. To find the distribution of X, we’ll condition on Y.

We will as usual ask, “How can it happen?”, but we need to take extra care in forming our sums,
recognizing constraints on Y:

• \(Y \geq X/2 \)
• \(Y \leq X \)
• \(Y \leq k \)

Keeping those points in mind, we have

\[
p_X(m) = P(X = m) = \min(m, k) \sum_{i=\lceil m/2 \rceil}^{\min(m, k)} P(X = m \text{ and } Y = i) \tag{4.58}
\]

\[
= \min(m, k) \sum_{i=\lceil m/2 \rceil}^{\min(m, k)} P(X = m \mid Y = i) P(Y = i) \tag{4.59}
\]

\[
= \min(m, k) \sum_{i=\lceil m/2 \rceil}^{\min(m, k)} \binom{i}{m-i} 0.5^i \binom{k}{i} 0.5^k \tag{4.60}
\]

\[
= 0.5^k \sum_{i=\lceil m/2 \rceil}^{\min(m, k)} \frac{k!}{(m-i)!(2i-m)!(k-i)!} 0.5^i \tag{4.61}
\]

There doesn’t seem to be much further simplification possible here.

4.13 Example: Analysis of Social Networks

Let’s continue our earlier discussion from Section 3.13.3
One of the earliest—and now the simplest—models of social networks is due to Erdős and Renyi. Say we have n people (or n Web sites, etc.), with \(\binom{n}{2} \) potential links between pairs. (We are assuming an undirected graph here.) In this model, each potential link is an actual link with probability p, and a nonlink with probability 1-p, with all the potential links being independent.

Recall the notion of degree distribution from Section 3.13.3. Clearly the degree distribution \(D_i \) here for a single node i is binomial with parameters n-1 and p.

But consider k nodes, say 1 through k, among the n total nodes, and let T denote the number of links involving these nodes. Let’s find the distribution of T. That distribution is again binomial, but the number of trials must be carefully calculated. We cannot simply say that, since each of the k vertices can have as many as n-1 links, there are k(n-1) potential links, because there is overlap; two nodes among the k have a potential link with each other, but we can’t count it twice. So, let’s reason this out.

Say n = 9 and k = 4. Among the four special nodes, there are \(\binom{4}{2} = 6 \) potential links, each on or off with probability p, independently. Also each of the four special nodes has 9 - 4 = 5 potential links with the “outside world,” i.e. the five non-special nodes. So there are 4 \times 5 = 20 potential links here, for a total of 26.

So, the distribution of T is binomial with

\[
k(n - k) + \binom{k}{2}
\]

trials and success probability p.

4.14 Multivariate Distributions

(I am borrowing some material here from Section ??, for instructors or readers who skip Chapter ??). It is important to know that multivariate distributions exist, even if one doesn’t know the details.)

Recall that for a single discrete random variable X, the distribution of X was defined to be a list of all the values of X, together with the probabilities of those values. The same is done for a pair (or more than a pair) of discrete random variables U and V.

Suppose we have a bag containing two yellow marbles, three blue ones and four green ones. We choose four marbles from the bag at random, without replacement. Let Y and B denote the number
of yellow and blue marbles that we get. Then define the two-dimensional pmf of \(Y \) and \(B \) to be

\[
p_{Y,B}(i, j) = P(Y = i \text{ and } B = j) = \frac{\binom{2}{i} \binom{3}{j} \binom{4}{4-i-j}}{\binom{9}{4}}
\]

Here is a table displaying all the values of \(P(Y = i \text{ and } B = j) \):

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.008</td>
<td>0.095</td>
<td>0.143</td>
<td>0.032</td>
</tr>
<tr>
<td>1</td>
<td>0.063</td>
<td>0.286</td>
<td>0.190</td>
<td>0.016</td>
</tr>
<tr>
<td>2</td>
<td>0.048</td>
<td>0.095</td>
<td>0.024</td>
<td>0.000</td>
</tr>
</tbody>
</table>

So this table is the distribution of the pair \((Y,B) \).

Recall further that in the discrete case, we introduced a symbolic notation for the distribution of a random variable \(X \), defined as \(p_X(i) = P(X = i) \), where \(i \) ranged over the support of \(X \). We do the same thing for a pair of random variables:

Definition 8 For discrete random variables \(U \) and \(V \), their probability mass function is defined to be

\[
p_{U,V}(i, j) = P(U = i \text{ and } V = j)
\]

where \((i,j) \) ranges over all values taken on by \((U,V) \). Higher-dimensional pmfs are defined similarly, e.g.

\[
p_{U,V,W}(i, j, k) = P(U = i \text{ and } V = j \text{ and } W = k)
\]

So in our marble example above, \(p_{Y,B}(1, 2) = 0.048 \), \(p_{Y,B}(2, 0) = 0.012 \) and so on.

4.15 Iterated Expectations

This section has an abstract title, but the contents are quite useful.

4.15.1 Conditional Distributions

Just as we can define bivariate pmfs, we can also speak of conditional pmfs. Suppose we have random variables \(U \) and \(V \).
4.15. ITERATED EXPECTATIONS

In our bus ridership example, for instance, we can talk about

\[E(L_2 \mid B_1 = 0) \]

(4.67)

In notebook terms, think of many replications of watching the bus during times 1 and 2. Then (4.67) is defined to be the long-run average of values in the \(L_2 \) column, among those rows in which the \(B_1 \) column is 0. (And by the way, make sure you understand why (4.67) works out to be 0.6.)

4.15.2 The Theorem

The key relation says, in essence,

The overall mean of \(V \) is a weighted average of the conditional means of \(V \) given \(U \). The weights are the pmf of \(U \).

Note again that \(E(V \mid U = c) \) is defined in “notebook” terms as the long-run average of \(V \), among those lines in which \(U = c \).

Here is the formal version:

Suppose we have random variables \(U \) and \(V \), with \(U \) discrete and with \(V \) having an expected value. Then

\[E(V) = \sum_c P(U = c) \ E(V \mid U = c) \]

(4.68)

where \(c \) ranges through the support of \(U \).

In spite of its intimidating form, (4.68) makes good intuitive sense, as follows: Suppose we want to find the average height of all students at a university. Each department measures the heights of its majors, then reports the mean height among them. Then (4.68) says that to get the overall mean in the entire school, we should take a weighted average of all the within-department means, with the weights being the proportions of each department’s student numbers among the entire school. Clearly, we would not want to take an unweighted average, as that would count tiny departments just as much as large majors.

Here is the derivation (reader: supply the reasons!).
4.15.3 Example: Coin and Die Game

You roll a die until it comes up 5, taking M rolls to do so. You then toss a coin M times, winning one dollar for each head. Find the expected winnings, EW.

Solution: Given M = k, the number of heads has a binomial distribution with n = k and p = 0.5. So

\[E(W | M = k) = 0.5k. \]

(4.76)

So, from (4.68), we have

\[EW = \sum_{k=1}^{\infty} P(M = k) 0.5k = 0.5 \sum_{k=1}^{\infty} P(M = k)k = 0.5 EM \]

(4.77)

from (3.13). And from (4.4), we know EM = 6. So, EW = 3.

4.15.4 Example: Flipping Coins with Bonuses

Recall the example in Section 4.12. The principle of iterated expectation can easily get us EX:
4.15. ITERATED EXPECTATIONS

\[EX = \sum_{i=1}^{k} P(Y = i) E(X|Y = i) \] \hspace{1cm} (4.78)

\[= \sum_{i=1}^{k} P(Y = i) (i + 0.5i) \] \hspace{1cm} (4.79)

\[= E(1.5Y) \] \hspace{1cm} (4.80)

\[= 1.5 \cdot k/2 \] \hspace{1cm} (4.81)

\[= 0.75 k \] \hspace{1cm} (4.82)

To understand that second equality, note that if \(Y = i \), \(X \) will already include those \(i \) heads, the nonbonus heads, and since there will be \(i \) bonus flips, the expected value of the number of bonus heads will be \(0.5i \). The third equality uses (3.36) (in a reverse manner).

Exercises

1. Consider a game in which one rolls a single die until one accumulates a total of at least four dots. Let \(X \) denote the number of rolls needed. Find \(P(X \leq 2) \) and \(E(X) \).

2. Recall the committee example in Section 3.9.2. Suppose now, though, that the selection protocol is that there must be at least one man and at least one woman on the committee. Find \(E(D) \) and \(Var(D) \).

3. Suppose a bit stream is subject to errors, with each bit having probability \(p \) of error, and with the bits being independent. Consider a set of four particular bits. Let \(X \) denote the number of erroneous bits among those four.

 (a) Find \(P(X = 2) \) and \(EX \).

 (b) What famous parametric family of distributions does the distribution of \(X \) belong to?

 (c) Let \(Y \) denote the maximum number of consecutive erroneous bits. Find \(P(Y = 2) \) and \(Var(Y) \).

5. Finish the computation in (4.18).

6. Derive the facts that for a Poisson-distributed random variable \(X \) with parameter \(\lambda \), \(EX = Var(X) = \lambda \). Use the hints in Section 4.5.

7. A civil engineer is collecting data on a certain road. She needs to have data on 25 trucks, and 10 percent of the vehicles on that road are trucks. State the famous parametric family that is relevant.
here, and find the probability that she will need to wait for more than 200 vehicles to pass before she gets the needed data.

8. In the ALOHA example:

 (a) Find $E(X_1)$ and $Var(X_1)$, for the case $p = 0.4$, $q = 0.8$. You are welcome to use quantities already computed in the text, e.g. $P(X_1 = 1) = 0.48$, but be sure to cite equation numbers.

 (b) Find $P($collision during epoch 1$)$ for general p, q.

9. Our experiment is to toss a nickel until we get a head, taking X rolls, and then toss a dime until we get a head, taking Y tosses. Find:

 (a) $Var(X+Y)$.

 (b) Long-run average in a “notebook” column labeled X^2.

10. Consider the game in Section 4.8. Find $E(Z)$ and $Var(Z)$, where $Z = Y_6 - X_6$.

11. Say we choose six cards from a standard deck, one at a time WITHOUT replacement. Let N be the number of kings we get. Does N have a binomial distribution? Choose one: (i) Yes. (ii) No, since trials are not independent. (iii) No, since the probability of success is not constant from trial to trial. (iv) No, since the number of trials is not fixed. (v) (ii) and (iii). (vi) (ii) and (iv). (vii) (iii) and (iv).

12. Suppose we have n independent trials, with the probability of success on the i^{th} trial being p_i. Let $X =$ the number of successes. Use the fact that “the variance of the sum is the sum of the variance” for independent random variables to derive $Var(X)$.

13. Prove Equation (3.41).

14. Show that if X is a nonnegative-integer valued random variable, then

 $$EX = \sum_{i=1}^{\infty} P(X \geq i)$$ \hspace{1cm} (4.83)

 Hint: Write $i = \sum_{j=1}^{i} 1$, and when you see an iterated sum, reverse the order of summation.

15. Suppose we toss a fair coin n times, resulting in X heads. Show that the term expected value is a misnomer, by showing that

 $$\lim_{n \to \infty} P(X = n/2) = 0$$ \hspace{1cm} (4.84)
4.15. **ITERATED EXPECTATIONS**

Use Stirling’s approximation,

\[k! \approx \sqrt{2\pi k} \left(\frac{k}{e} \right)^k \]
(4.85)

16. Suppose X and Y are independent random variables with standard deviations 3 and 4, respectively.

(a) Find \(\text{Var}(X+Y) \).

(b) Find \(\text{Var}(2X+Y) \).

17. Fill in the blanks in the following simulation, which finds the approximate variance of \(N \), the number of rolls of a die needed to get the face having just one dot.

```r
onesixth <- 1/6
sumn <- 0
sumn2 <- 0
for (i in 1:10000) {
  n <- 0
  while(TRUE) {
    ________________________________ < onesixth) break
  }
  sumn <- sumn + n
  sumn2 <- sumn2 + n^2
}
approxvarn <- ________________________________
cat("the approx. value of Var(N) is ",approxvarn,"\n")
```

18. Let \(X \) be the total number of dots we get if we roll three dice. Find an upper bound for \(P(X \geq 15) \), using our course materials.

19. Suppose X and Y are independent random variables, and let \(Z = XY \). Show that \(\text{Var}(Z) = E(X^2)E(Y^2) - [E(X)]^2[E(Y)]^2 \).

20. This problem involves a very simple model of the Web. (Far more complex ones exist.)

Suppose we have \(n \) Web sites. For each pair of sites \(i \) and \(j \), \(i \neq j \), there is a link from site \(i \) to site \(j \) with probability \(p \), and no link (in that direction) with probability \(1-p \). Let \(N_i \) denote the number of sites that site \(i \) is linked to; note that \(N_i \) can range from 0 to \(n-1 \). Also, let \(M_{ij} \) denote the number of outgoing links that sites \(i \) and \(j \) have in common, not counting the one between them, if any. Assume that each site forms its outgoing links independently of the others.

Say \(n = 10 \), \(p = 0.2 \). Find the following:
(a) \(P(N_1 = 3) \)
(b) \(P(N_1 = 3 \text{ and } N_2 = 2) \)
(c) \(\text{Var}(N_1) \)
(d) \(\text{Var}(N_1 + N_2) \)
(e) \(P(M_{12} = 4) \)

Note: There are some good shortcuts in some of these problems, making the work much easier. But you must JUSTIFY your work.

21. Let \(X \) denote the number of heads we get by tossing a coin 50 times. Consider Chebychev’s Inequality for the case of 2 standard deviations. Compare the upper bound given by the inequality to the exact probability.

22. Suppose the number \(N \) of cars arriving during a given time period at a toll booth has a Poisson distribution with parameter \(\lambda \). Each car has a probability \(p \) of being in a car pool. Let \(M \) be the number of car-pool cars that arrive in the given period. Show that \(M \) also has a Poisson distribution, with parameter \(p\lambda \). (Hint: Use the Maclaurin series for \(e^x \).)

23. Consider a three-sided die, as on page 37. Let \(X \) denote the number of dots obtained in one roll.

 (a) (10) State the value of \(p_X(2) \).
 (b) (10) Find \(EX \) and \(\text{Var}(X) \).
 (c) (15) Suppose you win $2 for each dot. Find \(EW \), where \(W \) is the amount you win.

24. Consider the parking space problem in Section 4.2.2. Find \(\text{Var}(M) \), where \(M \) is the number of empty spaces in the first block, and \(\text{Var}(D) \).

25. Suppose \(X \) and \(Y \) are independent, with variances 1 and 2, respectively. Find the value of \(c \) that minimizes \(\text{Var}[cX + (1-c)Y] \).

26. In the cards example in Section 2.15.1, let \(H \) denote the number of hearts. Find \(EH \) and \(\text{Var}(H) \).

27. In the bank example in Section 4.5, suppose you observe the bank for \(n \) days. Let \(X \) denote the number of days in which at least 2 customers entered during the 11:00-11:15 observation period. Find \(P(X = k) \).

28. Find \(E(X^3) \), where \(X \) has a geometric distribution with parameter \(p \).
29. Suppose we have a nonnegative random variable X, and define a new random variable Y, which is equal to X if $X > 8$ and equal to 0 otherwise. Assume X takes on only a finite number of values (just a mathematical nicety, not really an issue). Which one of the following is true:

(i) $EY \leq EX$.

(ii) $EY \geq EX$.

(iii) Either of EY and EX could be larger than the other, depending on the situation.

(iv) EY is undefined.

30. Say we roll two dice, a blue one and a yellow one. Let B and Y denote the number of dots we get, respectively, and write $S = B + Y$. Now let G denote the indicator random variable for the event $S = 2$. Find $E(G)$.

31. Consider the ALOHA example, Section 4.10. Write a call to the built-in R function `dbinom()` to evaluate (4.54) for general m and p.

32. Consider the bus ridership example, Section 2.12. Suppose upon arrival to a certain stop, there are 2 passengers. Let A denote the number of them who choose to alight at that stop.

(a) State the parametric family that the distribution of A belongs to.

(b) Find $p_A(1)$ and $F_A(1)$, writing each answer in decimal expression form e.g. $12.8 \cdot 0.32 + 0.3333$.

33. Suppose you have a large disk farm, so heavily used that the lifetimes L are measured in months. They come from two different factories, in proportions q and $1-q$. The disks from factory i have geometrically distributed lifetime with parameter p_i, $i = 1,2$. Find $\text{Var}(L)$ in terms of q and the p_i.

34. Show how to eliminate the inner loop in the code at the end of Section 4.8.
Chapter 5

Pause to Reflect

Now that we have some basics, let’s step back a bit, and think about what we’ve learned.

5.1 A Cautionary Tale

Intuition is great, but it can lead you astray! The example in this section shows how things can go wrong.

5.1.1 Trick Coins, Tricky Example

Suppose we have two trick coins in a box. They look identical, but one of them, denoted coin 1, is heavily weighted toward heads, with a 0.9 probability of heads, while the other, denoted coin 2, is biased in the opposite direction, with a 0.9 probability of tails. Let C_1 and C_2 denote the events that we get coin 1 or coin 2, respectively.

Our experiment consists of choosing a coin at random from the box, and then tossing it n times. Let B_i denote the outcome of the i^{th} toss, $i = 1,2,3,...$, where $B_i = 1$ means heads and $B_i = 0$ means tails. Let $X_i = B_1 + \ldots + B_i$, so X_i is a count of the number of heads obtained through the i^{th} toss.

The question is: “Does the random variable X_i have a binomial distribution?” Or, more simply, the question is, “Are the random variables B_i independent?” To most people’s surprise, the answer is No (to both questions). Why not?

The variables B_i are indeed 0-1 variables, and they have a common success probability. But they are not independent! Let’s see why they aren’t.
Consider the events \(A_i = \{ B_i = 1 \}, i = 1,2,3, \ldots \). In fact, just look at the first two. By definition, they are independent if and only if

\[
P(A_1 \text{ and } A_2) = P(A_1)P(A_2) \tag{5.1}
\]

First, what is \(P(A_1) \)? **Now, wait a minute!** Don’t answer, “Well, it depends on which coin we get,” because this is NOT a conditional probability. Yes, the conditional probabilities \(P(A_1|C_1) \) and \(P(A_1|C_2) \) are 0.9 and 0.1, respectively, but the unconditional probability is \(P(A_1) = 0.5 \). You can deduce that either by the symmetry of the situation, or by

\[
P(A_1) = P(C_1)P(A_1|C_1) + P(C_2)P(A_1|C_2) = (0.5)(0.9) + (0.5)(0.1) = 0.5 \tag{5.2}
\]

You should think of all this in the notebook context. Each line of the notebook would consist of a report of three things: which coin we get; the outcome of the first toss; and the outcome of the second toss. (Note by the way that in our experiment we don’t know which coin we get, but conceptually it should have a column in the notebook.) If we do this experiment for many, many lines in the notebook, about 90% of the lines in which the coin column says “1” will show Heads in the second column. But 50% of the lines overall will show Heads in that column.

So, the right hand side of Equation (5.1) is equal to 0.25. What about the left hand side?

\[
P(A_1 \text{ and } A_2) = P(A_1 \text{ and } A_2 \text{ and } C_1) + P(A_1 \text{ and } A_2 \text{ and } C_2) \tag{5.3}
\]

\[
= P(A_1 \text{ and } A_2|C_1)P(C_1) + P(A_1 \text{ and } A_2|C_2)P(C_2) \tag{5.4}
\]

\[
= (0.9)^2(0.5) + (0.1)^2(0.5) \tag{5.5}
\]

\[
= 0.41 \tag{5.6}
\]

Well, 0.41 is not equal to 0.25, so you can see that the events are not independent, contrary to our first intuition. And that also means that \(X_i \) is not binomial.

5.1.2 Intuition in Retrospect

To get some intuition here, think about what would happen if we tossed the chosen coin 10000 times instead of just twice. If the tosses were independent, then for example knowledge of the first 9999 tosses should not tell us anything about the 10000th toss. But that is not the case at all. After 9999 tosses, we are going to have a very good idea as to which coin we had chosen, because by that time we will have gotten about 9000 heads (in the case of coin \(C_1 \)) or about 1000 heads (in the case of \(C_2 \)). In the former case, we know that the 10000th toss is likely to be a head, while
5.2. WHAT ABOUT “ITERATED VARIANCE”?

in the latter case it is likely to be tails. In other words, earlier tosses do indeed give us information about later tosses, so the tosses aren’t independent.

5.1.3 Implications for Modeling

The lesson to be learned is that independence can definitely be a tricky thing, not to be assumed cavalierly. And in creating probability models of real systems, we must give very, very careful thought to the conditional and unconditional aspects of our models—it can make a huge difference, as we saw above. Also, the conditional aspects often play a key role in formulating models of nonindependence.

This trick coin example is just that—tricky—but similar situations occur often in real life. If in some medical study, say, we sample people at random from the population, the people are independent of each other. But if we sample families from the population, and then look at children within the families, the children within a family are not independent of each other.

5.2 What About “Iterated Variance”?

In analogy to (4.68), one would think that

\[\text{Var}(V) = \sum_c P(U = c) \text{Var}(V \mid U = c) \]

(5.7)

In terms of the student heights example above, this wouldn’t make sense, because it doesn’t take into account the variation in means from one department to another. (This matter, because \(\text{Var}(V) = E[(V - EV)^2] \).) So, it’s not surprising that another term must be added to (5.7). This topic is discussed in Section ??, but for now the point is that although good intuition is essential, we must not overrely on it..

5.3 Why Not Just Do All Analysis by Simulation?

Now that computer speeds are so fast, one might ask why we need to do mathematical probability analysis; why not just do everything by simulation? There are a number of reasons:

- Even with a fast computer, simulations of complex systems can take days, weeks or even months.
- Mathematical analysis can provide us with insights that may not be clear in simulation.
Like all software, simulation programs are prone to bugs. The chance of having an uncaught bug in a simulation program is reduced by doing mathematical analysis for a special case of the system being simulated. This serves as a partial check.

Statistical analysis is used in many professions, including engineering and computer science, and in order to conduct meaningful, useful statistical analysis, one needs a firm understanding of probability principles.

An example of that second point arose in the computer security research of a graduate student at UCD, Senthilkumar Cheetancheri, who was working on a way to more quickly detect the spread of a malicious computer worm. He was evaluating his proposed method by simulation, and found that things “hit a wall” at a certain point. He wasn’t sure if this was a real limitation; maybe, for example, he just wasn’t running his simulation on the right set of parameters to go beyond this limit. But a mathematical analysis showed that the limit was indeed real.

5.4 Reconciliation of Math and Intuition (optional section)

Here is a more theoretical definition of probability, as opposed to the intuitive “notebook” idea in this book. The definition is an abstraction of the notions of events (the sets A in W below) and probabilities of those events (the values of the function $P(A)$):

Definition 9 Let S be a set, and let W be a collection of subsets of S. Let P be a real-valued function on W. Then S, W and P form a probability space if the following conditions hold:

- $P(S) = 1$.
- $S \in W$.
- W is closed under complements (if a set is in W, then the set’s complement with respect to S is in W too) and under unions of countably many members of W.
- $P(A) \geq 0$ for any A in W.
- If $A_1, A_2, ... \in W$ and the A_i are pairwise disjoint, then

$$P(\cup_i A_i) = \sum_i P(A_i) \quad (5.8)$$

A random variable is any function $X : S \rightarrow \mathcal{R}$.\footnote{The function must also have a property called measurability, which we will not discuss here.}
Using just these simple axioms, one can prove (with lots of heavy math) theorems like the Strong Law of Large Numbers:

Theorem 10 Consider a random variable U, and a sequence of independent random variables $U_1, U_2, ...$ which all have the same distribution as U. Then

$$\lim_{n \to \infty} \frac{U_1 + ... + U_n}{n} = E(U) \text{ with probability 1} \quad (5.9)$$

In other words, the average value of U in all the lines of the notebook will indeed converge to EU.

Exercises

1. Consider a game in which one rolls a single die until one accumulates a total of at least four dots. Let X denote the number of rolls needed. Find $P(X \leq 2)$ and $E(X)$.

2. Recall the committee example in Section 3.9.2. Suppose now, though, that the selection protocol is that there must be at least one man and at least one woman on the committee. Find $E(D)$ and $Var(D)$.

3. Suppose a bit stream is subject to errors, with each bit having probability p of error, and with the bits being independent. Consider a set of four particular bits. Let X denote the number of erroneous bits among those four.

 (a) Find $P(X = 2)$ and EX.

 (b) What famous parametric family of distributions does the distribution of X belong to?

 (c) Let Y denote the maximum number of consecutive erroneous bits. Find $P(Y = 2)$ and $Var(Y)$.

5. Finish the computation in (4.18).

6. Derive the facts that for a Poisson-distributed random variable X with parameter λ, $EX = Var(X) = \lambda$. Use the hints in Section 4.5.

7. A civil engineer is collecting data on a certain road. She needs to have data on 25 trucks, and 10 percent of the vehicles on that road are trucks. State the famous parametric family that is relevant here, and find the probability that she will need to wait for more than 200 vehicles to pass before she gets the needed data.

8. In the ALOHA example:
(a) Find $E(X_1)$ and $Var(X_1)$, for the case $p = 0.4$, $q = 0.8$. You are welcome to use quantities already computed in the text, e.g. $P(X_1 = 1) = 0.48$, but be sure to cite equation numbers.

(b) Find $P($collision during epoch 1$)$ for general p, q.

9. Our experiment is to toss a nickel until we get a head, taking X rolls, and then toss a dime until we get a head, taking Y tosses. Find:

(a) $Var(X+Y)$.

(b) Long-run average in a “notebook” column labeled X^2.

10. Consider the game in Section 4.8. Find $E(Z)$ and $Var(Z)$, where $Z = Y_6 - X_6$.

11. Say we choose six cards from a standard deck, one at a time WITHOUT replacement. Let N be the number of kings we get. Does N have a binomial distribution? Choose one: (i) Yes. (ii) No, since trials are not independent. (iii) No, since the probability of success is not constant from trial to trial. (iv) No, since the number of trials is not fixed. (v) (ii) and (iii). (vi) (ii) and (iv). (vii) (iii) and (iv).

12. Suppose we have n independent trials, with the probability of success on the ith trial being p_i. Let $X = \text{the number of successes}$. Use the fact that “the variance of the sum is the sum of the variance” for independent random variables to derive $Var(X)$.

13. Prove Equation (3.41).

14. Show that if X is a nonnegative-integer valued random variable, then

$$EX = \sum_{i=1}^{\infty} P(X \geq i)$$ \hspace{1cm} (5.10)

Hint: Write $i = \sum_{j=1}^{i} 1$, and when you see an iterated sum, reverse the order of summation.

15. Suppose we toss a fair coin n times, resulting in X heads. Show that the term expected value is a misnomer, by showing that

$$\lim_{n \to \infty} P(X = n/2) = 0$$ \hspace{1cm} (5.11)

Use Stirling’s approximation,

$$k! \approx \sqrt{2\pi k} \left(\frac{k}{e}\right)^k$$ \hspace{1cm} (5.12)
16. Suppose X and Y are independent random variables with standard deviations 3 and 4, respectively.

(a) Find Var(X+Y).

(b) Find Var(2X+Y).

17. Fill in the blanks in the following simulation, which finds the approximate variance of N, the number of rolls of a die needed to get the face having just one dot.

```r
onesixth <- 1/6
sumn <- 0
sumn2 <- 0
for (i in 1:10000) {
  n <- 0
  while(TRUE) {
    if (______________________________ < onesixth) break
  }
  sumn <- sumn + n
  sumn2 <- sumn2 + n^2
}
approxvarn <- ____________________________________________
cat("the approx. value of Var(N) is ",approxvarn,"n")
```

18. Let X be the total number of dots we get if we roll three dice. Find an upper bound for \(P(X \geq 15) \), using our course materials.

19. Suppose X and Y are independent random variables, and let \(Z = XY \). Show that \(Var(Z) = E(X^2)E(Y^2) - [E(X)]^2[E(Y)]^2 \).

20. This problem involves a very simple model of the Web. (Far more complex ones exist.)

Suppose we have \(n \) Web sites. For each pair of sites \(i \) and \(j \), \(i \neq j \), there is a link from site \(i \) to site \(j \) with probability \(p \), and no link (in that direction) with probability \(1-p \). Let \(N_i \) denote the number of sites that site \(i \) is linked to; note that \(N_i \) can range from 0 to \(n-1 \). Also, let \(M_{ij} \) denote the number of outgoing links that sites \(i \) and \(j \) have in common, not counting the one between them, if any. Assume that each site forms its outgoing links independently of the others.

Say \(n = 10 \), \(p = 0.2 \). Find the following:

(a) \(P(N_1 = 3) \)

(b) \(P(N_1 = 3 \text{ and } N_2 = 2) \)

(c) \(Var(N_1) \)
(d) $\text{Var}(N_1 + N_2)$
(e) $P(M_{12} = 4)$

Note: There are some good shortcuts in some of these problems, making the work much easier. But you must JUSTIFY your work.

21. Let X denote the number of heads we get by tossing a coin 50 times. Consider Chebychev's Inequality for the case of 2 standard deviations. Compare the upper bound given by the inequality to the exact probability.

22. Suppose the number N of cars arriving during a given time period at a toll booth has a Poisson distribution with parameter λ. Each car has a probability p of being in a car pool. Let M be the number of car-pool cars that arrive in the given period. Show that M also has a Poisson distribution, with parameter $p\lambda$. (Hint: Use the Maclaurin series for e^x.)

23. Consider a three-sided die, as on page 37. Let X denote the number of dots obtained in one roll.

(a) (10) State the value of $p_X(2)$.
(b) (10) Find EX and $\text{Var}(X)$.
(c) (15) Suppose you win $2 for each dot. Find EW, where W is the amount you win.

24. Consider the parking space problem in Section 4.2.2. Find $\text{Var}(M)$, where M is the number of empty spaces in the first block, and $\text{Var}(D)$.

25. Suppose X and Y are independent, with variances 1 and 2, respectively. Find the value of c that minimizes $\text{Var}(cX + (1-c)Y)$.

26. In the cards example in Section 2.15.1, let H denote the number of hearts. Find EH and $\text{Var}(H)$.

27. In the bank example in Section 4.5, suppose you observe the bank for n days. Let X denote the number of days in which at least 2 customers entered during the 11:00-11:15 observation period. Find $P(X = k)$.

28. Find $E(X^3)$, where X has a geometric distribution with parameter p.

29. Suppose we have a nonnegative random variable X, and define a new random variable Y, which is equal to X if $X > 8$ and equal to 0 otherwise. Assume X takes on only a finite number of values (just a mathematical nicety, not really an issue). Which one of the following is true:

 (i) $EY \leq EX$.
(ii) $E_Y \geq E_X$.

(iii) Either of E_Y and E_X could be larger than the other, depending on the situation.

(iv) E_Y is undefined.

30. Say we roll two dice, a blue one and a yellow one. Let B and Y denote the number of dots we get, respectively, and write $S = B + Y$. Now let G denote the indicator random variable for the event $S = 2$. Find $E(G)$.

31. Consider the ALOHA example, Section 4.10. Write a call to the built-in R function `dbinom()` to evaluate (4.54) for general m and p.

32. Consider the bus ridership example, Section 2.12. Suppose upon arrival to a certain stop, there are 2 passengers. Let A denote the number of them who choose to alight at that stop.

 (a) State the parametric family that the distribution of A belongs to.

 (b) Find $p_A(1)$ and $F_A(1)$, writing each answer in decimal expression form e.g. $12.8 \cdot 0.32 + 0.3333$.

33. Suppose you have a large disk farm, so heavily used that the lifetimes L are measured in months. They come from two different factories, in proportions q and $1-q$. The disks from factory i have geometrically distributed lifetime with parameter p_i, $i = 1, 2$. Find $\text{Var}(L)$ in terms of q and the p_i.
Chapter 6

Introduction to Discrete Markov Chains

(From this point onward, we will be making heavy use of linear algebra. The reader may find it helpful to review Appendix ??.)

Here we introduce Markov chains, a topic covered in much more detail in Chapter 12.

The basic idea is that we have random variables X_1, X_2, \ldots, with the index representing time. Each one can take on any value in a given set, called the state space; X_n is then the state of the system at time n. The state space is assumed either finite or countably infinite. We sometimes also consider an initial state, X_0, which might be modeled as either fixed or random. However, this seldom comes into play.

The key assumption is the Markov property, which in rough terms can be described as:

The probabilities of future states, given the present state and the past state, depends only on the present state; the past is irrelevant.

In formal terms:

$$P(X_{t+1} = s_{t+1}|X_t = s_t, X_{t-1} = s_{t-1}, \ldots, X_0 = s_0) = P(X_{t+1} = s_{t+1}|X_t = s_t) \quad (6.1)$$

1The latter is a mathematical term meaning, in essence, that it is possible to denote the space using integer subscripts. It can be shown that the set of all real numbers is not countably infinite, though perhaps surprisingly the set of all rational numbers is countably infinite.
Note that in (6.1), the two sides of the equation are equal but their common value may depend on t. We assume that this is not the case; nondependence on t is known as stationarity. For instance, the probability of going from state 2 to state 5 at time 29 is assumed to be the same as the corresponding probability at time 333.

6.1 Matrix Formulation

We define p_{ij} to be the probability of going from state i to state j in one time step; note that this is a conditional probability, i.e. $P(X_{n+1} = j \mid X_n = i)$. These quantities form a matrix P whose row i, column j element is p_{ij}, which is called the transition matrix. Each row of P must sum to 1 (do you see why?).

For example, consider a three-state Markov chain with transition matrix

$$P = \begin{pmatrix}
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 1 & 0 \\
1 & 0 & 0
\end{pmatrix} \quad (6.2)$$

This means that if we are now at state 1, the probabilities of going to states 1, 2 and 3 are $\frac{1}{2}$, 0 and $\frac{1}{2}$, respectively. Note that each row’s probabilities must sum to 1—after all, from any particular state, we must go somewhere.

Actually, the m^{th} power, P^m, of the transition matrix gives the probabilities for m-step transitions. In other words, the (i,j) element of P^m is $P(X_{t+m} = j \mid X_t = i)$. This is clear for the case $m = 2$ (after which one can use mathematical induction), as follows.

As usual, “break big events down into small events.” How can it happen that $X_{t+2} = j$? Well, break things down according to where we might go first after leaving i. We might go from i to 1, say, then from 1 to j. So,

$$P(X_{t+2} = j \mid X_t = i) = \sum_k p_{ik} p_{kj} \quad (6.3)$$

In view of the rule for multiplying matrices, the expression on the right-hand side is simply the (i,j) element of P^2!

2 Not to be confused with the notion of a stationary distribution, coming below.

3 Unfortunately, we have some overloading of symbols here. Both in this book and in the field in general, we usually use the letter P to denote this matrix, yet we continue to denote probabilities by $P(\)$. However, it will be clear from context which we mean. The same is true for our transition probabilities p_{ij}, which use a subscripted letter p, which is also the case for probably mass functions.
6.2 Example: Die Game

As our first example of Markov chains, consider the following game. One repeatedly rolls a die, keeping a running total. Each time the total exceeds 10, we receive one dollar, and continue playing, resuming where we left off, mod 10. Say for instance we have a total of 8, then roll a 5. We receive a dollar, and now our total is 3.

It will simplify things if we assume that the player starts with one free point.

This process clearly satisfies the Markov property, with our state being our current total. If our current total is 6, for instance, then the probability that we next have a total of 9 is 1/6, regardless of what happened our previous rolls. We have \(p_{25}, p_{72} \) and so on all equal to 1/6, while for instance \(p_{29} = 0 \). Here’s the code to find the transition matrix \(P \):

```r
# 10 states, so 10x10 matrix
# since most elements will be 0s, set them all to 0 first,
# then replace those that should be nonzero
p <- matrix(rep(0, 100), nrow=10)
one-sixth <- 1/6
for (i in 1:10) {  # look at each row
  # since we are rolling a die, there are only 6 possible states we
  # can go to from i, so check these
  for (j in 1:6) {
    k <- i + j  # new total, but did we win?
    if (k > 10) k <- k - 10
    p[i,k] <- on-sixth
  }
}
```

Note that since we knew that many entries in the matrix would be zero, it was easier just to make them all 0 first, and then fill in the nonzero ones.

6.3 Long-Run State Probabilities

Let \(N_{it} \) denote the number of times we have visited state \(i \) during times \(1, \ldots, t \). For instance, in the die game, \(N_{8,22} \) would be the number of rolls among the first 22 that resulted in our having a total of 8.
In typical applications we have that

$$\pi_i = \lim_{t \to \infty} \frac{N_{it}}{t}$$ \hspace{1cm} (6.4)

exists for each state i. Under a couple more conditions\footnote{Basically, we need the chain to not be periodic. Consider a random walk, for instance: We start at position 0 on the number line, at time 0. The states are the integers. (So, this chain has an infinite state space.) At each time, we flip a coin to determine whether to move right (heads) or left (tails) 1 unit. A little thought shows that if we start at 0, the only times we can return to 0 are even-number times, i.e. $P(X_n = 0 | X_0 = 0)$ for all odd numbers n. This is a periodic chain. By the way, (6.4) turns out to be 0 for this chain.}, we have the stronger result,

$$\lim_{t \to \infty} P(X_t = i) = \pi_i$$ \hspace{1cm} (6.5)

These quantities π_i are typically the focus of analyses of Markov chains.

We will use the symbol π to name the column vector of all the π_i:

$$\pi = (\pi_1, \pi_2, \ldots)'$$ \hspace{1cm} (6.6)

where $'$ means matrix transpose.

6.3.1 Stationary Distribution

The π_i are called stationary probabilities, because if the initial state X_0 is a random variable with that distribution, then all X_i will have that distribution. Here’s why:

Using (6.5), we have

$$\pi_i = \lim_{n \to \infty} P(X_n = i)$$ \hspace{1cm} (6.7)

$$= \lim_{n \to \infty} \sum_k P(X_{n-1} = k) p_{ki}$$ \hspace{1cm} (6.8)

$$= \sum_k \pi_k p_{ki}$$ \hspace{1cm} (6.9)

So, if $P(X_0 = i) = \pi_i$, then
6.3. **LONG-RUN STATE PROBABILITIES**

\[
P(X_1 = i) = \sum_k P(X_0 = k) p_{ki} \quad (6.10)
\]

\[
= \sum_k \pi_k p_{ki} \quad (6.11)
\]

\[
= \pi_i \quad (6.12)
\]

this last using (6.9). So, if \(X_0\) has distribution \(\pi\), then the same will be true for \(X_1\), and continuing in this manner we see that \(X_2, X_3, \ldots\) will all have that distribution, thus demonstrating the claimed stationary property for \(\pi\). (This will be illustrated more concretely in Section 6.4.2.)

Of course, (6.7) holds for all states \(i\). So in matrix terms, (6.7) says

\[
\pi' = \pi' P \quad (6.13)
\]

6.3.2 Calculation of \(\pi\)

Equation (6.13) then shows us how to find the \(\pi_i\), at least in the case of finite state spaces, the subject of this section here, as follows.

First, rewrite (6.13)

\[
(I - P')\pi = 0 \quad (6.14)
\]

Here \(I\) is the \(n \times n\) identity matrix (for a chain with \(n\) states), and again \(^t\) denotes matrix transpose.

This equation has infinitely many solutions; if \(\pi\) is a solution, then so for example is \(8\pi\). Moreover, the equation shows that the matrix there, \(I - P'\), cannot have an inverse; if it did, we could multiply both sides by the inverse, and find that the unique solution is \(\pi = 0\), which can’t be right. This says in turn that the rows of \(I - P'\) are not linearly independent.

The latter fact is quite important, for the following reason. Recall the close connection of matrix inverse and systems of linear equations. (6.14), a matrix equation, represents a system of \(n\) linear equations in \(n\) unknowns, the latter being \(\pi_1, \pi_2, \ldots, \pi_n\). So, the lack of linear independence of the rows of \(I - P'\) means, in plain English, that at least one of those equations is redundant.

But we need \(n\) independent equations, and fortunately one is available:

\[
\sum_i \pi_i = 1 \quad (6.15)
\]
Note that (6.15) can be written as

\[O' \pi = 1 \] (6.16)

where \(O \) is a vector of \(n \) 1s. Excellent, let’s use it!

So, again, thinking of (6.14) as a system of linear equations, let’s replace the last equation by (6.16). Switching back to the matrix view, that means that we replace the last row in the matrix \(I - P' \) in (6.14) by \(O' \), and correspondingly replace the last element of the right-side vector by 1. Now we have a nonzero vector on the right side, and a full-rank (i.e. invertible) matrix on the left side. This is the basis for the following code, which we will use for finding \(\pi \).

```r
findpi <- function(p) {
  n <- nrow(p)
  # find I-P'
  imp <- diag(n) - t(p)
  # replace the last row of I-P' as discussed
  imp[n,] <- rep(1,n)
  # replace the corresponding element of the
  # right side by (the scalar) 1
  rhs <- c(rep(0,n-1),1)
  # now use R's built-in solve()
  solve(imp,rhs)
}
```

6.3.2.1 Example: \(\pi \) in Die Game

Consider the die game example above. Guess what! Applying the above code, all the \(\pi_i \) turn out to be 1/10. In retrospect, this should be obvious. If we were to draw the states 1 through 10 as a ring, with 1 following 10, it should be clear that all the states are completely symmetric.

6.3.2.2 Another Way to Find \(\pi \)

Here is another way to compute \(\pi \). It is not commonly used, but it will also help illustrate some of the concepts.

Suppose (6.5) holds. Recall that \(P^m \) is the m-step transition matrix, so that for instance row 1 of that matrix is the set of probabilities of going from state 1 to the various states in m steps. The
same will be true for row 2 and so on. Putting that together with (6.5), we have that

\[
\lim_{n \to \infty} P^n = \Pi
\]

where the \(n \times n \) matrix \(\Pi \) has each of its rows equal to \(\pi' \).

We can use this to find \(\pi \). We take \(P \) to a large power \(m \), and then each of the rows will approximate \(\pi \). In fact, we can get an even better approximation by averaging the rows.

Moreover, we can save a lot of computation by noting the following. Say we want the 16\(^{th} \) power of \(P \). We could set up a loop with 15 iterations, building up a product. But actually we can do it with just 4 iterations. We first square \(P \), yielding \(P^2 \). But then we square that, yielding \(P^4 \). Square twice more, yielding \(P^8 \) and finally \(P^{16} \). This is especially fast on a GPU (graphics processing unit).

```r
# finds stationary probabilities of a Markov chain using matrix powers
altfindpi <- function(p, k) {
  niter <- ceiling(log2(k))
  prd <- p
  for (i in 1:niter) {
    prd <- prd %*% prd
  }
  colMeans(prd)
}
```

This approach has the advantage of being easy to parallelize, unlike matrix inversion.

6.4 Example: 3-Heads-in-a-Row Game

How about the following game? We keep tossing a coin until we get three consecutive heads. What is the expected value of the number of tosses we need?

We can model this as a Markov chain with states 0, 1, 2 and 3, where state \(i \) means that we have accumulated \(i \) consecutive heads so far. If we simply stop playing the game when we reach state 3, that state would be known as an absorbing state, one that we never leave.

We could proceed on this basis, but to keep things elementary, let’s just model the game as being played repeatedly, as in the die game above. You’ll see that that will still allow us to answer the original question. Note that now that we are taking that approach, it will suffice to have just three
states, 0, 1 and 2; there is no state 3, because as soon as we win, we immediately start a new game, in state 0.

6.4.1 Markov Analysis

Clearly we have transition probabilities such as p_{01}, p_{12}, p_{10} and so on equal to 1/2. Note from state 2 we can only go to state 0, so $p_{20} = 1$.

Here’s the code below. Of course, since R subscripts start at 1 instead of 0, we must recode our states as 1, 2 and 3.

```r
p <- matrix(rep(0,9),nrow=3)
p[1,1] <- 0.5
p[1,2] <- 0.5
p[2,3] <- 0.5
p[2,1] <- 0.5
p[3,1] <- 1
findpi1(p)
```

It turns out that

$$\pi = (0.5714286, 0.2857143, 0.1428571)$$

(6.18)

So, in the long run, about 57.1% of our tosses will be done while in state 0, 28.6% while in state 1, and 14.3% in state 2.

Now, look at that latter figure. Of the tosses we do while in state 2, half will be heads, so half will be wins. In other words, about 0.071 of our tosses will be wins. And THAT figure answers our original question, through the following reasoning:

Think of, say, 10000 tosses. There will be about 710 wins sprinkled among those 10000 tosses. Thus the average number of tosses between wins will be about $10000/710 = 14.1$. In other words, the expected time until we get three consecutive heads is about 14.1 tosses.

6.4.2 Back to the word “Stationary”

Let’s look at the term stationary distribution in the context of this game.

At time 0, we haven’t done any coin flips, so $X_0 = 0$. But consider a modified version of the game, in which at time 0 you are given “credit” or a “head start. For instance, you might be allowed to start in state 1, meaning that you already have one consecutive head, even though you actually haven’t done any flips.
Now, suppose your head start is random, so that you start in state 0, 1 or 2 with certain probabilities. And suppose those probabilities are given by π! In other words, you start in state 0, 1 or 2, with probabilities 0.57, 0.29 and 0.14, as in (6.18). What, then, will be the distribution of X_1?

$$p_{X_1}(i) = P(X_1 = i) \tag{6.19}$$

$$= \sum_{j=0}^{2} P(X_0 = j) \cdot P(X_1 = i \mid X_0 = j) \tag{6.20}$$

$$= \sum_{j=0}^{2} \pi_j \cdot p(j, i) \tag{6.21}$$

This is exactly what we saw in (6.12) and the equations leading up to it. So we know that (6.21) will work out to π_i. In other words, $P(X_1 = 0) = 0.57$ and so on. (Work it out numerically if you are in doubt.) So, we see that

If X_0 has distribution π, then the same will be true for X_1. We say that the distribution of the chain is stationary.

6.5 A Modified Notebook Analysis

Our previous notebook analysis (and most of our future ones, other than for Markov chains), relied on imagining performing many independent replications of the same experiment.

6.5.1 A Markov-Chain Notebook

Consider Table 2.3 for instance. There our experiment was to watch the network during epochs 1 and 2. So, on the first line of the notebook, we would watch the network during epochs 1 and 2 and record the result. On the second line, we watch a new, independent replication of the network during epochs 1 and 2, and record the results.

But instead of imagining a notebook recording infinitely many replications of the two epochs, we could imagine watching just one replication but over infinitely many epochs. We'd watch the network during epoch 1, epoch 2, epoch 3 and so on. Now one line of the notebook would record one epoch.

For general Markov chains, each line would record one time step. We would have columns of the notebook labeled n and X_n. The reason this approach would be natural is (6.4). In that context, π_i would be the long-run proportion of notebook lines in which $X_n = i$.
CHAPTER 6. INTRODUCTION TO DISCRETE MARKOV CHAINS

6.5.2 Example: 3-Heads-in-a-Row Game

For instance, consider the 3-heads-in-a-row game. Then (6.18) says that about 57% of the notebook lines would have a 0 in the X_n column, with about 29% and 14% of the lines showing 1 and 2, respectively.

Moreover, suppose we also have a notebook column labeled Win, with an entry Yes in a certain line meaning, yes, that coin flip resulted in a win, with a No entry meaning no win. Then the mean time until a win, which we found to be 14.1 above, would be described in notebook terms as the long-run average number of lines between Yes entries in the Win column.

6.6 Simulation of Markov Chains

Following up on Section 6.5, recall that our previous simulations have basically put into code form our notebook concept. Our simulations up until now have been based on the definition of probability, which we had way back in Section 2.3. Our simulation code modeled the notebook independent replications notion. We can do a similar thing now, based on the ideas in Section 6.5.

In a time series kind of situation such as Markov chains, since we are interested in long-run behavior in the sense of time, our simulation is based on (6.5). In other words, we simulate the evolution of X_n as n increases, and take long-run averages of whatever is of interest.

Here is simulation code for the example in Section 6.4 calculating the approximate value of the long-run time between wins (found to be about 14.1 by mathematical means above):

```r
# simulation of 3-in-a-row coin toss game

threeinrow <- function(ntimesteps) {
  consec <- 0  # number of consec Hs
  nwins <- 0   # number of wins
  wintimes <- 0 # total of times to win
  startplay <- 0 # time step 0
  for (i in 1:ntimesteps) {
    if (toss() == 'H') {
      consec <- consec + 1
      if (consec == 3) {
        nwins <- nwins + 1
        wintimes <-
        wintimes + i - startplay
        consec <- 0
      }
    }
    startplay <- i
  }
}
```
6.7. Example: ALOHA

Consider our old friend, the ALOHA network model. (You may wish to review the statement of the model in Section 2.5 before continuing.) The key point in that system is that it was “memoryless,” in that the probability of what happens at time \(k+1 \) depends only on the state of the system at time \(k \).

For instance, consider what might happen at time 6 if \(X_5 = 2 \). Recall that the latter means that at the end of epoch 5, both of our two network nodes were active. The possibilities for \(X_6 \) are then

- \(X_6 \) will be 2 again, with probability \(p^2 + (1-p)^2 \)
- \(X_6 \) will be 1, with probability \(2p(1-p) \)

The central point here is that the past history of the system—i.e. the values of \(X_1, X_2, X_3, \) and \(X_4 \)—don’t have any impact. We can state that precisely:

The quantity

\[
P(X_6 = j | X_1 = i_1, X_2 = i_2, X_3 = i_3, X_4 = i_4, X_5 = i)
\]

(6.22)

does not depend on \(i_m, m = 1, ..., 4 \). Thus we can write (6.22) simply as \(P(X_6 = j | X_5 = i) \).

Furthermore, that probability is the same as \(P(X_9 = j | X_8 = i) \) and in general \(P(X_{k+1} = j | X_k = i) \). So, we do have a Markov chain.
Since this is a three-state chain, the p_{ij} form a 3x3 matrix:

$$P = \begin{pmatrix}
(1-q)^2 + 2q(1-q)p & 2q(1-q)(1-p) + 2q^2p(1-p) & q^2[p^2 + (1-p)^2] \\
(1-q)p & 2qp(1-p) + (1-q)(1-p) & q[p^2 + (1-p)^2] \\
0 & 2p(1-p) & p^2 + (1-p)^2
\end{pmatrix} \quad (6.23)$$

For instance, the element in row 0, column 2, p_{02}, is $q^2[p^2 + (1-p)^2]$, reflecting the fact that to go from state 0 to state 2 would require that both inactive nodes become active (which has probability q^2) and then either both try to send or both refrain from sending (probability $p^2 + (1-p)^2$).

For the ALOHA example here, with $p = 0.4$ and $q = 0.3$, the solution is $\pi_0 = 0.47$, $\pi_1 = 0.43$ and $\pi_2 = 0.10$.

So we know that in the long run, about 47% of the epochs will have no active nodes, 43% will have one, and 10% will have two. From this we see that the long-run average number of active nodes is

$$0 \cdot 0.47 + 1 \cdot 0.43 + 2 \cdot 0.10 = 0.63 \quad (6.24)$$

By the way, note that every row in a transition matrix must sum to 1. (The probability that we go from state i to somewhere is 1, after all, so we must have $\sum_j p_{ij} = 1$.) That implies that we can save some work in writing R code; the last column must be 1 minus the others. In our example above, we would write

```r
transmat <- matrix(rep(0,9),nrow=3)
p1 <- 1 - p
q1 <- 1 - q
transmat[1,1] <- q1^2 + 2 * q * q1 * p
transmat[1,2] <- 2 * q * q1 * p1 + 2 * q^2 * p * p1
transmat[2,1] <- q1 * p
transmat[2,2] <- 2 * q * p * p1 + q1 * p1
transmat[3,1] <- 0
transmat[3,2] <- 2 * p * p1
transmat[,3] <- 1 - p[,1] - p[,2]
findpi1(transmat)
```

Note the vectorized addition and recycling (Section 2.14.2).

6.8 Example: Bus Ridership Problem

Consider the bus ridership problem in Section 2.12. Make the same assumptions now, but add a new one: There is a maximum capacity of 20 passengers on the bus.
The random variables L_i, $i = 1, 2, 3, \ldots$ form a Markov chain. Let’s look at some of the transition probabilities:

\[p_{00} = 0.5 \] \hspace{1cm} (6.25)

\[p_{01} = 0.4 \] \hspace{1cm} (6.26)

\[p_{11} = (1 - 0.2) \cdot 0.5 + 0.2 \cdot 0.4 \] \hspace{1cm} (6.27)

\[p_{20} = (0.2)^2 (0.5) = 0.02 \] \hspace{1cm} (6.28)

\[p_{20,20} = (0.8)^{20} (0.5 + 0.4 + 0.1) + \binom{20}{1} (0.2)^1 (0.8)^{20-1} (0.4 + 0.1) + \binom{20}{2} (0.2)^2 (0.8)^{18} (0.1) \] \hspace{1cm} (6.29)

(Note that for clarity, there is a comma in $p_{20,20}$, as p_{2020} would be confusing and in some other examples even ambiguous. A comma is not necessary in p_{11}, since there must be two subscripts; the 11 here can’t be eleven.)

After finding the π vector as above, we can find quantities such as the long-run average number of passengers on the bus,

\[\sum_{i=0}^{20} \pi_i i \] \hspace{1cm} (6.30)

We can also compute the long-run average number of would-be passengers who fail to board the bus. Denote by A_i denote the number of passengers on the bus as it *arrives* at stop i. The key point is that since $A_i = L_{i-1}$, then (6.4) and (6.5) will give the same result, no matter whether we look at the L_j chain or the A_j chain.

Now, armed with that knowledge, let D_j denote the number of disappointed people at stop j. Then

\[ED_j = 1 \cdot P(D_j = 1) + 2 \cdot P(D_j = 2). \] \hspace{1cm} (6.31)

That latter probability, for instance, is
$P(D_j = 2) = P(A_j = 20 \text{ and } B_j = 2 \text{ and } G_j = 0)$ \hspace{1cm} (6.32) \\
= P(A_j = 20) P(B_j = 2) P(G_j = 0) \hspace{1cm} (6.33) \\
= P(A_j = 20) \cdot 0.1 \cdot 0.8^{20} \hspace{1cm} (6.34)

where as before B_j is the number who wish to board at stop j, and G_j is the number who get off the bus at that stop. Using the same reasoning, one can find $P(D_j = 1)$. (A number of cases to consider, left as an exercise for the reader.)

Taking the limits as $j \to \infty$, we have the long-run average number of disappointed customers on the left, and on the right, the terms $P(A_j = 19)$ and $P(A_j = 20)$ go to π_{19} and π_{20}, which we have and thus can obtain the value regarding disappointed customers.

Let’s find the long-run average number of customers who alight from the bus. This can be done by considering all the various cases, but (4.68) really shortens our work:

$$EG_n = \sum_{i=0}^{20} P(A_n = i)E(G_n|A_n = i)$$ \hspace{1cm} (6.35)

Given $A_n = i$, G_n has a binomial distribution with i trials and success probability 0.2, so

$$E(G_n|A_n = i) = i \cdot 0.2$$ \hspace{1cm} (6.36)

So, the right-hand side of (6.35) converges to

$$\sum_{i=0}^{20} \pi_i i \cdot 0.2$$ \hspace{1cm} (6.37)

In other words, the long-run average number alighting is 0.2 times (6.30).

6.9 Example: an Inventory Model

Consider the following simple inventory model. A store has 1 or 2 customers for a certain item each day, with probabilities v and w ($v+w = 1$). Each customer is allowed to buy only 1 item.

When the stock on hand reaches 0 on a day, it is replenished to r items immediately after the store closes that day.
6.10. EXPECTED HITTING TIMES

If at the start of a day the stock is only 1 item and 2 customers wish to buy the item, only one customer will complete the purchase, and the other customer will leave emptyhanded.

Let X_n be the stock on hand at the end of day n (after replenishment, if any). Then X_1, X_2, \ldots form a Markov chain, with state space $1, 2, \ldots, r$.

The transition probabilities are easy to find. Take p_{21}, for instance. If there is a stock of 2 items at the end of one day, what is the (conditional) probability that there is only 1 item at the end of the next day? Well, for this to happen, there would have to be just 1 customer coming in, not 2, and that has probability v. So, $p_{21} = v$. The same reasoning shows that $p_{2r} = w$.

Let’s write a function `inventory(v,w,r)` that returns the π vector for this Markov chain. It will call `findpi1()`, similarly to the two code snippets on page 120. For convenience, let’s assume r is at least 3.

```r
inventory <- function(v, w, r) {
  tm <- matrix(rep(0, r^2), nrow=r)
  for (i in 3:r) {
    tm[i, i-1] <- v
    tm[i, i-2] <- w
  }
  tm[2, 1] <- v
  tm[2, r] <- w
  tm[1, r] <- 1
  findpi1(tm)
}
```

6.10 Expected Hitting Times

Consider an n-state Markov chain that is irreducible, meaning that it is possible to get from any state i to any other state j in some number of steps. Define the random variable T_{ij} to be the time needed to go from state i to state j. (Note that T_{ii} is NOT 0, though it can be 1 if $p_{ii} > 0$.)

In many applications, we are interested in the mean time to reach a certain state, given that we start at some specified state. In other words, we wish to calculate ET_{ij}.

The material in Section 4.15 is useful here. In (4.68), take $V = T_{ij}$ and take U to be the first state

\[\text{If } r \text{ is 2, then the expression 3:2 in the code evaluates to the vector (3,2), which would not be what we want in this case.} \]
we visit after leaving state i (which could be i again). Then

$$E(T_{ij}) = \sum_k p_{ik} E(T_{ij} \mid U = k), \ 1 \leq i, j \leq n$$

(6.38)

Consider what happens if $U = m \neq j$. Then we will have already used up 1 time step, and still will need an average of $E_{T_{kj}}$ more steps to get to j. In other words,

$$E(T_{ij} \mid U = k \neq j) = 1 + E_{T_{kj}}$$

(6.39)

Did you notice the Markov property being invoked?

On the other hand, the case $U = j$ is simple:

$$E(T_{ij} \mid U = j) = 1$$

(6.40)

This then implies that

$$E(T_{ij}) = 1 + \sum_{k \neq j} p_{ik} E(T_{kj}), \ 1 \leq i, j \leq n$$

(6.41)

We’ll focus on the case $j = n$, i.e. look at how long it takes to get to state n. (We could of course do the same analysis for any other destination state.) Let η_i denote $E(T_{in})$, and define $\eta = (\eta_1, \eta_2, ..., \eta_{n-1})'$. (Note that η has only $n - 1$ components!) So,

$$\eta_i = 1 + \sum_{k < n} p_{ik} \eta_k, \ 1 \leq i, j \leq n$$

(6.42)

Equation (6.42) is a system of linear equations, which we can write in matrix form. Then the code to solve the system is (remember, we have only an $(n - 1) \times (n - 1)$ system)

```r
findeta <- function(p) {
  n <- nrow(p)
  q <- diag(n) - p
  q[1:(n-1),1:(n-1)]
  ones <- rep(1,n-1)
  solve(q,ones)
}
```
Chapter 7

Continuous Probability Models

There are other types of random variables besides the discrete ones you studied in Chapter 3. This chapter will cover another major class, continuous random variables, which form the heart of statistics and are used extensively in applied probability as well. It is for such random variables that the calculus prerequisite for this book is needed.

7.1 Running Example: a Random Dart

Imagine that we throw a dart at random at the interval (0,1). Let D denote the spot we hit. By “at random” we mean that all subintervals of equal length are equally likely to get hit. For instance, the probability of the dart landing in (0.7,0.8) is the same as for (0.2,0.3), (0.537,0.637) and so on. Because of that randomness,

\[P(u \leq D \leq v) = v - u \] \hspace{1cm} (7.1)

for any case of 0 ≤ u < v ≤ 1.

We call D a continuous random variable, because its support is a continuum of points, in this case, the entire interval (0,1).
7.2 Individual Values Now Have Probability Zero

The first crucial point to note is that

\[P(D = c) = 0 \] \hspace{1cm} (7.2)

for any individual point \(c \). This may seem counterintuitive, but it can be seen in a couple of ways:

- Take for example the case \(c = 0.3 \). Then

\[P(D = 0.3) \leq P(0.29 \leq D \leq 0.31) = 0.02 \] \hspace{1cm} (7.3)

the last equality coming from (7.1).

So, \(P(D = 0.3) \leq 0.02 \). But we can replace 0.29 and 0.31 in (7.3) by 0.299 and 0.301, say, and get \(P(D = 0.3) \leq 0.002 \). So, \(P(D = 0.3) \) must be smaller than any positive number, and thus it’s actually 0.

- Reason that there are infinitely many points, and if they all had some nonzero probability \(w \), say, then the probabilities would sum to infinity instead of to 1; thus they must have probability 0.

Similarly, one will see that (7.2) will hold for any continuous random variable.

Remember, we have been looking at probability as being the long-run fraction of the time an event occurs, in infinitely many repetitions of our experiment—the “notebook” view. So (7.2) doesn’t say that \(D = c \) can’t occur; it merely says that it happens so rarely that the long-run fraction of occurrence is 0.

7.3 But Now We Have a Problem

But Equation (7.2) presents a problem. In the case of discrete random variables \(M \), we defined their distribution via their probability mass function, \(p_M \). Recall that Section 3.13 defined this as a list of the values \(M \) takes on, together with their probabilities. But that would be impossible in the continuous case—all the probabilities of individual values here are 0.

So our goal will be to develop another kind of function, which is similar to probability mass functions in spirit, but circumvents the problem of individual values having probability 0. To do this, we first must define another key function:
7.3. BUT NOW WE HAVE A PROBLEM

7.3.1 Our Way Out of the Problem: Cumulative Distribution Functions

Definition 11 For any random variable \(W \) (including discrete ones), its **cumulative distribution function** (cdf), \(F_W \), is defined by

\[
F_W(t) = P(W \leq t), \quad -\infty < t < \infty
\]

(Please keep in mind the notation. It is customary to use capital \(F \) to denote a cdf, with a subscript consisting of the name of the random variable.)

What is \(t \) here? It’s simply an argument to a function. The function here has domain \((-\infty, \infty)\), and we must thus define that function for every value of \(t \). This is a simple point, but a crucial one.

For an example of a cdf, consider our “random dart” example above. We know that, for example for \(t = 0.23 \),

\[
F_D(0.23) = P(D \leq 0.23) = P(0 \leq D \leq 0.23) = 0.23
\]

Also,

\[
F_D(-10.23) = P(D \leq -10.23) = 0
\]

and

\[
F_D(10.23) = P(D \leq 10.23) = 1
\]

Note that the fact that \(D \) can never be equal to 10.23 or anywhere near it is irrelevant. \(F_D(t) \) is defined for all \(t \) in \((-\infty, \infty)\), including 10.23! The definition of \(F_D(10.23) \) is \(P(D \leq 10.23) \), and that probability is 1! Yes, \(D \) is always less than or equal to 10.23, right?

In general for our dart,

\[
F_D(t) = \begin{cases}
0, & \text{if } t \leq 0 \\
 t, & \text{if } 0 < t < 1 \\
1, & \text{if } t \geq 1
\end{cases}
\]

Here is the graph of \(F_D \):
The cdf of a discrete random variable is defined as in Equation (7.4) too. For example, say Z is the number of heads we get from two tosses of a coin. Then

\[
F_Z(t) = \begin{cases}
0, & \text{if } t < 0 \\
0.25, & \text{if } 0 \leq t < 1 \\
0.75, & \text{if } 1 \leq t < 2 \\
1, & \text{if } t \geq 2
\end{cases} \quad (7.9)
\]

For instance,

\[
F_Z(1.2) = P(Z \leq 1.2) = P(Z = 0 \text{ or } Z = 1) = 0.25 + 0.50 = 0.75 \quad (7.10, 7.11, 7.12)
\]

Note that (7.11) is simply a matter of asking our famous question, “How can it happen?” Here we are asking how it can happen that Z \leq 1.2. The answer is simple: That can happen if Z is 0 or 1. The fact that Z cannot equal 1.2 is irrelevant.

(7.12) uses the fact that Z has a binomial distribution with n = 2 and p = 0.5.
The fact that one cannot get a noninteger number of heads is what makes the cdf of Z flat between consecutive integers.

In the graphs you see that F_D in (7.8) is continuous while F_Z in (7.9) has jumps. This is another reason we call random variables such as D continuous random variables.

At this level of study of probability, random variables are either discrete or continuous. But some exist that are neither. We won’t see any random variables from the “neither” case here, and they occur rather rarely in practice.

Armed with cdfs, let’s turn to the original goal, which was to find something for continuous random variables that is similar in spirit to probability mass functions for discrete random variables.

7.3.2 Density Functions

Intuition is key here. Make SURE you develop a good intuitive understanding of density functions, as it is vital in being able to apply probability well. We will use it a lot in our course.
(The reader may wish to review pmfs in Section 3.13.)

Think as follows. From (7.4) we can see that for a discrete random variable, its cdf can be calculated by summing its pmf. Recall that in the continuous world, we integrate instead of sum. So, our continuous-case analog of the pmf should be something that integrates to the cdf. That of course is the derivative of the cdf, which is called the density:

Definition 12 Consider a continuous random variable W. Define

$$f_W(t) = \frac{d}{dt}F_W(t), \quad -\infty < t < \infty$$

(7.14)

wherever the derivative exists. The function f_W is called the probability density function (pdf), or just the density of W.

(Please keep in mind the notation. It is customary to use lower-case f to denote a density, with a subscript consisting of the name of the random variable.)

But what is a density function? First and foremost, it is a tool for finding probabilities involving continuous random variables:

7.3.3 Properties of Densities

Equation (7.14) implies

Property A:

$$P(a < W \leq b) = F_W(b) - F_W(a)$$

(7.15)

$$= \int_a^b f_W(t) \, dt$$

(7.16)

Where does (7.15) come from? Well, $F_W(b)$ is all the probability accumulated from $-\infty$ to b, while $F_W(a)$ is all the probability accumulated from $-\infty$ to a. The difference is the probability that X is between a and b.

(7.16) is just the Fundamental Theorem of Calculus: Integrate the derivative of a function, and you get the original function back again.

Since $P(W = c) = 0$ for any single point c, Property A also means:
7.3. BUT NOW WE HAVE A PROBLEM

Property B:

\[P(a < W \leq b) = P(a \leq W \leq b) = P(a \leq W < b) = P(a < W < b) = \int_a^b f_W(t) \, dt \] \hspace{1cm} (7.17)

This in turn implies:

Property C:

\[\int_{-\infty}^{\infty} f_W(t) \, dt = 1 \] \hspace{1cm} (7.18)

Note that in the above integral, \(f_W(t) \) will be 0 in various ranges of \(t \) corresponding to values \(W \) cannot take on. For the dart example, for instance, this will be the case for \(t < 0 \) and \(t > 1 \).

Any nonnegative function that integrates to 1 is a density. A density could be increasing, decreasing or mixed. Note too that a density can have values larger than 1 at some points, even though it must integrate to 1.

7.3.4 Intuitive Meaning of Densities

Suppose we have some continuous random variable \(X \), with density \(f_X \), graphed in Figure 7.1.

Let’s think about probabilities of the form

\[P(s - 0.1 < X < s + 0.1) \] \hspace{1cm} (7.19)

Let’s first consider the case of \(s = 1.3 \).

The rectangular strip in the picture should remind you of your early days in calculus. What the picture says is that the area under \(f_X \) from 1.2 to 1.4 (i.e. 1.3 ± 0.1) is approximately equal to the area of the rectangle. In other words,

\[2(0.1)f_X(1.3) \approx \int_{1.2}^{1.4} f_X(t) \, dt \] \hspace{1cm} (7.20)

But from our Properties above, we can write this as

\[P(1.2 < X < 1.4) \approx 2(0.1)f_X(1.3) \] \hspace{1cm} (7.21)
Similarly, for \(s = 0.4 \),

\[
P(0.3 < X < 0.5) \approx 2(0.1)f_X(0.4) \quad (7.22)
\]

and in general

\[
P(s - 0.1 < X < s + 0.1) \approx 2(0.1)f_X(s) \quad (7.23)
\]

This reasoning shows that:

Regions in the number line (X-axis in the picture) with low density have low probabilities
while regions with high density have high probabilities.

So, although densities themselves are not probabilities, they do tell us which regions will occur
often or rarely. For the random variable \(X \) in our picture, there will be many lines in the notebook
in which \(X \) is near 1.3, but many fewer in which \(X \) is near 0.4.

7.3.5 Expected Values

What about \(E(W) \)? Recall that if \(W \) were discrete, we’d have

\[
E(W) = \sum_c cp_W(c) \quad (7.24)
\]

where the sum ranges overall all values \(c \) that \(W \) can take on. If for example \(W \) is the number of
dots we get in rolling two dice, \(c \) will range over the values 2,3,...,12.

So, the analog for continuous \(W \) is:

Property D:

\[
E(W) = \int_t tf_W(t) \, dt \quad (7.25)
\]

where here \(t \) ranges over the values \(W \) can take on, such as the interval (0,1) in the dart case.
Again, we can also write this as

\[
E(W) = \int_{-\infty}^{\infty} tf_W(t) \, dt \quad (7.26)
\]
7.3. BUT NOW WE HAVE A PROBLEM

Figure 7.1: Approximation of Probability by a Rectangle
in view of the previous comment that \(f_W(t) \) might be 0 for various ranges of \(t \).

And of course,

\[
E(W^2) = \int t^2 f_W(t) \, dt \quad (7.27)
\]

and in general, similarly to (3.36):

Property E:

\[
E[g(W)] = \int g(t)f_W(t) \, dt \quad (7.28)
\]

Most of the properties of expected value and variance stated previously for discrete random variables hold for continuous ones too:

Property F:

Equations (3.19), (3.21), (3.25), (3.41) and (3.49) still hold in the continuous case.

7.4 A First Example

Consider the density function equal to \(2t/15 \) on the interval (1,4), 0 elsewhere. Say \(X \) has this density. Here are some computations we can do:

\[
EX = \int_1^4 t \cdot 2t/15 \, dt = 2.8 \quad (7.29)
\]

\[
P(X > 2.5) = \int_{2.5}^4 2t/15 \, dt = 0.65 \quad (7.30)
\]

\[
F_X(s) = \int_1^s 2t/15 \, dt = \frac{s^2 - 1}{15} \quad \text{for } s \text{ in (1,4) (cdf is 0 for } t < 1, \text{ and 1 for } t > 4) \quad (7.31)
\]

\[
Var(X) = E(X^2) - (EX)^2 \quad \text{(from (3.41))} \quad (7.32)
\]

\[
= \int_1^4 t^2 \cdot 2t/15 \, dt - 2.8^2 \quad \text{(from (7.29))} \quad (7.33)
\]

\[
= 0.66 \quad (7.34)
\]
Suppose L is the lifetime of a light bulb (say in years), with the density that X has above. Let’s find some quantities in that context:

Proportion of bulbs with lifetime less than the mean lifetime:

$$P(L < 2.8) = \int_{1}^{2.8} \frac{2}{15} t dt = \frac{(2.8^2 - 1)}{15}$$ \hfill (7.35)

Mean of $1/L$:

$$E(1/L) = \int_{1}^{4} \frac{1}{t} \cdot \frac{2}{15} dt = \frac{2}{5}$$ \hfill (7.36)

In testing many bulbs, mean number of bulbs that it takes to find two that have lifetimes longer than 2.5:

Use (4.36) with $r = 2$ and $p = 0.65$.

7.5 The Notion of Support in the Continuous Case

Recall from Section 3.2 that the support of a discrete distribution is its “domain.” If for instance X is the number of heads I get from 3 tosses of a coin, X can only take on the values 0, 1, 2 and 3. We say that that set is the support of this distribution; 8, for example, is not in the support.

The notion extends to continuous random variables. In Section 7.4, the support of the density there is the interval (1,4).

7.6 Famous Parametric Families of Continuous Distributions

7.6.1 The Uniform Distributions

7.6.1.1 Density and Properties

In our dart example, we can imagine throwing the dart at the interval (q,r) (so this will be a two-parameter family). Then to be a uniform distribution, i.e. with all the points being “equally likely,” the density must be constant in that interval. But it also must integrate to 1 [see (7.18)].
So, that constant must be 1 divided by the length of the interval:

\[f_D(t) = \frac{1}{r-q} \]

for \(t \) in \((q,r)\), 0 elsewhere.

It easily shown that \(E(D) = \frac{q+r}{2} \) and \(Var(D) = \frac{1}{12}(r-q)^2 \).

The notation for this family is \(U(q,r) \).

7.6.1.2 R Functions

Relevant functions for a uniformly distributed random variable \(X \) on \((r,s)\) are:

- \(\text{dunif}(x, r, s) \), to find \(f_X(x) \)
- \(\text{punif}(q, r, s) \), to find \(P(X \leq q) \)
- \(\text{qunif}(q, r, s) \), to find \(c \) such that \(P(X \leq c) = q \)
- \(\text{runif}(n, r, s) \), to generate \(n \) independent values of \(X \)

As with most such distribution-related functions in R, \(x \) and \(q \) can be vectors, so that \(\text{punif}() \) for instance can be used to find the cdf values at multiple points.

7.6.1.3 Example: Modeling of Disk Performance

Uniform distributions are often used to model computer disk requests. Recall that a disk consists of a large number of concentric rings, called tracks. When a program issues a request to read or write a file, the read/write head must be positioned above the track of the first part of the file. This move, which is called a seek, can be a significant factor in disk performance in large systems, e.g. a database for a bank.

If the number of tracks is large, the position of the read/write head, which I’ll denote as \(X \), is like a continuous random variable, and often this position is modeled by a uniform distribution. This situation may hold just before a defragmentation operation. After that operation, the files tend to be bunched together in the central tracks of the disk, so as to reduce seek time, and \(X \) will not have a uniform distribution anymore.

Each track consists of a certain number of sectors of a given size, say 512 bytes each. Once the read/write head reaches the proper track, we must wait for the desired sector to rotate around and
pass under the read/write head. It should be clear that a uniform distribution is a good model for this rotational delay.

For example, suppose in modeling disk performance, we describe the position X of the read/write head as a number between 0 and 1, representing the innermost and outermost tracks, respectively. Say we assume X has a uniform distribution on $(0,1)$, as discussed above. Consider two consecutive positions (i.e. due to two consecutive seeks), X_1 and X_2, which we’ll assume are independent. Let’s find $\text{Var}(X_1 + X_2)$.

We know from Section 7.6.1.1 that the variance of a $U(0,1)$ distribution is $1/12$. Then by independence,

$$\text{Var}(X_1 + X_2) = 1/12 + 1/12 = 1/6 \quad (7.38)$$

7.6.1.4 Example: Modeling of Denial-of-Service Attack

In one facet of computer security, it has been found that a uniform distribution is actually a warning of trouble, a possible indication of a denial-of-service attack. Here the attacker tries to monopolize, say, a Web server, by inundating it with service requests. According to the research of David Marchette, attackers choose uniformly distributed false IP addresses, a pattern not normally seen at servers.

7.6.2 The Normal (Gaussian) Family of Continuous Distributions

These are the famous “bell-shaped curves,” so called because their densities have that shape.

7.6.2.1 Density and Properties

Density and Parameters:

The density for a normal distribution is

$$f_W(t) = \frac{1}{\sqrt{2\pi\sigma}} e^{-0.5\left(\frac{t-\mu}{\sigma}\right)^2}, -\infty < t < \infty \quad (7.39)$$

2. “All that glitters is not gold”—Shakespeare

Note that other parametric families, notably the Cauchy, also have bell shapes. The difference lies in the rate at which the tails of the distribution go to 0. However, due to the Central Limit Theorem, to be presented below, the normal family is of prime interest.
Again, this is a two-parameter family, indexed by the parameters μ and σ, which turn out to be the mean μ and standard deviation σ. The notation for it is $N(\mu, \sigma^2)$ (it is customary to state the variance σ^2 rather than the standard deviation).

The normal family is so important that we have a special chapter on it, Chapter 8.

7.6.3 The Exponential Family of Distributions

Please note: We have been talking here of parametric families of distributions, and in this section will introduce one of the most famous, the family of exponential distributions. This should not be confused, though, with the term exponential family that arises in mathematical statistics, which includes exponential distributions but is much broader.

7.6.3.1 Density and Properties

The densities in this family have the form

$$f_W(t) = \lambda e^{-\lambda t}, \ 0 < t < \infty$$ \hspace{1cm} (7.40)

This is a one-parameter family of distributions.

After integration, one finds that $E(W) = \frac{1}{\lambda}$ and $Var(W) = \frac{1}{\lambda^2}$. You might wonder why it is customary to index the family via λ rather than $1/\lambda$ (see (7.40)), since the latter is the mean. But this is actually quite natural, for reasons discussed in Section 9.1.

7.6.3.2 R Functions

Relevant functions for a uniformly distributed random variable X with parameter λ are

- `dexp(x,lambda)`, to find $f_X(x)$
- `pexp(q,lambda)`, to find $P(X \leq q)$
- `qexp(q,lambda)`, to find c such that $P(X \leq c) = q$
- `rexp(n,lambda)`, to generate n independent values of X

\[^3]\text{Remember, this is a synonym for expected value.}\]
7.6. FAMOUS PARAMETRIC FAMILIES OF CONTINUOUS DISTRIBUTIONS

7.6.3.3 Example: Refunds on Failed Components

Suppose a manufacturer of some electronic component finds that its lifetime L is exponentially distributed with mean 10000 hours. They give a refund if the item fails before 500 hours. Let M be the number of items they have sold, up to and including the one on which they make the first refund. Let’s find $E(M)$ and $Var(M)$.

First, notice that M has a geometric distribution! It is the number of independent trials until the first success, where a “trial” is one component, “success” (no value judgment, remember) is giving a refund, and the success probability is

$$P(L < 500) = \int_0^{500} 0.0001 e^{-0.0001t} \, dt = 0.05 \quad (7.41)$$

Then plug $p = 0.05$ into (4.11) and (4.12).

7.6.3.4 Example: Garage Parking Fees

A certain public parking garage charges parking fees of $1.50 for the first hour, and $1 per hour after that. (It is assumed here for simplicity that the time after the first hour is prorated. The reader should consider how the analysis would change if the garage “rounds up” each partial hour.) Suppose parking times T are exponentially distributed with mean 1.5 hours. Let W denote the total fee paid. Let’s find $E(W)$ and $Var(W)$.

The key point is that W is a function of T:

$$W = \begin{cases}
1.5T, & \text{if } T \leq 1 \\
1.5 + 1 \cdot (T - 1) = T + 0.5, & \text{if } T > 1
\end{cases} \quad (7.42)$$

That’s good, because we know how to find the expected value of a function of a continuous random variable, from (7.28). Defining $g()$ as in (7.42) above, we have

$$EW = \int_0^\infty g(t) \frac{1}{1.5} e^{-\frac{t}{1.5}} dt = \int_0^1 1.5t \frac{1}{1.5} e^{-\frac{t}{1.5}} dt + \int_1^\infty (t + 0.5) \frac{1}{1.5} e^{-\frac{t}{1.5}} dt \quad (7.43)$$

The integration is left to the reader.

Now, what about $Var(W)$? As is often the case, it’s easier to use (3.41), so we need to find $E(W^2)$.
The above integration becomes

\[E(W^2) = \int_0^\infty g^2(t) \frac{1}{1.5} e^{-\frac{t}{1.5}} dt = \int_0^1 1.5^2 t \frac{1}{1.5} e^{-\frac{t}{1.5}} dt + \int_1^\infty (t + 0.5)^2 \frac{1}{1.5} e^{-\frac{t}{1.5}} dt \] (7.44)

After evaluating this, we subtract \((EW)^2\), giving us the variance of \(W\).

7.6.3.5 Importance in Modeling

Many distributions in real life have been found to be approximately exponentially distributed. A famous example is the lifetimes of air conditioners on airplanes. Another famous example is interarrival times, such as customers coming into a bank or messages going out onto a computer network. It is used in software reliability studies too.

One of the reasons why this family is used so widely in probabilistic modeling is that it has several remarkable properties, so many that we have a special chapter for this family, Chapter 9.

7.6.4 The Gamma Family of Distributions

7.6.4.1 Density and Properties

Suppose at time 0 we install a light bulb in a lamp, which burns \(X_1\) amount of time. We immediately install a new bulb then, which burns for time \(X_2\), and so on. Assume the \(X_i\) are independent random variables having an exponential distribution with parameter \(\lambda\).

Let

\[T_r = X_1 + \ldots + X_r, \quad r = 1, 2, 3, \ldots \] (7.45)

Note that the random variable \(T_r\) is the time of the \(r^{th}\) light bulb replacement. \(T_r\) is the sum of \(r\) independent exponentially distributed random variables with parameter \(\lambda\). The distribution of \(T_r\) is called an Erlang distribution. Its density can be shown to be

\[f_{T_r}(t) = \frac{1}{(r-1)!} \lambda^r t^{r-1} e^{-\lambda t}, \quad t > 0 \] (7.46)

This is a two-parameter family.

Again, it’s helpful to think in “notebook” terms. Say \(r = 8\). Then we watch the lamp for the durations of eight lightbulbs, recording \(T_8\), the time at which the eighth burns out. We write that
7.6. FAMOUS PARAMETRIC FAMILIES OF CONTINUOUS DISTRIBUTIONS

We can generalize this by allowing \(r \) to take noninteger values, by defining a generalization of the factorial function:

\[
\Gamma(r) = \int_0^\infty x^{r-1}e^{-x} \, dx
\]

(7.47)

This is called the gamma function, and it gives us the gamma family of distributions, more general than the Erlang:

\[
f_W(t) = \frac{1}{\Gamma(r)} \lambda^r t^{r-1}e^{-\lambda t}, \ t > 0
\]

(7.48)

(Note that \(\Gamma(r) \) is merely serving as the constant that makes the density integrate to 1.0. It doesn’t have meaning of its own.)

This is again a two-parameter family, with \(r \) and \(\lambda \) as parameters.

A gamma distribution has mean \(r/\lambda \) and variance \(r/\lambda^2 \). In the case of integer \(r \), this follows from (9.1) and the fact that an exponentially distributed random variable has mean and variance \(1/\lambda \) and variance \(1/\lambda^2 \), and it can be derived in general. Note again that the gamma reduces to the exponential when \(r = 1 \).

7.6.4.2 Example: Network Buffer

Suppose in a network context (not our ALOHA example), a node does not transmit until it has accumulated five messages in its buffer. Suppose the times between message arrivals are independent and exponentially distributed with mean 100 milliseconds. Let’s find the probability that more than 552 ms will pass before a transmission is made, starting with an empty buffer.

Let \(X_1 \) be the time until the first message arrives, \(X_2 \) the time from then to the arrival of the second message, and so on. Then the time until we accumulate five messages is \(Y = X_1 + ... + X_5 \). Then from the definition of the gamma family, we see that \(Y \) has a gamma distribution with \(r = 5 \) and \(\lambda = 0.01 \). Then

\[
P(Y > 552) = \int_{552}^{\infty} \frac{1}{4!} 0.01^5 t^4 e^{-0.01t} \, dt
\]

(7.49)
This integral could be evaluated via repeated integration by parts, but let’s use R instead:

\[
\begin{align*}
> & \quad 1 - \text{pgamma}(552, 5, 0.01) \\
[1] & \quad 0.3544101
\end{align*}
\]

Note that our parameter \(r \) is called \texttt{shape} in R, and our \(\lambda \) is \texttt{rate}.

Again, there are also \texttt{dgamma()}, \texttt{qgamma()} and \texttt{rgamma()}. From the R man page:

\textbf{Usage:}

\begin{verbatim}
\texttt{dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)}
\texttt{pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)}
\texttt{qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)}
\texttt{rgamma(n, shape, rate = 1, scale = 1/rate)}
\end{verbatim}

\subsection{7.6.4.3 Importance in Modeling}

As seen in (9.1), sums of exponentially distributed random variables often arise in applications. Such sums have gamma distributions.

You may ask what the meaning is of a gamma distribution in the case of noninteger \(r \). There is no particular meaning, but when we have a real data set, we often wish to summarize it by fitting a parametric family to it, meaning that we try to find a member of the family that approximates our data well.

In this regard, the gamma family provides us with densities which rise near \(t = 0 \), then gradually decrease to 0 as \(t \) becomes large, so the family is useful if our data seem to look like this. Graphs of some gamma densities are shown in Figure 7.2.

As you might guess from the network performance analysis example in Section 7.6.4.2, the gamma family does arise often in the network context, and in queuing analysis in general.

\subsection{7.6.5 The Beta Family of Distributions}

As seen in Figure 7.2, the gamma family is a good choice to consider if our data are nonnegative, with the density having a peak near 0 and then gradually tapering off to the right. What about data in the range (0,1)?
7.6. FAMOUS PARAMETRIC FAMILIES OF CONTINUOUS DISTRIBUTIONS

Figure 7.2: Various Gamma Densities
For instance, say trucking company transports many things, including furniture. Let X be the proportion of a truckload that consists of furniture. For instance, if 15% of given truckload is furniture, then $X = 0.15$. So here we have a distribution with support in $(0,1)$. The beta family provides a very flexible model for this kind of setting, allowing us to model many different concave up or concave down curves.

7.6.5.1 Density Etc.

The densities of the family have the following form:

$$
\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} t^{\alpha-1}(1 - t)^{\beta-1}
$$

There are two parameters, α and β. Figures 7.3 and 7.4 show two possibilities.
Figure 7.4: Beta Density, $\alpha = 2.0, \beta = 3.0$
The mean and variance are

$$\frac{\alpha}{\alpha + \beta} \quad (7.51)$$

and

$$\frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} \quad (7.52)$$

Again, there are also `dbeta()`, `qbeta()` and `rbeta()`. From the R man page:

Usage:

- `dbeta(x, shape1, shape2, ncp = 0, log = FALSE)`
- `pbeta(q, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)`
- `qbeta(p, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)`
- `rbeta(n, shape1, shape2, ncp = 0)`

The graphs mentioned above were generated by running

```r
> curve(dbeta(x, 0.2, 0.2))
> curve(dbeta(x, 2, 3))
```

7.6.5.2 Importance in Modeling

As mentioned, the beta family is a natural candidate for modeling a variable having range the interval (0,1).

This family is also popular among Bayesian statisticians (Section ??).

7.7 Choosing a Model

The parametric families presented here are often used in the real world. As indicated previously, this may be done on an empirical basis. We would collect data on a random variable X, and plot the frequencies of its values in a histogram. If for example the plot looks roughly like the curves in Figure 7.2 we could choose this as the family for our model.

Or, our choice may arise from theory. If for instance our knowledge of the setting in which we are working says that our distribution is memoryless, that forces us to use the exponential density family.
In either case, the question as to which member of the family we choose will be settled by using some kind of procedure which finds the member of the family which best fits our data. We will discuss this in detail in our chapters on statistics, especially Chapter ??.

Note that we may choose not to use a parametric family at all. We may simply find that our data does not fit any of the common parametric families (there are many others than those presented here) very well. Procedures that do not assume any parametric family are termed nonparametric.

7.8 Finding the Density of a Function of a Random Variable

Suppose X has, say, a uniform distribution on (1,4). Form a new random variable, $Y = X^2$. How can we find $f_Y(t)$? Reason as follows. For $1 < t < 16$,

\[
 f_Y(t) = \frac{d}{dt} F_Y(t) \quad \text{(def. of density)} \tag{7.53}
\]

\[
 = \frac{d}{dt} P(Y \leq t) \quad \text{(def. of cdf)} \tag{7.54}
\]

\[
 = \frac{d}{dt} P(X \leq \sqrt{t}) \quad \text{(def. of Y)} \tag{7.55}
\]

\[
 = \frac{d}{dt} F_X(\sqrt{t}) \quad \text{(def. of cdf)} \tag{7.56}
\]

\[
 = f_X(\sqrt{t}) \frac{d}{dt} \sqrt{t} \quad \text{(Chain Rule)} \tag{7.57}
\]

\[
 = \frac{1}{6} t^{-0.5} \tag{7.58}
\]

Other such settings can be handled similarly. Note, though, that the above derivation relied on the fact that $X > 0$. Suppose X has a uniform distribution on (-1,1). Then the above derivation would become, for $0 < t < 1$,

\[
 f_Y(t) = \frac{d}{dt} P(Y \leq t) \tag{7.59}
\]

\[
 = \frac{d}{dt} P(-\sqrt{t} \leq X \leq \sqrt{t}) \tag{7.60}
\]

\[
 = \frac{d}{dt} 2\sqrt{t} \tag{7.61}
\]

\[
 = t^{-0.5} \tag{7.62}
\]
7.9 Quantile Functions

First, recall the definition of the inverse of a function, say $h()$. The inverse of $h()$, denoted $h^{-1}()$, “brings you back to where you started.” If I plug 3 into the squaring function, I get 9, and if I then plug 9 into the square root function, I get back my original 3. So we say that $h(t) = t^2$ and $k(s) = \sqrt{s}$ are inverses of each other. The same relation holds between exp() and ln() and so on.

For a random variable X, its quantile function $Q_X(s)$ is defined by

$$Q_X(s) = F_X^{-1}(s)$$ \hspace{1cm} (7.63)

This is called the s quantile of X.

A well-known example is the median of X, the point which half the probability is above and half below. It’s the 0.5 quantile of X.

The cdf tells us that cumulative probability for a particular value of X, while the quantile function does the opposite, “bringing us back.” Let’s make this concrete by considering the random variable Z in Section 7.3.1.

On the one hand, we can ask the question, “What is the probability that Z is at most 1?”, with the answer being

$$F_Z(1) = 0.75$$ \hspace{1cm} (7.64)

On the other hand, one can ask conversely, “At what value of X do we have cumulative probability of 0.75?” Here the answer is

$$Q_Z(0.75) = 1$$ \hspace{1cm} (7.65)

It is no coincidence that the word quantile has that -ile suffix, given your familiarity with the word percentile. They are really the same thing.

Suppose for example that 92% of all who take the SAT Math Test have scores of at most 725. In other words, if you look at a randomly chosen test paper, and let X denote its score, then

$$F_X(725) = P(X \leq 725) = 0.92$$ \hspace{1cm} (7.66)

4This assumes, of course, that the domain of my squaring function consists only of the nonnegative numbers. We’ll put aside this and similar situations for the time being, but will return.
7.10. USING CDF FUNCTIONS TO FIND PROBABILITIES

On the other hand, if you are interested in the 92nd percentile score for the test, you are saying “Find s such that $P(X \leq s) = 0.92$” you want

$$Q_X(0.92) = 725$$

(7.67)

The reader should note that the R functions we’ve seen beginning with the letter ’q’, such as qgeom() and qunif(), are quantile functions, hence the name.

However, a problem with discrete random variables is that the quantile values may not be unique. The reader should verify, for instance, in the coin-toss example above, the 0.75 quantile for Z could be not only 1, but also 1.1, 1.288 and so on. So, one should look carefully at the documentation of quantile functions, to see what they do to impose uniqueness. But for continuous random variables there is no such problem.

7.10 Using cdf Functions to Find Probabilities

As we have seen, for many parametric families R has “d/p/q/r” functions, giving the density, cdf, quantile function and random number generator for the given family. How can we use the cdf functions to find probabilities of the form $P(a < X < b)$?

We see the answer in (7.15). We simply evaluate the cdf at b then a, and subtract.

For instance, consider the network buffer example, Section 7.6.4.2. Let’s find $P(540 < Y < 562)$:

```r
> pgamma(562, 5, 0.01) - pgamma(540, 5, 0.01)
[1] 0.03418264
```

Of course, we could also integrate the density,

```r
> integrate(function(t) dgamma(t, 5, 0.01), 540, 562)
0.03418264 with absolute error < 3.8e-16
```

but R does that for us, there is probably little point in that second approach.

7.11 A General Method for Simulating a Random Variable

Suppose we wish to simulate a random variable X with density f_X for which there is no R function. This can be done via $F_X^{-1}(U)$, where U has a U(0,1) distribution. In other words, we call runif() and then plug the result into the inverse of the cdf of X.

For example, say X has the density $2t$ on $(0,1)$. Then $F_X(t) = t^2$, so $F^{-1}(s) = s^{0.5}$. We can then generate an X as `sqrt(runif(1))`. Here’s why:

For brevity, denote F_X^{-1} as G. Our generated random variable is then $Y = G(U)$. Then

$$
F_Y(t) = P[G(U) \leq t] \\
= P[U \leq G^{-1}(t)] \\
= P[U \leq F_X(t)] \\
= F_X(t)
$$

(this last coming from the fact that U has a uniform distribution on $(0,1)$).

In other words, Y and X have the same cdf, i.e. the same distribution! This is exactly what we want.

Note that this method, though valid, is not necessarily practical, since computing F_X^{-1} may not be easy.

7.12 Example: Writing a Set of R Functions for a Certain Power Family

Consider the family of distributions indexed by positive values of c with densities

$$
c t^{c-1}
$$

for t in $(0,1)$ and 0 otherwise.

The cdf is t^c, so let’s call this the “tc” family.

Let’s find “d”, “p”, “q” and “r” functions for this family, just like R has for the normal family, the gamma family and so on:

```r
# density
dtc <- function(x, c) c * x^(c-1)

# cdf
ptc <- function(x, c) x^c

# quantile function
```
7.13. MULTIVARIATE DENSITIES

qt< <- function(q, c) q^(1/c)

random number generator, n values generated
rtc <- function(n, c) {
 tmp <- runif(n)
 qtc(tmp, c)
}

Note that to get rtc() we simply plug U(0,1) variates into qtc(), according to Section [7.11]

Let’s check our work. The mean for the density having c equal to 2 is 2/3 (reader should verify); let’s see if a simulation will give us that:

> mean(rtc(10000, 2))
[1] 0.6696941

Sure enough!

7.13 Multivariate Densities

Section 4.14 briefly introduced the notion of multivariate pmfs. Similarly, there are also multivariate densities. Probabilities are then k-fold integrals, where k is the number of random variables.

For instance, a probability involving two variables means taking a double integral of a bivariate density. Since that density can be viewed as a surface in three-dimensional space (just as a univariate density is viewed as a curve in two-dimensional space), a probability is then a volume under that surface (as opposed to area in the univariate case). Conversely, a bivariate density is the mixed partial derivative of the cdf:

$$f_{X,Y}(u,v) = \frac{\partial^2}{\partial u \partial v} F_{X,Y}(u,v) = P(X \leq u, Y \leq v)$$ (7.73)

In analogy to

$$P(B \mid A) = \frac{P(B \text{ and } A)}{P(A)}$$ (7.74)

we can define the conditional density of Y given X:

$$f_{Y \mid X}(u,v) = \frac{f_{X,Y}(u,v)}{f_X(v)}$$ (7.75)
The intuition behind this is that we are conditioning on \(X \) being \textit{near} \(v \). Actually,

\[
\begin{equation}
\begin{aligned}
f_{Y|X}(u,v) &= \lim_{h \to 0} \text{[density of } Y \mid X \in (v - h, v + h)] \\
\end{aligned}
\end{equation}
\] (7.76)

A detailed treatment is presented in Chapter ??.

7.14 Iterated Expectations

In analogy with (4.68), we have a very useful corresponding formula for the continuous case.

7.14.1 The Theorem

For any random variable \(W \) and any continuous random variable \(V \),

\[
\begin{equation}
\begin{aligned}
E(W) &= \int_{-\infty}^{\infty} f_V(t) \ E(W \mid V = t) \ dt \\
\end{aligned}
\end{equation}
\] (7.77)

Note that the event \(V = t \) has probability 0 for continuous \(V \). The conditional expectation here is defined in terms of the conditional distribution of \(W \) given \(V \); see Section 7.13.

Note too that if we have some event \(A \), we can set \(W \) above to the indicator random variable of \(A \) (recall (3.9)), yielding

\[
\begin{equation}
\begin{aligned}
P(A) &= \int_{-\infty}^{\infty} f_V(t) \ P(A \mid V = t) \ dt \\
\end{aligned}
\end{equation}
\] (7.78)

7.14.2 Example: Another Coin Game

Suppose we have biased coins of various weightings, so that a randomly chosen coin’s probability of heads \(H \) has density \(2t \) on \((0,1)\). The game has you choose a coin at random, toss it 5 times, and pays you a prize if you get 5 heads. What is your probability of winning?

First, note that the probability of winning, given \(H = t \), is \(t^5 \). Then (7.78) tells us that

\[
\begin{equation}
P(\text{win}) = \int_{0}^{1} 2t \ t^5 \ dt = \frac{2}{7}
\end{equation}
\] (7.79)

\(^5\)The treatment here will be intuitive, rather than being a mathematical definition and proof.
7.15 Continuous Random Variables Are “Useful Unicorns”

Recall our random dart example at the outset of this chapter. It must be kept in mind that this is only an idealization. D actually cannot be just any old point in (0,1). To begin with, our measuring instrument has only finite precision. Actually, then, D can only take on a finite number of values. If, say, our precision is four decimal digits, then D can only be 0.0001, 0.0002, ..., 0.9999, making it a discrete random variable after all.

So this modeling of the position of the dart as continuously distributed really is just an idealization. Indeed, in practice there are NO continuous random variables. But the continuous model can be an excellent approximation, and the concept is extremely useful. It’s like the assumption of “massless string” in physics analyses; there is no such thing, but it’s a good approximation to reality.

As noted, most applications of statistics, and many of probability, are based on continuous distributions. We’ll be using them heavily for the remainder of this book.

Exercises
1. Fill in the blanks, in the following statements about continuous random variables. Make sure to use our book’s notation.

 (a) \(\frac{d}{dt} P(X \leq t) = \) __________

 (b) \(P(a < X < b) = \) ___________ - ____________

2. Suppose \(X \) has a uniform distribution on (−1,1), and let \(Y = X^2 \). Find \(f_Y \).

3. Suppose \(X \) has an exponential distribution with parameter \(\lambda \). Show that \(EX = 1/\lambda \) and \(Var(X) = 1/\lambda^2 \).

4. Suppose \(f_X(t) = 3t^2 \) for \(t \) in (0,1) and is zero elsewhere. Find \(F_X(0.5) \) and \(E(X) \).

5. Suppose light bulb lifetimes \(X \) are exponentially distributed with mean 100 hours.

 (a) Find the probability that a light bulb burns out before 25.8 hours.

 In the remaining parts, suppose we have two light bulbs. We install the first at time 0, and then when it burns out, immediately replace it with the second.

 (b) Find the probability that the first light bulb lasts less than 25.8 hours and the lifetime of the second is more than 120 hours.

\(^6\)There are also issues such as the nonzero thickness of the dart, and so on, further restricting our measurement.
(c) Find the probability that the second burnout occurs after time 192.5.

6. Suppose for some continuous random variable X, $f_X(t)$ is equal to $2(1-t)$ for t in $(0,1)$ and is 0 elsewhere.

(a) Why is the constant here 2? Why not, say, 168?

(b) Find $F_X(0.2)$ and Var(X).

(c) Using the method in Section 7.11, write an R function, named `oneminust()`, that generates a random variate sampled from this distribution. Then use this function to verify your answers in (b) above.

7. The company Wrong Turn Criminal Mismanagement makes predictions every day. They tend to err on the side of overpredicting, with the error having a uniform distribution on the interval $(-0.5,1.5)$. Find the following:

(a) The mean and variance of the error.

(b) The mean of the absolute error.

(c) The probability that exactly two errors are greater than 0.25 in absolute value, out of 10 predictions. Assume predictions are independent.

8. Consider the following game. A dart will hit the random point Y in $(0,1)$ according to the density $f_Y(t) = 2t$. You must guess the value of Y. (Your guess is a constant, not random.) You will lose $2 per unit error if Y is to the left of your guess, and will lose $1 per unit error on the right. Find best guess in terms of expected loss.

9. Fill in the blank: Density functions for continuous random variables are analogs of the __________ functions that are used for discrete random variables.

10. Suppose for some random variable W, $F_W(t) = t^3$ for $0 < t < 1$, with $F_W(t)$ being 0 and 1 for $t < 0$ and $t > 1$, respectively. Find $f_W(t)$ for $0 < t < 1$.

11. Consider the density $f_Z(t) = 2t/15$ for $1 < t < 4$ and 0 elsewhere. Find the median of Z, as well as Z’s third moment, $E(Z^3)$, and its third central moment, $E[(Z - EZ)^3]$.

12. Suppose X has a uniform distribution on the interval $(20,40)$, and we know that X is greater than 25. What is the probability that X is greater than 32?

13. Suppose U and V have the $2t/15$ density on $(1,4)$. Let N denote the number of values among U and V that are greater than 1.5, so N is either 0, 1 or 2. Find Var(N).
Chapter 8

The Normal Family of Distributions

Again, these are the famous “bell-shaped curves,” so called because their densities have that shape.

8.1 Density and Properties

The density for a normal distribution is

\[
f_W(t) = \frac{1}{\sqrt{2\pi}\sigma} e^{-0.5\left(\frac{t-\mu}{\sigma}\right)^2}, -\infty < t < \infty
\]

(8.1)

Again, this is a two-parameter family, indexed by the parameters \(\mu\) and \(\sigma\), which turn out to be the mean \(\mu\) and standard deviation \(\sigma\). The notation for it is \(N(\mu, \sigma^2)\) (it is customary to state the variance \(\sigma^2\) rather than the standard deviation).

And we write

\[X \sim N(\mu, \sigma^2)\]

(8.2)

to mean that the random variable \(X\) has the distribution \(N(\mu, \sigma^2)\). (The tilde is read “is distributed as.”)

Note: Saying “\(X\) has a \(N(\mu, \sigma^2)\) distribution” is more than simply saying “\(X\) has mean \(\mu\) and variance \(\sigma^2\).” The former statement tells us not only the mean and variance of \(X\), but also the fact that \(X\) has a “bell-shaped” density in the (8.1) family.

\footnote{Remember, this is a synonym for expected value.}
8.1.1 Closure Under Affine Transformation

The family is closed under affine transformations:

If

\[X \sim N(\mu, \sigma^2) \quad (8.3) \]

and we set

\[Y = cX + d \quad (8.4) \]

then

\[Y \sim N(c\mu + d, c^2\sigma^2) \quad (8.5) \]

For instance, suppose \(X \) is the height of a randomly selected UC Davis student, measured in inches. Human heights do have approximate normal distributions; a histogram plot of the student heights would look bell-shaped. Now let \(Y \) be the student’s height in centimeters. Then we have the situation above, with \(c = 2.54 \) and \(d = 0 \). The claim about affine transformations of normally distributed random variables would imply that a histogram of \(Y \) would again be bell-shaped.

Consider the above statement carefully.

It is saying much more than simply that \(Y \) has mean \(c\mu + d \) and variance \(c^2\sigma^2 \), which would follow from our “mailing tubes” such as (8.49) even if \(X \) did not have a normal distribution. The key point is that this new variable \(Y \) is also a member of the normal family, i.e. its density is still given by (8.1), now with the new mean and variance.

Let’s derive this, using the reasoning of Section 7.8.

For convenience, suppose \(c > 0 \). Then

\[
F_Y(t) = P(Y \leq t) \quad \text{(definition of } F_Y) \tag{8.6}
\]

\[
= P(cX + d \leq t) \quad \text{(definition of } Y) \tag{8.7}
\]

\[
= P \left(X \leq \frac{t - d}{c} \right) \quad \text{(algebra)} \tag{8.8}
\]

\[
= F_X \left(\frac{t - d}{c} \right) \quad \text{(definition of } F_X) \tag{8.9}
\]
Therefore

\[f_Y(t) = \frac{d}{dt} F_Y(t) \quad \text{(definition of } f_Y) \quad (8.10) \]

\[= \frac{d}{dt} F_X \left(\frac{t - d}{c} \right) \quad \text{(from } (8.9)) \quad (8.11) \]

\[= f_X \left(\frac{t - d}{c} \right) \cdot \frac{d}{dt} \frac{t - d}{c} \quad \text{(definition of } f_X \text{ and the Chain Rule)} \quad (8.12) \]

\[= \frac{1}{c} \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-0.5 \left(\frac{t-d}{\sigma} \right)^2} \quad \text{(from } (8.1)) \quad (8.13) \]

\[= \frac{1}{\sqrt{2\pi}(c\sigma)} e^{-0.5 \left(\frac{t-(c\mu+d)}{c\sigma} \right)^2} \quad \text{(algebra)} \quad (8.14) \]

That last expression is the \(N(c\mu + d, c^2\sigma^2) \) density, so we are done!

8.1.2 Closure Under Independent Summation

If \(X \) and \(Y \) are independent random variables, each having a normal distribution, then their sum \(S = X + Y \) also is normally distributed.

This is a pretty remarkable phenomenon, not true for most other parametric families. If for instance \(X \) and \(Y \) each with, say, a \(U(0,1) \) distribution, then the density of \(S \) turns out to be triangle-shaped, NOT another uniform distribution. (This can be derived using the methods of Section ??.)

Note that if \(X \) and \(Y \) are independent and normally distributed, then the two properties above imply that \(cX + dY \) will also have a normal distribution, for any constants \(c \) and \(d \).

More generally:

For constants \(a_1, ..., a_k \) and random variables \(X_1, ..., X_k \), with

\[X_i \sim N(\mu_i, \sigma_i^2) \quad (8.15) \]

form the new random variable \(Y = a_1X_1 + ... + a_kX_k \). Then

\[Y \sim N(\sum_{i=1}^k a_i \mu_i, \sum_{i=1}^k a_i^2 \sigma_i^2) \quad (8.16) \]
8.2 The Standard Normal Distribution

Definition 13 If $Z \sim N(0, 1)$ we say the random variable Z has a standard normal distribution.

Note that if $X \sim N(\mu, \sigma^2)$, and we set

$$Z = \frac{X - \mu}{\sigma} \quad (8.17)$$

then

$$Z \sim N(0, 1) \quad (8.18)$$

The above statements follow from the earlier material:

- Define $Z = \frac{X - \mu}{\sigma}$.
- Rewrite it as $Z = \frac{1}{\sigma} \cdot X + (\frac{-\mu}{\sigma})$.
- Since $E(cU + d) = c \cdot E(U) + d$ for any random variable U and constants c and d, we have

$$EZ = \frac{1}{\sigma}EX - \frac{\mu}{\sigma} = 0 \quad (8.19)$$

and (3.56) and (3.49) imply that $\text{Var}(X) = 1$.

- OK, so we know that Z has mean 0 and variance 1. But does it have a normal distribution? Yes, due to our discussion above titled “Closure Under Affine Transformations.”

By the way, the $N(0,1)$ cdf is traditionally denoted by Φ.

8.3 Evaluating Normal cdfs

The function in (8.1) does not have a closed-form indefinite integral. Thus probabilities involving normal random variables must be approximated. Traditionally, this is done with a table for the cdf of $N(0,1)$, which is included as an appendix to almost any statistics textbook; the table gives the cdf values for that distribution.

But this raises a question: There are infinitely many distributions in the normal family. Don’t we need a separate table for each? That of course would not be possible, and in fact it turns out
8.4. *EXAMPLE: NETWORK INTRUSION*

that this one table—the one for the \(N(0,1) \) distribution— is sufficient for the entire normal family. Though we of course will use R to get such probabilities, it will be quite instructive to see how these table operations work.

Here's why one table is enough: Say \(X \) has an \(N(10, 2.5^2) \) distribution. How can we get a probability like, say, \(P(X < 12) \) using the \(N(0,1) \) table? Write

\[
P(X < 12) = P \left(Z < \frac{12 - 10}{2.5} \right) = P(Z < 0.8) \tag{8.20}
\]

Since on the right-hand side \(Z \) has a standard normal distribution, we can find that latter probably from the \(N(0,1) \) table!

As noted, traditionally it has played a central role, as one could transform any probability involving some normal distribution to an equivalent probability involving \(N(0,1) \). One would then use a table of \(N(0,1) \) to find the desired probability.

The transformation \(Z = \frac{X - \mu}{\sigma} \) will play a big role in other contexts in future chapters, but for the sole purpose of simply evaluating normal probabilities, we can be much more direct. Nowadays, probabilities for any normal distribution, not just \(N(0,1) \), are easily available by computer. In the R statistical package, the normal cdf for any mean and variance is available via the function \texttt{pnorm()}.

The call form is

\[
\text{pnorm}(q, \text{mean}=0, \text{sd}=1)
\]

This returns the value of the cdf evaluated at \(q \), for a normal distribution having the specified mean and standard deviation (default values of 0 and 1).

We can use \texttt{rnorm()} to simulate normally distributed random variables. The call is

\[
\text{rnorm}(n, \text{mean}=0, \text{sd}=1)
\]

which returns a vector of \(n \) random variates from the specified normal distribution.

There are also of course the corresponding density and quantile functions, \texttt{dnorm()} and \texttt{qnorm()}.

8.4 Example: Network Intrusion

As an example, let's look at a simple version of the network intrusion problem. Suppose we have found that in Jill's remote logins to a certain computer, the number \(X \) of disk sectors she reads or writes has an approximate normal distribution with a mean of 500 and a standard deviation of 15.
Before we continue, a comment on modeling: Since the number of sectors is discrete, it could not have an exact normal distribution. But then, no random variable in practice has an exact normal or other continuous distribution, as discussed in Section 7.15, and the distribution can indeed by approximately normal.

Now, say our network intrusion monitor finds that Jill—or someone posing as her—has logged in and has read or written 535 sectors. Should we be suspicious?

To answer this question, let’s find \(P(X \geq 535) \): Let \(Z = (X - 500)/15 \). From our discussion above, we know that \(Z \) has a \(N(0,1) \) distribution, so

\[
P(X \geq 535) = P \left(Z \geq \frac{535 - 500}{15} \right) = 1 - \Phi(35/15) = 0.01
\]

Again, traditionally we would obtain that 0.01 value from a \(N(0,1) \) cdf table in a book. With R, we would just use the function \(\text{pnorm}() \):

```r
> 1 - pnorm(535, 500, 15)
[1] 0.009815329
```

Anyway, that 0.01 probability makes us suspicious. While it could really be Jill, this would be unusual behavior for Jill, so we start to suspect that it isn’t her. It’s suspicious enough for us to probe more deeply, e.g. by looking at which files she (or the impostor) accessed—were they rare for Jill too?

Now suppose there are two logins to Jill’s account, accessing \(X \) and \(Y \) sectors, with \(X + Y = 1088 \). Is this rare for her, i.e. is \(P(X + Y > 1088) \) small?

We’ll assume \(X \) and \(Y \) are independent. We’d have to give some thought as to whether this assumption is reasonable, depending on the details of how we observed the logins, etc., but let’s move ahead on this basis.

From page 161, we know that the sum \(S = X + Y \) is again normally distributed. Due to the properties in Chapter 3, we know \(S \) has mean \(2 \cdot 500 \) and variance \(2 \cdot 15^2 \). The desired probability is then found via

\[
1 - \text{pnorm}(1088, 1000, \sqrt{450})
\]

which is about 0.00002. That is indeed a small number, and we should be highly suspicious.

Note again that the normal model (or any other continuous model) can only be approximate, especially in the tails of the distribution, in this case the right-hand tail. But it is clear that \(S \) is only rarely larger than 1088, and the matter mandates further investigation.
Of course, this is very crude analysis, and real intrusion detection systems are much more complex, but you can see the main ideas here.

8.5 Example: Class Enrollment Size

After years of experience with a certain course, a university has found that online pre-enrollment in the course is approximately normally distributed, with mean 28.8 and standard deviation 3.1. Suppose that in some particular offering, pre-enrollment was capped at 25, and it hit the cap. Find the probability that the actual demand for the course was at least 30.

Note that this is a conditional probability! Evaluate it as follows. Let N be the actual demand. Then the key point is that we are given that $N \geq 25$, so

$$P(N \geq 30|N \geq 25) = \frac{P(N \geq 30 \text{ and } N \geq 25)}{P(N \geq 25)} \quad (2.7)$$

$$= \frac{P(N \geq 30)}{P(N \geq 25)} \quad (8.22)$$

$$= \frac{1 - \Phi [(30 - 28.8)/3.1]}{1 - \Phi [(25 - 28.8)/3.1]} \quad (8.24)$$

$$= 0.39 \quad (8.25)$$

Sounds like it may be worth moving the class to a larger room before school starts.

Since we are approximating a discrete random variable by a continuous one, it might be more accurate here to use a correction for continuity, described in Section 8.13.

8.6 More on the Jill Example

Continuing the Jill example, suppose there is never an intrusion, i.e. all logins are from Jill herself. Say we’ve set our network intrusion monitor to notify us every time Jill logs in and accesses 535 or more disk sectors. In what proportion of all such notifications will Jill have accessed at least 545 sectors?

This is $P(X \geq 545—X \geq 535)$. By an analysis similar to that in Section 8.5, this probability is

$$\frac{1 - \text{pnorm}(545, 500, 15)}{1 - \text{pnorm}(535, 500, 15)}$$
8.7 Example: River Levels

Consider a certain river, and L, its level (in feet) relative to its average. There is a flood whenever \(L > 8 \), and it is reported that 2.5\% of days have flooding. Let’s assume that the level L is normally distributed; the above information implies that the mean is 0.

Suppose the standard deviation of L, \(\sigma \), goes up by 10\%. How much will the percentage of flooding days increase?

To solve this, let’s first find \(\sigma \). We have that

\[
0.025 = P(L > 8) = P\left(\frac{L - 0}{\sigma} > \frac{8 - 0}{\sigma} \right)
\]

Since \((L - 0)/\sigma\) has a N(0,1) distribution, we can find the 0.975 point in its cdf:

\[
> \text{qnorm}(0.975, 0, 1)
\]

[1] 1.959964

So,

\[1.96 = \frac{8 - 0}{\sigma}\]

so \(\sigma \) is about 4.

If it increases to 4.4, then we can evaluate \(P(L > 8) \) by

\[
> 1 - \text{pnorm}(8, 0, 4.4)
\]

[1] 0.03451817

So, a 10\% increase in \(\sigma \) would lead in this case to about a 40\% increase in flood days.

8.8 Example: Upper Tail of a Light Bulb Distribution

Suppose we model light bulb lifetimes as having a normal distribution with mean and standard deviation 500 and 50 hours, respectively. Give a loop-free R expression for finding the value of \(d \) such that 30\% of all bulbs have lifetime more than \(d \).

You should develop the ability to recognize when we need \(p \)-series and \(q \)-series functions. Here we need

\[
\text{qnorm}(1 - 0.30, 500, 50)
\]
8.9 THE CENTRAL LIMIT THEOREM

8.9 The Central Limit Theorem

The Central Limit Theorem (CLT) says, roughly speaking, that a random variable which is a sum of many components will have an approximate normal distribution. So, for instance, human weights are approximately normally distributed, since a person is made of many components. The same is true for SAT test scores\(^2\) as the total score is the sum of scores on the individual problems.

There are many versions of the CLT. The basic one requires that the summands be independent and identically distributed.\(^3\)

Theorem 14 Suppose \(X_1, X_2, \ldots\) are independent random variables, all having the same distribution which has mean \(m\) and variance \(\sigma^2\). Form the new random variable \(T = X_1 + \ldots + X_n\). Then for large \(n\), the distribution of \(T\) is approximately normal with mean \(nm\) and variance \(n\sigma^2\).

The larger \(n\) is, the better the approximation, but typically \(n = 20\) or even \(n = 10\) is enough.

8.10 Example: Cumulative Roundoff Error

Suppose that computer roundoff error in computing the square roots of numbers in a certain range is distributed uniformly on \((-0.5, 0.5)\), and that we will be computing the sum of \(n\) such square roots. Suppose we compute a sum of 50 square roots. Let’s find the approximate probability that the sum is more than 2.0 higher than it should be. (Assume that the error in the summing operation is negligible compared to that of the square root operation.)

Let \(U_1, \ldots, U_{50}\) denote the errors on the individual terms in the sum. Since we are computing a sum, the errors are added too, so our total error is

\[
T = U_1 + \ldots + U_{50}
\]

(8.28)

By the Central Limit Theorem, since \(T\) is a sum, it has an approximately normal distribution, with mean 50 \(EU\) and variance 50 \(\text{Var}(U)\), where \(U\) is a random variable having the distribution of the \(U_i\). From Section \(7.6.1.1\) we know that

\[
EU = (-0.5 + 0.5)/2 = 0, \quad \text{Var}(U) = \frac{1}{12}[0.5 - (-0.5)]^2 = \frac{1}{12}
\]

(8.29)

\(^2\)This refers to the raw scores, before scaling by the testing company.

\(^3\)A more mathematically precise statement of the theorem is given in Section \(8.19\).
So, the approximate distribution of T is $N(0,50/12)$. We can then use R to find our desired probability:

```r
> 1 - pnorm(2, mean=0, sd=sqrt(50/12))
[1] 0.1635934
```

8.11 Example: R Evaluation of a Central Limit Theorem Approximation

Say $W = U_1 + ... + U_{50}$, with the U_i being independent and identically distributed (i.i.d.) with uniform distributions on (0,1). Give an R expression for the approximate value of $P(W < 23.4)$.

W has an approximate normal distribution, with mean 50×0.5 and variance $50 \times (1/12)$. So we need

```r
pnorm(23.4, 25, sqrt(50/12))
```

8.12 Example: Bug Counts

As an example, suppose the number of bugs per 1,000 lines of code has a Poisson distribution with mean 5.2. Let’s find the probability of having more than 106 bugs in 20 sections of code, each 1,000 lines long. We’ll assume the different sections act independently in terms of bugs.

Here X_i is the number of bugs in the i^{th} section of code, and T is the total number of bugs. This is another clear candidate for using the CLT.

Since each X_i has a Poisson distribution, $m = v^2 = 5.2$. So, T, being a sum, is approximately distributed normally with mean and variance 20×5.2. So, we can find the approximate probability of having more than 106 bugs:

```r
> 1 - pnorm(106, 20*5.2, sqrt(20*5.2))
[1] 0.4222596
```

8.13 Example: Coin Tosses

Binomially distributed random variables, though discrete, also are approximately normally distributed. Here’s why:
Say T has a binomial distribution with n trials. Then we can write T as a sum of indicator random variables (Section 3.9):

$$T = T_1 + \ldots + T_n$$

(8.30)

where T_i is 1 for a success and 0 for a failure on the i^{th} trial. Since we have a sum of independent, identically distributed terms, the CLT applies. Thus we use the CLT if we have binomial distributions with large n.

For example, let’s find the approximate probability of getting more than 12 heads in 20 tosses of a coin. X, the number of heads, has a binomial distribution with $n = 20$ and $p = 0.5$ Its mean and variance are then $np = 10$ and $np(1-p) = 5$. So, let $Z = (X - 10)/\sqrt{5}$, and write

$$P(X > 12) = P(Z > \frac{12 - 10}{\sqrt{5}}) \approx 1 - \Phi(0.894) = 0.186$$

(8.31)

Or:

> 1 - pnorm(12,10,sqrt(5))

[1] 0.1855467

The exact answer is 0.132, not too close. Why such a big error? The main reason is n here is rather small. But actually, we can still improve the approximation quite a bit, as follows.

Remember, the reason we did the above normal calculation was that X is approximately normal, from the CLT. This is an approximation of the distribution of a discrete random variable by a continuous one, which introduces additional error.

We can get better accuracy by using the **correction of continuity**, which can be motivated as follows. As an alternative to (8.31), we might write

$$P(X > 12) = P(X \geq 13) = P(Z > \frac{13 - 10}{\sqrt{5}}) \approx 1 - \Phi(1.342) = 0.090$$

(8.32)

That value of 0.090 is considerably smaller than the 0.186 we got from (8.31). We could “split the difference” this way:

$$P(X > 12) = P(X \geq 12.5) = P(Z > \frac{12.5 - 10}{\sqrt{5}}) \approx 1 - \Phi(1.118) = 0.132$$

(8.33)

(Think of the number 13 “owning” the region between 12.5 and 13.5, 14 owning the part between 13.5 and 14.5 and so on.) Since the exact answer to seven decimal places is 0.131588, the strategy has improved accuracy substantially.
The term *correction for continuity* alludes to the fact that we are approximately a discrete distribution by a continuous one.

8.14 Example: Normal Approximation to Gamma Family

Recall from above that the gamma distribution, or at least the Erlang, arises as a sum of independent random variables. Thus the Central Limit Theorem implies that the gamma distribution should be approximately normal for large (integer) values of \(r \). We see in Figure 7.2 that even with \(r = 10 \) it is rather close to normal.

8.15 Example: Museum Demonstration

Many science museums have the following visual demonstration of the CLT.

There are many balls in a chute, with a triangular array of \(r \) rows of pins beneath the chute. Each ball falls through the rows of pins, bouncing left and right with probability 0.5 each, eventually being collected into one of \(r \) bins, numbered 0 to \(r \). A ball will end up in bin \(i \) if it bounces rightward in \(i \) of the \(r \) rows of pins, \(i = 0, 1, ..., r \). Key point:

Let \(X \) denote the bin number at which a ball ends up. \(X \) is the number of rightward bounces ("successes") in \(r \) rows ("trials"). Therefore \(X \) has a binomial distribution with \(n = r \) and \(p = 0.5 \)

Each bin is wide enough for only one ball, so the balls in a bin will stack up. And since there are many balls, the height of the stack in bin \(i \) will be approximately proportional to \(P(X = i) \). And since the latter will be approximately given by the CLT, the stacks of balls will roughly look like the famous bell-shaped curve!

There are many online simulations of this museum demonstration, such as http://www.mathsisfun.com/data/quincunx.html. By collecting the balls in bins, the apparatus basically simulates a histogram for \(X \), which will then be approximately bell-shaped.

\[^4\]It should be mentioned that technically, the CLT, which concerns convergence of cdfs, does not imply convergence of densities. However, under mild mathematical conditions, convergence of densities occurs too.
8.16 Importance in Modeling

Needless to say, there are no random variables in the real world that are exactly normally distributed. In addition to our comments at the beginning of this chapter that no real-world random variable has a continuous distribution, there are no practical applications in which a random variable is not bounded on both ends. This contrasts with normal distributions, which extend from $-\infty$ to ∞.

Yet, many things in nature do have approximate normal distributions, so normal distributions play a key role in statistics. Most of the classical statistical procedures assume that one has sampled from a population having an approximate distribution. In addition, it will be seen later than the CLT tells us in many of these cases that the quantities used for statistical estimation are approximately normal, even if the data they are calculated from are not.

Recall from above that the gamma distribution, or at least the Erlang, arises as a sum of independent random variables. Thus the Central Limit Theorem implies that the gamma distribution should be approximately normal for large (integer) values of r. We see in Figure 7.2 that even with $r = 10$ it is rather close to normal.

8.17 The Chi-Squared Family of Distributions

8.17.1 Density and Properties

Let $Z_1, Z_2, ..., Z_k$ be independent $N(0,1)$ random variables. Then the distribution of

$$Y = Z_1^2 + ... + Z_k^2$$

is called chi-squared with k degrees of freedom. We write such a distribution as χ^2_k. Chi-squared is a one-parameter family of distributions, and arises quite frequently in statistical applications, as will be seen in future chapters.

We can derive the mean of a chi-squared distribution as follows. First,

$$EY = E(Z_1^2 + ... + Z_k^2) = kE(Z_1^2)$$

Well, $E(Z_1^2)$ sounds somewhat like variance, and we do know that $Var(Z_1) = 1$. Let’s use that fact:

$$E(Z_1^2) = Var(Z_1) + [E(Z_1)]^2 = Var(Z_1) = 1$$
Then EY in (8.34) is k. One can also show that $\text{Var}(Y) = 2k$.

It turns out that chi-squared is a special case of the gamma family in Section 7.6.4 below, with $r = k/2$ and $\lambda = 0.5$.

The R functions `dchisq()`, `pchisq()`, `qchisq()` and `rchisq()` give us the density, cdf, quantile function and random number generator for the chi-squared family. The second argument in each case is the number of degrees of freedom. The first argument is the argument to the corresponding math function in all cases but `rchisq()`, in which it is the number of random variates to be generated.

For instance, to get the value of $f_X(5.2)$ for a chi-squared random variable having 3 degrees of freedom, we make the following call:

```r
> dchisq(5.2, 3)
[1] 0.06756878
```

8.17.2 Example: Error in Pin Placement

Consider a machine that places a pin in the middle of a flat, disk-shaped object. The placement is subject to error. Let X and Y be the placement errors in the horizontal and vertical directions, respectively, and let W denote the distance from the true center to the pin placement. Suppose X and Y are independent and have normal distributions with mean 0 and variance 0.04. Let’s find $P(W > 0.6)$.

Since a distance is the square root of a sum of squares, this sounds like the chi-squared distribution might be relevant. So, let’s first convert the problem to one involving squared distance:

$$P(W > 0.6) = P(W^2 > 0.36)$$ \hspace{1cm} (8.37)

But $W^2 = X^2 + Y^2$, so

$$P(W > 0.6) = P(X^2 + Y^2 > 0.36)$$ \hspace{1cm} (8.38)

This is not quite chi-squared, as that distribution involves the sum of squares of independent $N(0,1)$ random variables. But due to the normal family’s closure under affine transformations (page 160), we know that $X/0.2$ and $Y/0.2$ do have $N(0,1)$ distributions. So write

$$P(W > 0.6) = P[(X/0.2)^2 + (Y/0.2)^2 > 0.36/0.2^2]$$ \hspace{1cm} (8.39)

Now evaluate the right-hand side:
> 1 - \texttt{pchisq}(0.36/0.04,2) \\
[1] 0.01110900

8.17.3 Example: Generating Normal Random Numbers

How do normal random number generators such as \texttt{rnorm()} work? While in principle Section 7.11 could be used, the lack of a closed-form expression for $\Phi^{-1()}$ makes that approach infeasible. Instead, we can exploit the relation between the normal family and exponential distribution, as follows.

Let Z_1 and Z_2 be two independent $N(0,1)$ random variables, and define $W = Z_1^2 + Z_2^2$. By definition, W has a chi-squared distribution with 2 degrees of freedom, and from Section 8.17, we know that W has a gamma distribution with $k = 1$ and $\lambda = 0.5$.

In turn, we know from Section 7.6.4 that that distribution is actually just an exponential distribution with the same value of λ. This is quite fortuitous, since Section 7.11 can be used in this case.

Specifically, $f_W(t) = 0.5e^{-0.5t}$, so $F_W(t) = 1 - e^{-0.5t}$, Thus

$$F_W^{-1}(s) = -2\ln(1 - s)$$

(8.40)

And there’s more. Think of plotting the pair (Z_1, Z_2) in the X-Y plane, and define

$$\theta = \tan^{-1}(\frac{Y}{X})$$

(8.41)

One can show that θ has a uniform distribution on $(0, 2\pi)$. Also,

$$X = W\cos(\theta), \quad Y = W\sin(\theta)$$

(8.42)

Putting all this together, we can generate a pair of independent $N(0,1)$ random variates via the code

```r
function genn01 () {
  theta <- runif(1,0,pi)
  w <- -log(1 - runif(1))
  c(w*cos(theta),w*sin(theta))
}
```
Note by the way that we “get two for the price of one.” If we need, say, 1000 random normal variates, we call the above function 500 times. If we need just variate, we use the first in the returned pair, and save the second in case we need it later in another call.

8.17.4 Importance in Modeling

This distribution family does not come up directly in application nearly so often as, say, the binomial or normal distribution family.

But the chi-squared family is used quite widely in statistical applications. As will be seen in our chapters on statistics, many statistical methods involve a sum of squared normal random variables.

8.17.5 Relation to Gamma Family

One can show that the chi-square distribution with d degrees of freedom is a gamma distribution, with \(r = d/2 \) and \(\lambda = 0.5 \).

8.18 The Multivariate Normal Family

(Here we borrow some material from Chapter ??.)

The generalization of the normal family is the multivariate normal. Instead of being parameterized by a scalar mean and a scalar variance, the multivariate normal family has as its parameters a vector mean and a covariance matrix.

Let’s look at the bivariate case first. The joint distribution of \(X_1 \) and \(X_2 \) is said to be bivariate normal if their density is

\[
f_{X,Y}(s,t) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\frac{(s-\mu_1)^2}{\sigma_1^2} + \frac{(t-\mu_2)^2}{\sigma_2^2} - \frac{2\rho(s-\mu_1)(t-\mu_2)}{\sigma_1\sigma_2} \right]}, \quad -\infty < s, t < \infty \quad (8.43)
\]

This looks horrible, and it is. But don’t worry, as we won’t work with this directly. It’s important for conceptual reasons, as follows.

First, note the parameters here: \(\mu_1, \mu_2, \sigma_1 \) and \(\sigma_2 \) are the means and standard deviations of \(X \) and \(Y \), while \(\rho \) is the correlation between \(X \) and \(Y \). So, we have a five-parameter family of distributions.

\[5\]The motivation for the term degrees of freedom will be explained in those chapters too.
The graph of the bivariate normal density looks like a 3-dimensional bell, as seen on the cover of this book.

The multivariate normal family of distributions is parameterized by one vector-valued quantity, the mean μ, and one matrix-valued quantity, the covariance matrix Σ. Specifically, suppose the random vector $X = (X_1, ..., X_k)'$ has a k-variate normal distribution.

The density has this form:

$$f_X(t) = ce^{-0.5(t-\mu)'\Sigma^{-1}(t-\mu)}$$ \hspace{1cm} (8.44)

Here c is a constant, needed to make the density integrate to 1.0.

There is a Multivariate Central Limit Theorem, that says that sums of random vectors have approximately multivariate normal distributions.

In R the density, cdf and quantiles of the multivariate normal distribution are given by the functions `dmvnorm()`, `pmvnorm()` and `qmvnorm()` in the library `mvtnorm`. You can simulate a multivariate normal distribution by using `mvrnorm()` in the library `MASS`.

8.19 Optional Topic: Precise Statement of the CLT

The statement of Theorem 14 is not mathematically precise. We will fix it here, not just for mathematical niceness, but also because it leads to something called the delta method, a very practical tool in statistics.

8.19.1 Convergence in Distribution, and the Precisely-Stated CLT

Definition 15 A sequence of random variables $L_1, L_2, L_3, ...$ converges in distribution to a random variable M if

$$\lim_{n \rightarrow \infty} P(L_n \leq t) = P(M \leq t), \text{ for all } t$$ \hspace{1cm} (8.45)

Note by the way, that these random variables need not be defined on the same probability space.

The formal statement of the CLT is:

Theorem 16 Suppose $X_1, X_2, ...$ are independent random variables, all having the same distribu-
tion which has mean m and variance v^2. Then

$$Z = \frac{X_1 + \ldots + X_n - nm}{\sqrt{n}}$$

(8.46)

converges in distribution to a $N(0,1)$ random variable.

Exercises

1. In the network intrusion example in Section 8.4, suppose X is not normally distributed, but instead has a uniform distribution on $(450,550)$. Find $P(X \geq 535)$ in this case.

2. “All that glitters is not gold,” and not every bell-shaped density is normal. The family of Cauchy distributions, having density

$$f_X(t) = \frac{1}{\pi c} \frac{1}{1 + \left(\frac{t-b}{c}\right)^2}, \quad \infty < t < \infty$$

(8.47)

is bell-shaped but definitely not normal.

Here the parameters b and c correspond to mean and standard deviation in the normal case, but actually neither the mean nor standard deviation exist for Cauchy distributions. The mean’s failure to exist is due to technical problems involving the theoretical definition of integration. In the case of variance, it does not exist because there is no mean, but even more significantly, $E[(X-b)^2] = \infty$.

However, a Cauchy distribution does have a median, b, so we’ll use that instead of a mean. Also, instead of a standard deviation, we’ll use as our measure of dispersion the interquartile range, defined (for any distribution) to be the difference between the 75th and 25th percentiles.

We will be investigating the Cauchy distribution that has $b = 0$ and $c = 1$.

(a) Find the interquartile range of this Cauchy distribution.

(b) Find the normal distribution that has the same median and interquartile range as this Cauchy distribution.

(c) Use R to plot the densities of the two distributions on the same graph, so that we can see that they are both bell-shaped, but different.

3. Suppose X has a binomial distribution with parameters n and p. Then X is approximately normally distributed with mean np and variance $np(1-p)$. For each of the following, answer either A or E, for “approximately” or “exact,” respectively:
8.19. **OPTIONAL TOPIC: PRECISE STATEMENT OF THE CLT**

(a) the distribution of X is normal

(b) \(E(X) = np\)

(c) \(\text{Var}(X) = np(1-p)\)

4. Find the value of \(E(X^4)\) if X has a N(0,1) distribution. (Give your answer as a number, not an integral.)
Chapter 9

The Exponential Distributions

The family of exponential distributions, Section 7.6.3, has a number of remarkable properties, which contribute to its widespread usage in probabilistic modeling. We’ll discuss those here.

9.1 Connection to the Poisson Distribution Family

Suppose the lifetimes of a set of light bulbs are independent and identically distributed (i.i.d.), and consider the following process. At time 0, we install a light bulb, which burns an amount of time \(X_1 \). Then we install a second light bulb, with lifetime \(X_2 \). Then a third, with lifetime \(X_3 \), and so on.

Let

\[
T_r = X_1 + ... + X_r
\]

(9.1)

denote the time of the \(r^{th} \) replacement. Also, let \(N(t) \) denote the number of replacements up to and including time \(t \). Then it can be shown that if the common distribution of the \(X_i \) is exponentially distributed, the \(N(t) \) has a Poisson distribution with mean \(\lambda t \). And the converse is true too: If the \(X_i \) are independent and identically distributed and \(N(t) \) is Poisson, then the \(X_i \) must have exponential distributions. In summary:

Theorem 17 Suppose \(X_1, X_2, ... \) are i.i.d. nonnegative continuous random variables. Define

\[
T_r = X_1 + ... + X_r
\]

(9.2)
and

\[N(t) = \max\{k : T_k \leq t\} \quad (9.3) \]

Then the distribution of \(N(t) \) is Poisson with parameter \(\lambda t \) for all \(t \) if and only if the \(X_i \) have an exponential distribution with parameter \(\lambda \).

In other words, \(N(t) \) will have a Poisson distribution if and only if the lifetimes are exponentially distributed.

Proof

"Only if" part:

The key is to notice that the event \(X_1 > t \) is exactly equivalent to \(N(t) = 0 \). If the first light bulb lasts longer than \(t \), then the count of burnouts at time \(t \) is 0, and vice versa. Then

\[
P(X_1 > t) = P[N(t) = 0] \quad (\text{see above equiv.}) \quad (9.4)
\]

\[
= \frac{(\lambda t)^0}{0!} \cdot e^{-\lambda t} \quad (4.41) \quad (9.5)
\]

\[
= e^{-\lambda t} \quad (9.6)
\]

Then

\[
f_{X_1}(t) = \frac{d}{dt}(1 - e^{-\lambda t}) = \lambda e^{-\lambda t} \quad (9.7)
\]

That shows that \(X_1 \) has an exponential distribution, and since the \(X_i \) are i.i.d., that implies that all of them have that distribution.

"If" part:

We need to show that if the \(X_i \) are exponentially distributed with parameter \(\lambda \), then for \(u \) nonnegative and each positive integer \(k \),

\[
P[N(u) = k] = \frac{(\lambda u)^k e^{-\lambda u}}{k!} \quad (9.8)
\]

The proof for the case \(k = 0 \) just reverses (9.4) above. The general case, not shown here, notes that \(N(u) \leq k \) is equivalent to \(T_{k+1} > u \). The probability of the latter event can be found by integrating...
9.2 Memoryless Property of Exponential Distributions

One of the reasons the exponential family of distributions is so famous is that it has a property that makes many practical stochastic models mathematically tractable: The exponential distributions are memoryless.

9.2.1 Derivation and Intuition

What the term memoryless means for a random variable \(W \) is that for all positive \(t \) and \(u \)

\[
P(W > t + u | W > t) = P(W > u)
\]

(9.9)

Any exponentially distributed random variable has this property. Let’s derive this:

\[
P(W > t + u | W > t) = \frac{P(W > t + u \text{ and } W > t)}{P(W > t)}
\]

(9.10)

\[
= \frac{P(W > t + u)}{P(W > t)}
\]

(9.11)

\[
= \frac{\int_{t+u}^{\infty} \lambda e^{-\lambda s} \, ds}{\int_{t}^{\infty} \lambda e^{-\lambda s} \, ds}
\]

(9.12)

\[
= e^{-\lambda u}
\]

(9.13)

\[
= P(W > u)
\]

(9.14)

We say that this means that “time starts over” at time \(t \), or that \(W \) “doesn’t remember” what happened before time \(t \).
It is difficult for the beginning modeler to fully appreciate the memoryless property. Let’s make it concrete. Consider the problem of waiting to cross the railroad tracks on Eighth Street in Davis, just west of J Street. One cannot see down the tracks, so we don’t know whether the end of the train will come soon or not.

If we are driving, the issue at hand is whether to turn off the car’s engine. If we leave it on, and the end of the train does not come for a long time, we will be wasting gasoline; if we turn it off, and the end does come soon, we will have to start the engine again, which also wastes gasoline. (Or, we may be deciding whether to stay there, or go way over to the Covell Rd. railroad overpass.)

Suppose our policy is to turn off the engine if the end of the train won’t come for at least s seconds. Suppose also that we arrived at the railroad crossing just when the train first arrived, and we have already waited for r seconds. Will the end of the train come within s more seconds, so that we will keep the engine on? If the length of the train were exponentially distributed (if there are typically many cars, we can model it as continuous even though it is discrete), Equation (9.9) would say that the fact that we have waited r seconds so far is of no value at all in predicting whether the train will end within the next s seconds. The chance of it lasting at least s more seconds right now is no more and no less than the chance it had of lasting at least s seconds when it first arrived.

9.2.2 Uniquely Memoryless

By the way, the exponential distributions are the only continuous distributions which are memoryless. (Note the word continuous; in the discrete realm, the family of geometric distributions are also uniquely memoryless.) This too has implications for the theory. A rough proof of this uniqueness is as follows:

Suppose some continuous random variable V has the memoryless property, and let R(t) denote 1 - \(F_V(t) \). Then from (9.9), we would have

\[
\frac{R(t + u)}{R(t)} = R(u)
\]

(9.15)

or

\[
R(t + u) = R(t)R(u)
\]

(9.16)

Differentiating both sides with respect to t, we’d have

\[
R'(t + u) = R'(t)R(u)
\]

(9.17)
9.2. MEMORYLESS PROPERTY OF EXPONENTIAL DISTRIBUTIONS

Setting \(t \) to 0, this would say

\[
R'(u) = R(0)R(u) \tag{9.18}
\]

or, setting \(c = R(u) \),

\[
c = \frac{R'(t)}{R(t)} = \frac{d}{dt}[\ln(R(t))] \tag{9.19}
\]

Integrating both sides, we have

\[
ct + b = \ln(R(t)) \tag{9.20}
\]

for some constant \(b \). Exponentiating, we have

\[
R(t) = e^{ct+b} \tag{9.21}
\]

We know that

\[
\lim_{t \to \infty} R(t) = 0 \tag{9.22}
\]

That forces \(c \) to be negative, and \(b \) to be 0. In other words,

\[
R(t) = e^{-ht} \tag{9.23}
\]

which is exactly 1 minus the cdf for an exponentially distributed random variable.

9.2.3 Example: “Nonmemoryless” Light Bulbs

Suppose the lifetimes in years of light bulbs have the density \(2t/15 \) on (1,4), 0 elsewhere. Say I’ve been using bulb A for 2.5 years now in a certain lamp, and am continuing to use it. But at this time I put a new bulb, B, in a second lamp. I am curious as to which bulb is more likely to burn out within the next 1.2 years. Let’s find the two probabilities.

For bulb A:

\[
P(L > 3.7|L > 2.5) = \frac{P(L > 3.7)}{P(L > 2.5)} = 0.24 \tag{9.24}
\]
For bulb B:

$$P(X > 1.2) = \int_{1.2}^{4} \frac{2t}{15} \, dt = 0.97$$ \quad (9.25)$$

So you can see that the bulbs do have “memory.” We knew this beforehand, since the exponential distributions are the only continuous ones that have no memory.

9.3 Example: Minima of Independent Exponentially Distributed Random Variables

The memoryless property of the exponential distribution (Section 9.2) leads to other key properties. Here’s a famous one:

Theorem 18 Suppose $W_1, ..., W_k$ are independent random variables, with W_i being exponentially distributed with parameter λ_i. Let $Z = \min(W_1, ..., W_k)$. Then Z too is exponentially distributed with parameter $\lambda_1 + ... + \lambda_k$, and thus has mean equal to the reciprocal of that parameter.

Comments:

- In “notebook” terms, we would have $k+1$ columns, one each for the W_i and one for Z. For any given line, the value in the Z column will be the smallest of the values in the columns for $W_1, ..., W_k$; Z will be equal to one of them, but not the same one in every line. Then for instance $P(Z = W_3)$ is interpretable in notebook form as the long-run proportion of lines in which the Z column equals the W_3 column.

- It’s pretty remarkable that the minimum of independent exponential random variables turns out again to be exponential. Contrast that with Section ??, where it is found that the minimum of independent uniform random variables does NOT turn out to have a uniform distribution.

- The sum $\lambda_1 + ... + \lambda_n$ in (a) should make good intuitive sense to you, for the following reasons. Recall from Section 9.1 that the parameter λ in an exponential distribution is interpretable as a “light bulb burnout rate.”

Say we have persons 1 and 2. Each has a lamp. Person i uses Brand i light bulbs, $i = 1, 2$. Say Brand i light bulbs have exponential lifetimes with parameter λ_i. Suppose each time person i replaces a bulb, he shouts out, “New bulb!” and each time anyone replaces a bulb, I shout out “New bulb!” Persons 1 and 2 are shouting at a rate of λ_1 and λ_2, respectively, so I am shouting at a rate of $\lambda_1 + \lambda_2$.
9.3. EXAMPLE: MINIMA OF INDEPENDENT EXPONENTIALLY DISTRIBUTED RANDOM VARIABLES

Proof

\[F_Z(t) = P(Z \leq t) \quad (\text{def. of cdf}) \quad (9.26) \]
\[= 1 - P(Z > t) \quad (9.27) \]
\[= 1 - P(W_1 > t \text{ and } \ldots \text{ and } W_k > t) \quad (\min > t \text{ iff all } W_i > t) \quad (9.28) \]
\[= 1 - \Pi_i P(W_i > t) \quad (\text{indep.}) \quad (9.29) \]
\[= 1 - \Pi_i e^{-\lambda_i t} \quad (\text{expon. distr.}) \quad (9.30) \]
\[= 1 - e^{- \left(\lambda_1 + \ldots + \lambda_k \right) t} \quad (9.31) \]

Taking \(\frac{d}{dt} \) of both sides proves the theorem.

Also:

Theorem 19 Under the conditions in Theorem 18,

\[P(W_i < W_1, \ldots, W_{i-1}, W_{i+1}, \ldots, W_k) = \frac{\lambda_i}{\lambda_1 + \ldots + \lambda_k} \quad (9.32) \]

(There are \(k \) terms in the denominator, not \(k-1 \).)

Equation (9.32) should be intuitively clear as well from the above “thought experiment” (in which we shouted out “New bulb!”): On average, we have one new Brand 1 bulb every \(1/\lambda_1 \) time, so in a long time \(t \), we’ll have about \(t\lambda_1 \) shouts for this brand. We’ll also have about \(t\lambda_2 \) shouts for Brand 2. So, a proportion of about

\[\frac{t\lambda_1}{t\lambda_1 + t\lambda_2} \quad (9.33) \]

of the shots are for Brand 1. Also, at any given time, the memoryless property of exponential distributions implies that the time at which I shout next will be the minimum of the times at which persons 1 and 2 shout next. This intuitively implies (9.32).

Proof

Again consider the case \(k = 2 \), and then use induction.
Let \(Z = \min(W_1, W_2) \) as before. Then, with \(s \) and \(t \) playing the roles of \(W_1 \) and \(W_2 \), we have

\[
P(Z = W_1) = P(W_1 < W_2) - \int_0^\infty \int_s^\infty \lambda_1 e^{-\lambda_1 s} \lambda_2 e^{-\lambda_2 t} \, dt \, ds \tag{9.34}
\]

So,

\[
P(Z = W_1) = \frac{\lambda_1}{\lambda_1 + \lambda_2} \tag{9.35}
\]
as claimed.

This property of minima of independent exponentially-distributed random variables developed in this section is key to the structure of continuous-time Markov chains, in Chapter 11.

9.3.1 Example: Computer Worm

A computer science graduate student at UCD, Senthilkumar Cheetancheri, was working on a worm alert mechanism. A simplified version of the model is that network hosts are divided into groups of size \(g \), say on the basis of sharing the same router. Each infected host tries to infect all the others in the group. When \(g-1 \) group members are infected, an alert is sent to the outside world.

The student was studying this model via simulation, and found some surprising behavior. No matter how large he made \(g \), the mean time until an external alert was raised seemed bounded. He asked me for advice.

I modeled the nodes as operating independently, and assumed that if node A is trying to infect node B, it takes an exponentially-distributed amount of time to do so. This is a continuous-time Markov chain. Again, this topic is much more fully developed in Chapter 11, but all we need here is the result of Section 9.3, that exponential distributions are “memoryless.”

In state \(i \), there are \(i \) infected hosts, each trying to infect all of the \(g-i \) noninfected hosts. When the process reaches state \(g-1 \), the process ends; we call this state an absorbing state, i.e. one from which the process never leaves.

Scale time so that for hosts A and B above, the mean time to infection is 1.0. Since in state \(i \) there are \(i(g-i) \) such pairs, the time to the next state transition is the minimum of \(i(g-i) \) exponentially-distributed random variables with mean 1. Theorem 18 tells us that this minimum is also exponentially distributed, with parameter \(i(g - i) \cdot 1 \). Thus the mean time to go from state \(i \) to state
i+1 is $1/[i(g-i)]$.

Then the mean time to go from state 1 to state g-1 is

$$\sum_{i=1}^{g-1} \frac{1}{i(g-i)}$$

(9.36)

Using a calculus approximation, we have

$$\int_{1}^{g-1} \frac{1}{x(g-x)} \, dx = \frac{1}{g} \int_{1}^{g-1} \left(\frac{1}{x} + \frac{1}{g-x} \right) \, dx = \frac{2}{g} \ln(g-1)$$

(9.37)

The latter quantity goes to zero as $g \to \infty$. This confirms that the behavior seen by the student in simulations holds in general. In other words, (9.36) remains bounded as $g \to \infty$. This is a very interesting result, since it says that the mean time to alert is bounded no matter how big our group size is.

So, even though our model here was quite simple, probably overly so, it did explain why the student was seeing the surprising behavior in his simulations.

9.3.2 Example: Electronic Components

Suppose we have three electronic parts, with independent lifetimes that are exponentially distributed with mean 2.5. They are installed simultaneously. Let’s find the mean time until the last failure occurs.

Actually, we can use the same reasoning as for the computer worm example in Section 9.3.1. The mean time is simply

$$1/(3 \cdot 0.4) + 1/(2 \cdot 0.4) + 1/(1 \cdot 0.4)$$

(9.38)

9.4 A Cautionary Tale: the Bus Paradox

Suppose you arrive at a bus stop, at which buses arrive according to a Poisson process with intensity parameter 0.1, i.e. 0.1 arrival per minute. Recall that the means that the interarrival times have an exponential distribution with mean 10 minutes. What is the expected value of your waiting time until the next bus?
Well, our first thought might be that since the exponential distribution is memoryless, “time starts over” when we reach the bus stop. Therefore our mean wait should be 10.

On the other hand, we might think that on average we will arrive halfway between two consecutive buses. Since the mean time between buses is 10 minutes, the halfway point is at 5 minutes. Thus it would seem that our mean wait should be 5 minutes.

Which analysis is correct? Actually, the correct answer is 10 minutes. So, what is wrong with the second analysis, which concluded that the mean wait is 5 minutes? The problem is that the second analysis did not take into account the fact that although inter-bus intervals have an exponential distribution with mean 10, the particular inter-bus interval that we encounter is special.

9.4.1 Length-Biased Sampling

Imagine a bag full of sticks, of different lengths. We reach into the bag and choose a stick at random. The key point is that not all pieces are equally likely to be chosen; the longer pieces will have a greater chance of being selected.

Say for example there are 50 sticks in the bag, with ID numbers from 1 to 50. Let X denote the length of the stick we obtain if select a stick on an equal-probability basis, i.e. each stick having probability $1/50$ of being chosen. (We select a random number I from 1 to 50, and choose the stick with ID number I.) On the other hand, let Y denote the length of the stick we choose by reaching into the bag and pulling out whichever stick we happen to touch first. Intuitively, the distribution of Y should favor the longer sticks, so that for instance $EY > EX$.

Let’s look at this from a “notebook” point of view. We pull a stick out of the bag by random ID number, and record its length in the X column of the first line of the notebook. Then we replace the stick, and choose a stick out by the “first touch” method, and record its length in the Y column of the first line. Then we do all this again, recording on the second line, and so on. Again, because the “first touch” method will favor the longer sticks, the long-run average of the Y column will be larger than the one for the X column.

Another example was suggested to me by UCD grad student Shubhabrata Sengupta. Think of a large parking lot on which hundreds of buckets are placed of various diameters. We throw a ball high into the sky, and see what size bucket it lands in. Here the density would be proportional to area of the bucket, i.e. to the square of the diameter.

Similarly, the particular inter-bus interval that we hit is likely to be a longer interval. To see this, suppose we observe the comings and goings of buses for a very long time, and plot their arrivals on a time line on a wall. In some cases two successive marks on the time line are close together, sometimes far apart. If we were to stand far from the wall and throw a dart at it, we would hit the interval between some pair of consecutive marks. Intuitively we are more apt to hit a wider
interval than a narrower one.

The formal name for this is length-biased sampling.

Once one recognizes this and carefully derives the density of that interval (see below), we discover that that interval does indeed tend to be longer—so much so that the expected value of this interval is 20 minutes! Thus the halfway point comes at 10 minutes, consistent with the analysis which appealed to the memoryless property, thus resolving the “paradox.”

In other words, if we throw a dart at the wall, say, 1000 times, the mean of the 1000 intervals we would hit would be about 20. This in contrast to the mean of all of the intervals on the wall, which would be 10.

9.4.2 Probability Mass Functions and Densities in Length-Biased Sampling

Actually, we can intuitively reason out what the density is of the length of the particular inter-bus interval that we hit, as follows.

First consider the bag-of-sticks example, and suppose (somewhat artificially) that stick length X is a discrete random variable. Let Y denote the length of the stick that we pick by randomly touching a stick in the bag.

Again, note carefully that for the reasons we’ve been discussing here, the distributions of X and Y are different. Say we have a list of all sticks, and we choose a stick at random from the list. Then the length of that stick will be X. But if we choose by touching a stick in the bag, that length will be Y.

Now suppose that, say, stick lengths 2 and 6 each comprise 10% of the sticks in the bag, i.e.

$$p_X(2) = p_X(6) = 0.1$$

(9.39)

Intuitively, one would then reason that

$$p_Y(6) = 3p_Y(2)$$

(9.40)

In other words, even though the sticks of length 2 are just as numerous as those of length 6, the latter are three times as long, so they should have triple the chance of being chosen. So, the chance of our choosing a stick of length j depends not only on $p_X(j)$ but also on j itself.

We could write that formally as

$$p_Y(j) \propto jp_X(j)$$

(9.41)
where ∝ is the “is proportional to” symbol. Thus

\[p_Y(j) = c j p_X(j) \] (9.42)

for some constant of proportionality c.

But a probability mass function must sum to 1. So, summing over all possible values of j (whatever they are), we have

\[1 = \sum_j p_Y(j) = \sum_j c j p_X(j) \] (9.43)

That last term is c E(X)! So, c = 1/EX, and

\[p_Y(j) = \frac{1}{EX} \cdot j p_X(j) \] (9.44)

The continuous analog of (9.44) is

\[f_Y(t) = \frac{1}{EX} \cdot t f_X(t) \] (9.45)

So, for our bus example, in which \(f_X(t) = 0.1 e^{-0.1t}, \ t > 0 \) and \(EX = 10 \),

\[f_Y(t) = 0.01 t e^{-0.1t} \] (9.46)

You may recognize this as an Erlang density with \(r = 2 \) and \(\lambda = 0.1 \). That distribution does indeed have mean 20, consistent with the discussion at the end of Section 9.4.1.
Chapter 10

Stop and Review: Probability Structures

There’s quite a lot of material in the preceding chapters, but it’s crucial that you have a good command of it before proceeding, as the coming chapters will continue to build on it.

With that aim, here are the highlights of what we’ve covered so far, with links to the places at which they were covered:

- **expected value** (Section 3.5):

 Consider random variables X and Y (not assumed independent), and constants c_1 and c_2. We have:

 \[
 E(X + Y) = EX + EY
 \]
 \[E(c_1 X) = c_1 EX\]
 \[E(c_1 X + c_2 Y) = c_1 EX + c_2 EY\]

 By induction,

 \[
 E(a_1 U_1 + ... + a_k U_k) = a_1 EX_1 + ... + a_k EX_k
 \] for random variables U_i and constants a_i.

191
• **variance** (Section 3.6):

 For any variable \(W \),
 \[
 \text{Var}(W) = E[(W - EW)^2] = E(W^2) - (EW)^2
 \]
 (10.5)

 Consider random variables \(X \) and \(Y \) (now assumed independent), and constants \(c_1 \) and \(c_2 \). We have:
 \[
 \text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)
 \]
 (10.6)

 \[
 \text{Var}(c_1 X) = c_1^2 \text{Var}(X)
 \]
 (10.7)

 By induction,
 \[
 \text{Var}(a_1 U_1 + \ldots + a_k U_k) = a_1^2 \text{Var}(U_1) + \ldots + a_k^2 \text{Var}(U_k)
 \]
 (10.8)

 for independent random variables \(U_i \) and constants \(a_i \).

• **indicator random variables** (Section 3.9):

 Equal 1 or 0, depending on whether a specified event \(A \) occurs.

 If \(T \) is an indicator random variable for the event \(A \), then
 \[
 ET = P(A), \quad \text{Var}(T) = P(A)[1 - P(A)]
 \]
 (10.9)

• **distributions**:

 – **cdfs** (Section 7.3):

 For any random variable \(X \),
 \[
 F_X(t) = P(X \leq t), \quad -\infty < t < \infty
 \]
 (10.10)

 – **pmfs** (Section 3.13):

 For a discrete random variable \(X \),
 \[
 p_X(k) = P(X = k)
 \]
 (10.11)
– **density functions** (Section 3.13):
 For a continuous random variable X,
 \[
 f_X(t) = \frac{d}{dt} F_X(t), \quad -\infty < t < \infty
 \]
 (10.12)
 and
 \[
 P(X \text{ in } A) = \int_A f_X(s) \, ds
 \]
 (10.13)

• **famous parametric families of distributions:**
 Just like one can have a family of curves, say $\sin(2\pi n\theta(t))$ (different curve for each n and θ), certain families of distributions have been found useful. They’re called **parametric families**, because they are indexed by one or more parameters, analogously to n and θ above.

discrete:

– **geometric** (Section 4.2)
 Number of i.i.d. trials until first success. For success probability p:
 \[
 p_N(k) = (1 - p)^k p
 \]
 (10.14)
 \[
 EN = 1/p, \quad Var(N) = \frac{1 - p}{p^2}
 \]
 (10.15)

– **binomial** (Section 4.3):
 Number of successes in n i.i.d. trials, probability p of success per trial:
 \[
 p_N(k) = \binom{n}{k} p^k (1 - p)^{n-k}
 \]
 (10.16)
 \[
 EN = np, \quad Var(N) = np(1 - p)
 \]
 (10.17)

– **Poisson** (Section 4.5):
 Has often been found to be a good model for counts over time periods.
 One parameter, often called λ. Then
 \[
 p_N(k) = \frac{e^{-\lambda} \lambda^k}{k!}, k = 0, 1, 2, ...
 \]
 (10.18)
 \[
 EN = Var(N) = \lambda
 \]
 (10.19)
– **negative binomial** (Section 4.4): Number of i.i.d. trials until rth success. For success probability p:

$$p_N(k) = \binom{k-1}{r-1}(1-p)^{k-r}p^r, \quad k = r, r+1, \ldots$$ \hfill (10.20)

$$E(N) = r \cdot \frac{1}{p}, \quad Var(N) = r \cdot \frac{1-p}{p^2}$$ \hfill (10.21)

continuous:

– **uniform** (Section 7.6.1.1): All points “equally likely.” If the interval is (q, r),

$$f_X(t) = \frac{1}{r-q}, \quad q < t < r$$ \hfill (10.22)

$$EX = \frac{q + r}{2}, \quad Var(D) = \frac{1}{12}(r-q)^2$$ \hfill (10.23)

– **normal (Gaussian)** (Section 7.6.2): “Bell-shaped curves.” Useful due to Central Limit Theorem (Section 8.9). (Thus good approximation to binomial distribution.) Closed under affine transformations (Section 8.1.1)!

Parameterized by mean and variance, μ and σ^2:

$$f_X(t) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^2}, \quad -\infty < t < \infty$$ \hfill (10.24)

– **exponential** (Section 7.6.3):

– Memoryless! One parameter, usually called λ. Connected to Poisson family.

$$f_X(t) = \lambda e^{-\lambda t}, \quad 0 < t < \infty$$ \hfill (10.25)

$$EX = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}$$ \hfill (10.26)

– **gamma** (Section 7.6.4):

Special case, Erlang family, arises as the distribution of the sum of i.i.d. exponential random variables.

$$f_X(t) = \frac{1}{\Gamma(r)} \lambda^r t^{r-1} e^{-\lambda t}, \quad t > 0$$ \hfill (10.27)
• iterated expected values:

 - For discrete U \(4.68\),

 \[
 E(V) = \sum_c P(U = c)\ E(V \mid U = c)
 \]
 \(10.28\)

 - For continuous V \(7.77\),

 \[
 E(W) = \int_{-\infty}^{\infty} f_V(t)\ E(W \mid V = t)\ dt
 \]
 \(10.29\)
Chapter 11

Introduction to Continuous-Time Markov Chains

In the Markov chains we analyzed in Chapter 6, events occur only at integer times. However, many Markov chain models are of the *continuous-time* type, in which events can occur at any times. Here the holding time, i.e. the time the system spends in one state before changing to another state, is a continuous random variable.

11.1 Continuous-Time Markov Chains

The state of a Markov chain at any time now has a continuous subscript. Instead of the chain consisting of the random variables $X_n, n = 1, 2, 3, \ldots$, it now consists of $\{X_t : t \in [0, \infty)\}$. The Markov property is now

\[
P(X_{t+u} = k | X_s \text{ for all } 0 \leq s \leq t) = P(X_{t+u} = k | X_t) \text{ for all } t, u \geq 0
\]

(11.1)

11.2 Holding-Time Distribution

In order for the Markov property to hold, the distribution of holding time at a given state needs to be “memoryless.” Recall that exponentially distributed random variables have this property. In other words, if a random variable W has density

\[
f(t) = \lambda e^{-\lambda t}
\]

(11.2)

197
for some λ then

$$P(W > r + s | W > r) = P(W > s)$$ \hspace{1cm} (11.3)$$

for all positive r and s. And exponential distributions are the only continuous distributions which have this property. Therefore, holding times in Markov chains must be exponentially distributed. Because it is central to the Markov property, the exponential distribution is assumed for all basic activities in Markov models. In queuing models, for instance, both the interarrival time and service time are assumed to be exponentially distributed (though of course with different values of λ). In reliability modeling, the lifetime of a component is assumed to have an exponential distribution. Such assumptions have in many cases been verified empirically. If you go to a bank, for example, and record data on when customers arrive at the door, you will find the exponential model to work well (though you may have to restrict yourself to a given time of day, to account for nonrandom effects such as heavy traffic at the noon hour). In a study of time to failure for airplane air conditioners, the distribution was also found to be well fitted by an exponential density. On the other hand, in many cases the distribution is not close to exponential, and purely Markovian models cannot be used for anything more than a rough approximation.

11.2.1 The Notion of “Rates”

A key point is that the parameter λ in (11.2) has the interpretation of a rate, in the sense discussed in Theorem 18. To review, first, recall that $1/\lambda$ is the mean. Say light bulb lifetimes have an exponential distribution with mean 100 hours, so $\lambda = 0.01$. In our lamp, whenever its bulb burns out, we immediately replace it with a new one. Imagine watching this lamp for, say, 100,000 hours. During that time, we will have done approximately $100000/100 = 1000$ replacements. That would be using 1000 light bulbs in 100000 hours, so we are using bulbs at the rate of 0.01 bulb per hour. For a general λ, we would use light bulbs at the rate of λ bulbs per hour. This concept is crucial to what follows.

11.3 Stationary Distribution

In analogy to (6.4), we again define π_i to be the long-run proportion of time the system is in state i, where now N_{it} is the proportion of the time spent in state i, during $(0,t)$. We again will derive a system of linear equations to solve for these proportions, using a flow out = flow in argument.
11.3. **STATIONARY DISTRIBUTION**

11.3.1 **Intuitive Derivation**

To this end, let λ_i denote the parameter in the holding-time distribution at state i, and define the quantities

$$
\rho_{rs} = \lambda_r p_{rs} \tag{11.4}
$$

where p_{rs} is that probably that, when a jump out of state r occurs, the jump is to state s.

The equations has the following interpretation. Note:

- λ_r is the rate of jumps out of state r, so ρ_{rs} is the rate of jumps from state r to state s, and since
- π_r is the long-run proportion of the time we are in state r, then
- $\pi_r \lambda_r p_{rs}$ is the rate of jumps from r to s

Then, equating the rate of transitions into i and the rate out of i, we have

$$
\pi_i \lambda_i = \sum_{j \neq i} \pi_j \lambda_j p_{ji} \tag{11.5}
$$

These equations can then be solved for the π_i.

11.3.2 **Computation**

Motivated by (11.5), define the matrix Q by

$$
q_{ij} = \begin{cases}
\lambda_j p_{ji}, & \text{if } i \neq j \\
-\lambda_i, & \text{if } i = j
\end{cases} \tag{11.6}
$$

Q is called the **infinitesimal generator** of the system, so named because it is the basis of the system of differential equations that can be used to find the finite-time probabilistic behavior of X_t.

Then (11.5) is stated in matrix form as

$$
Q \pi = 0 \tag{11.7}
$$
CHAPTER 11. INTRODUCTION TO CONTINUOUS-TIME MARKOV CHAINS

But the \(\pi_i \) must sum to 1, so the above equation is subject to

\[
1' \pi = 1 \tag{11.8}
\]

where \(1 \) denotes a (column) vector of \(n \) 1s, where \(n \) is the number of states.

In view of (11.8), the system (11.7) is redundant; there are \(n \) equations for \(n-1 \) unknowns, So, replace the last equation in (11.7) by (11.8).

Here is R code to solve the system:

```r
findpicontin <- function(q) {
  n <- nrow(q)
  q[n,] <- rep(1, n)
  rhs <- c(rep(0, n-1), 1)
  pivec <- solve(q, rhs)
  return(pivec)
}
```

To formulate the equations (11.5), we’ll need a property of exponential distributions derived in Section 9.3, copied here for convenience:

Theorem 20 Suppose \(W_1, \ldots, W_k \) are independent random variables, with \(W_i \) being exponentially distributed with parameter \(\lambda_i \). Let \(Z = \min(W_1, \ldots, W_k) \). Then

(a) \(Z \) is exponentially distributed with parameter \(\lambda_1 + \ldots + \lambda_k \)

(b) \(P(Z = W_i) = \frac{\lambda_i}{\lambda_1 + \ldots + \lambda_k} \)

11.4 Example: Machine Repair

Suppose the operations in a factory require the use of a certain kind of machine. The manager has installed two of these machines. This is known as a **gracefully degrading system**: When both machines are working, the fact that there are two of them, instead of one, leads to a shorter wait time for access to a machine. When one machine has failed, the wait is longer, but at least the factory operations may continue. Of course, if both machines fail, the factory must shut down until at least one machine is repaired.

Suppose the time until failure of a single machine, carrying the full load of the factory, has an exponential distribution with mean 20.0, but the mean is 25.0 when the other machine is working, since it is not so loaded. Repair time is exponentially distributed with mean 8.0.
We can take as our state space \(\{0, 1, 2\} \), where the state is the number of working machines. Now, let us find the parameters \(\lambda_i \) and \(p_{ji} \) for this system. For example, what about \(\lambda_2 \)? The holding time in state 2 is the minimum of the two lifetimes of the machines, and thus from the results of Section 9.3 has parameter \(\frac{1}{20.0} + \frac{1}{8.0} = 0.08 \).

For \(\lambda_1 \), a transition out of state 1 will be either to state 2 (the down machine is repaired) or to state 0 (the up machine fails). The time until transition will be the minimum of the lifetime of the up machine and the repair time of the down machine, and thus will have parameter \(\frac{1}{20.0} + \frac{1}{8.0} = 0.175 \). Similarly, \(\lambda_0 = \frac{1}{8.0} + \frac{1}{8.0} = 0.25 \).

It is important to understand how the Markov property is being used here. Suppose we are in state 1, and the down machine is repaired, sending us into state 2. Remember, the machine which had already been up has “lived” for some time now. But the memoryless property of the exponential distribution implies that this machine is now “born again.”

What about the parameters \(p_{ji} \)? Well, \(p_{21} \) is certainly easy to find; since the transition 2 → 1 is the only transition possible out of state 2, \(p_{21} = 1 \).

For \(p_{12} \), recall that transitions out of state 1 are to states 0 and 2, with rates 1/20.0 and 1/8.0, respectively. So,

\[
p_{12} = \frac{1/8.0}{1/20.0 + 1/8.0} = 0.72
\]

(11.9)

Working in this manner, we finally arrive at the complete system of equations (11.5):

\[
\begin{align*}
\pi_2(0.08) &= \pi_1(0.125) \\
\pi_1(0.175) &= \pi_2(0.08) + \pi_0(0.25) \\
\pi_0(0.25) &= \pi_1(0.05)
\end{align*}
\]

(11.10-11.12)

In matrix terms:

\[
\begin{pmatrix}
-0.25 & 0.05 & 0 \\
0.25 & -0.175 & 0.08 \\
0 & 0.125 & -0.08
\end{pmatrix} \pi = 0
\]

(11.13)

Let’s find the solution:

```r
> q
[,1] [,2] [,3]
[1,] -0.25 0.050 0.00
```

"
CHAPTER 11. INTRODUCTION TO CONTINUOUS-TIME MARKOV CHAINS

\[
\begin{bmatrix}
2, & 0.25 & -0.175 & 0.08 \\
3, & 0.00 & 0.125 & -0.08 \\
\end{bmatrix}
\]

> findpicontin(q)

\[
\begin{bmatrix}
1 & 0.07239819 & 0.36199095 & 0.56561086 \\
\end{bmatrix}
\]

So,

\[
\pi = (0.072, 0.362, 0.566)
\]

Thus for example, during 7.2% of the time, there will be no machine available at all.

Several variations of this problem could be analyzed. We could compare the two-machine system with a one-machine version. It turns out that the proportion of down time (i.e. time when no machine is available) increases to 28.6%. Or we could analyze the case in which only one repair person is employed by this factory, so that only one machine can be repaired at a time, compared to the situation above, in which we (tacitly) assumed that if both machines are down, they can be repaired in parallel. We leave these variations as exercises for the reader.

11.5 Example: Migration in a Social Network

The following is a simplified version of research in online social networks.

There is a town with two social groups, with each person being in exactly one group. People arrive from outside town, with exponentially distributed interarrival times at rate \(\alpha \), and join one of the groups with probability 0.5 each. Each person will occasionally switch groups, with one possible “switch” being to leave town entirely. A person’s time before switching is exponentially distributed with rate \(\sigma \); the switch will either be to the other group or to the outside world, with probabilities \(q \) and \(1-q \), respectively. Let the state of the system be \((i,j)\), where \(i \) and \(j \) are the number of current members in groups 1 and 2, respectively.

Let’s find a typical balance equation, say for the state \((8,8)\):

\[
\pi_{(8,8)}(\alpha + 16 \cdot \sigma) = (\pi_{(9,8)} + \pi_{(8,9)}) \cdot 9\sigma(1-q) + (\pi_{(9,7)} + \pi_{(7,9)}) \cdot 9\sigma q + (\pi_{(8,7)} + \pi_{(7,8)}) \cdot 0.5\alpha
\]

The reasoning is straightforward. How can we move out of state \((8,8)\)? Well, there could be an arrival (rate \(\alpha \)), or any one of the 16 people could switch groups (rate \(16\sigma \)), etc.

Now, in a “going beyond finding the \(\pi \)” vein, let’s find the long-run fraction of transfers into group 1 that come from group 2, as opposed to from the outside.
11.6. BIRTH/DEATH PROCESSES

The rate of transitions into that group from outside is 0.5α. When the system is in state (i,j), the rate of transitions into group 1 from group 2 is \(j\sigma q \), so the overall rate is \(\sum_{i,j} \pi_{(i,j)} j\sigma q \). Thus the fraction of new members coming in to group 1 from transfers is

\[
\frac{\sum_{i,j} \pi_{(i,j)} j\sigma q}{0.5\alpha + \sum_{i,j} \pi_{(i,j)} j\sigma q}
\] (11.16)

The above reasoning is very common, quite applicable in many situations. By the way, note that \(\sum_{i,j} \pi_{(i,j)} j\sigma q = \sigma q EN \), where N is the number of members of group 2.

11.6 Birth/Death Processes

We noted earlier that the system of equations for the \(\pi_i \) may not be easy to solve. In many cases, for instance, the state space is infinite and thus the system of equations is infinite too. However, there is a rich class of Markov chains for which closed-form solutions have been found, called birth/death processes.\(^1\)

Here the state space consists of (or has been mapped to) the set of nonnegative integers, and \(p_{ji} \) is nonzero only in cases in which \(|i - j| = 1 \). (The name “birth/death” has its origin in Markov models of biological populations, in which the state is the current population size.) Note for instance that the example of the gracefully degrading system above has this form. An M/M/1 queue—one server, “Markov” (i.e. exponential) interarrival times and Markov service times—is also a birth/death process, with the state being the number of jobs in the system.

Because the \(p_{ji} \) have such a simple structure, there is hope that we can find a closed-form solution for the \(\pi_i \), and it turns out we can. Let \(u_i = \rho_{i,i+1} \) and \(d_i = \rho_{i,i-1} \) (‘u’ for “up,” ‘d’ for “down”). Then (??) is

\[
\pi_{i+1} d_{i+1} + \pi_{i-1} u_{i-1} = \pi_i \lambda_i = \pi_i (u_i + d_i), \quad i \geq 1
\] (11.17)

\[
\pi_1 d_1 = \pi_0 \lambda_0 = \pi_0 u_0
\] (11.18)

In other words,

\[
\pi_{i+1} d_{i+1} - \pi_i u_i = \pi_i d_i - \pi_{i-1} u_{i-1}, \quad i \geq 1
\] (11.19)

\(^1\)Though we treat the continuous-time case here, there is also a discrete-time analog.
CHAPTER 11. INTRODUCTION TO CONTINUOUS-TIME MARKOV CHAINS

\[\pi_1 d_1 - \pi_0 u_0 = 0 \]

(11.20)

Applying (11.19) recursively to the base (11.20), we see that

\[\pi_i d_i - \pi_{i-1} u_{i-1} = 0, \quad i \geq 1 \]

(11.21)

so that

\[\pi_i = \pi_{i-1} \frac{u_{i-1}}{d_i}, \quad i \geq 1 \]

(11.22)

and thus

\[\pi_i = \pi_0 r_i \]

(11.23)

where

\[r_i = \prod_{k=1}^{i} \frac{u_{k-1}}{d_k} \]

(11.24)

where \(r_i = 0 \) for \(i > m \) if the chain has no states past \(m \).

Then since the \(\pi_i \) must sum to 1, we have that

\[\pi_0 = \frac{1}{1 + \sum_{i=1}^{\infty} r_i} \]

(11.25)

and the other \(\pi_i \) are then found via (11.23).

Note that the chain might be finite, i.e. have \(u_i = 0 \) for some \(i \). In that case it is still a birth/death chain, and the formulas above for \(\pi \) still apply.

11.7 Cell Communications Model

Let’s consider a more modern example of this sort, involving cellular phone systems. (This is an extension of the example treated in K.S. Trivedi, Probability and Statistics, with Reliability and Computer Science Applications (second edition), Wiley, 2002, Sec. 8.2.3.2, which is in turn is based on two papers in the IEEE Transactions on Vehicular Technology.)
We consider one particular cell in the system. Mobile phone users drift in and out of the cell as they move around the city. A call can either be a new call, i.e. a call which someone has just dialed, or a handoff call, i.e. a call which had already been in progress in a neighboring cell but now has moved to this cell.

Each call in a cell needs a channel. There are \(n \) channels available in the cell. We wish to give handoff calls priority over new calls. This is accomplished as follows.

The system always reserves \(g \) channels for handoff calls. When a request for a new call (i.e. a non-handoff call) arrives, the system looks at \(X_t \), the current number of calls in the cell. If that number is less than \(n-g \), so that there are more than \(g \) idle channels available, the new call is accepted; otherwise it is rejected.

We assume that new calls originate from within the cells according to a Poisson process with rate \(\lambda_1 \), while handoff calls drift in from neighboring cells at rate \(\lambda_2 \). Meanwhile, call durations are exponential with rate \(\mu_1 \), while the time that a call remains within the cell is exponential with rate \(\mu_2 \).

11.7.1 Stationary Distribution

We again have a birth/death process, though a bit more complicated than our earlier ones. Let \(\lambda = \lambda_1 + \lambda_2 \) and \(\mu = \mu_1 + \mu_2 \). Then here is a sample balance equation, focused on transitions into (left-hand side in the equation) and out of (right-hand side) state 1:

\[
\pi_0 \lambda + \pi_2 2\mu = \pi_1 (\lambda + \mu)
\]
(11.26)

Here’s why: How can we enter state 1? Well, we could do so from state 0, where there are no calls; this occurs if we get a new call (rate \(\lambda_1 \)) or a handoff call (rate \(\lambda_2 \)). In state 2, we enter state 1 if one of the two calls ends (rate \(\mu_1 \)) or one of the two calls leaves the cell (rate \(\mu_2 \)). The same kind of reasoning shows that we leave state 1 at rate \(\lambda + \mu \).

As another example, here is the equation for state \(n-g \):

\[
\pi_{n-g} [\lambda_2 + (n - g)\mu] = \pi_{n-g+1} (n - g + 1)\mu + \pi_{n-g-1}\lambda
\]
(11.27)

Note the term \(\lambda_2 \) in (13.44), rather than \(\lambda \) as in (13.43).

\(^2\)This could be a certain frequency or a certain time slot position.

\(^3\)We would rather give the caller of a new call a polite rejection message, e.g. “No lines available at this time, than suddenly terminate an existing conversation.
Using our birth/death formula for the π_i, we find that
\[
\pi_k = \begin{cases}
\pi_0 A^k, & k \leq n-g \\
\pi_0 \frac{A^{n-g}}{k!} A_1^{k-(n-g)}, & k \geq n-g
\end{cases}
\] (11.28)

where $A = \lambda/\mu$, $A_1 = \lambda_2/\mu$ and
\[
\pi_0 = \left[\sum_{k=0}^{n-g-1} \frac{A^k}{k!} + \sum_{k=n-g}^{n} \frac{A^{n-g}}{k!} A_1^{k-(n-g)} \right]^{-1}
\] (11.29)

11.7.2 Going Beyond Finding the π

One can calculate a number of interesting quantities from the π_i:

- The probability of a handoff call being rejected is π_n.
- The probability of a new call being blocked is
 \[
 \sum_{k=n-g}^{n} \pi_k
 \] (11.30)
- Since the per-channel utilization in state i is i/n, the overall long-run per-channel utilization is
 \[
 \sum_{i=0}^{n} \frac{\pi_i}{n}
 \] (11.31)
- The long-run proportion of accepted calls which are handoff calls is the rate at which handoff calls are accepted, divided by the rate at which calls are accepted:
 \[
 \frac{\lambda_2 \sum_{i=0}^{n-1} \pi_i}{\lambda_1 \sum_{i=0}^{n-g-1} \pi_i + \lambda_2 \sum_{i=0}^{n-1} \pi_i}
 \] (11.32)
Chapter 12

Advanced Markov Chains

One of the most famous stochastic models is that of a Markov chain. This type of model is widely used in computer science, biology, physics, business and so on.

(Note to the reader: An introduction to the subject matter of this chapter was presented in Chapter 6. The present chapter is mostly self-contained, but it may be helpful to read or review that previous chapter for additional examples.)

12.1 Discrete-Time Markov Chains

12.1.1 Example: Finite Random Walk

To motivate this discussion, let us start with a simple example: Consider a random walk on the set of integers between 1 and 5, moving randomly through that set, say one move per second, according to the following scheme. If we are currently at position i, then one time period later we will be at either i-1, i or i+1, according to the outcome of rolling a fair die—we move to i-1 if the die comes up 1 or 2, stay at i if the die comes up 3 or 4, and move to i+1 in the case of a 5 or 6. For the special cases i = 1 and i = 5, we simply move back to 2 or 4, respectively. (In random walk terminology, these are called reflecting barriers.)

The integers 1 through 5 form the state space for this process; if we are currently at 4, for instance, we say we are in state 4. Let X_t represent the position of the particle at time t, $t = 0, 1, 2, \ldots$. Typically X_0 is nonrandom.

The random walk is a Markov process. The process is “memoryless,” meaning that we can “forget the past”; given the present and the past, the future depends only on the present. If the
X_i are discrete random variables, that means

$$P(X_{t+1} = s_{t+1}|X_t = s_t, X_{t-1} = s_{t-1}, \ldots, X_0 = s_0) = P(X_{t+1} = s_{t+1}|X_t = s_t) \quad (12.1)$$

In the continuous X_i case, replace $X_{t+1} = s_{t+1}$ above with $X_{t+1} \in (a, b)$. The term *Markov process* is the general one. If the state space is discrete, i.e. finite or countably infinite, then we usually use the more specialized term, *Markov chain*.1

Although this equation has a very complex look, it has a very simple meaning: The distribution of our next position, given our current position and all our past positions, is dependent only on the current position. In other words, the system is “memoryless,” somewhat in analogy to the properties of the exponential distribution discussed in Section 9.2. (In fact exponential distributions will play a key role when we get to continuous-time Markov chains in Section ??.) It is clear that the random walk process above does have this memoryless property; for instance, if we are now at position 4, the probability that our next state will be 3 is 1/3—no matter where we were in the past.

Continuing this example, let p_{ij} denote the probability of going from position i to position j in one step. For example, $p_{21} = p_{23} = \frac{1}{3}$ while $p_{24} = 0$ (we can reach position 4 from position 2 in two steps, but not in one step). The numbers p_{ij} are called the one-step transition probabilities of the process. Denote by P the matrix whose entries are the p_{ij}:

$$
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & 0 & 1 & 0
\end{pmatrix} \quad (12.2)
$$

By the way, it turns out (Section 6.1) that the matrix P^k gives the k-step transition probabilities. In other words, the element (i,j) of this matrix gives the probability of going from i to j in k steps.

12.1.2 Long-Run Distribution

In typical applications we are interested in the long-run distribution of the process, for example the long-run proportion of the time that we are at position 4. For each state i, define

$$\pi_i = \lim_{t \to \infty} \frac{N_{it}}{t} \quad (12.3)$$

1Be careful not to confuse the discrete or continuous nature of the state space with discrete or continuous time.
where N_{it} is the number of visits the process makes to state i among times 1, 2, ..., t. In most practical cases, this proportion will exist and be independent of our initial position X_0. The π_i are called the steady-state probabilities, or the stationary distribution of the Markov chain.

Intuitively, the existence of π_i implies that as t approaches infinity, the system approaches steady-state, in the sense that

$$\lim_{t \to \infty} P(X_t = i) = \pi_i \quad (12.4)$$

Actually, the limit (12.4) may not exist in some cases. We’ll return to that point later, but for typical cases it does exist, and we will usually assume this.

12.1.2.1 The Balance Equations

Equation (12.4) suggests a way to calculate the values π_i, as follows.

First note that

$$P(X_{t+1} = i) = \sum_k P(X_t = k \text{ and } X_{t+1} = i) \quad (12.5)$$

$$= \sum_k P(X_t = k) \cdot P(X_{t+1} = i | X_t = k) \quad (12.6)$$

$$= \sum_k P(X_t = k) \cdot p_{ki} \quad (12.7)$$

where the sum goes over all states k. For example, in our random walk example above, we would have

$$P(X_{t+1} = 3) = \sum_{k=1}^{5} P(X_t = k \text{ and } X_{t+1} = 3) \quad (12.8)$$

$$= \sum_{k=1}^{5} P(X_t = k) \cdot P(X_{t+1} = 3 | X_t = k) \quad (12.9)$$

$$= \sum_{k=1}^{5} P(X_t = k) \cdot p_{k3} \quad (12.10)$$
CHAPTER 12. ADVANCED MARKOV CHAINS

Then as \(t \to \infty \) in Equation (12.7), intuitively we would have

\[
\pi_i = \sum_k \pi_k p_{ki} \tag{12.11}
\]

Remember, here we know the \(p_{ki} \) and want to find the \(\pi_i \). Solving these balance equations (one for each \(i \)), gives us the \(\pi_i \).

For the random walk problem above, for instance, the solution is \(\pi = \left(\frac{1}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{1}{11} \right) \). Thus in the long run we will spend 1/11 of our time at position 1, 3/11 of our time at position 2, and so on.

12.1.2.2 Solving the Balance Equations

A matrix formulation is also useful. Letting \(\pi \) denote the row vector of the elements \(\pi_i \), i.e. \(\pi = (\pi_1, \pi_2, ...) \), these equations (one for each \(i \)) then have the matrix form

\[
\pi = \pi P \tag{12.12}
\]

or

\[
(I - P')\pi' = 0 \tag{12.13}
\]

where as usual \(' \) denotes matrix transpose.

Note that there is also the constraint

\[
\sum_i \pi_i = 1 \tag{12.14}
\]

One of the equations in the system is redundant. We thus eliminate one of them, say by removing the last row of \(I - P \) in (12.13). This can be used to calculate the \(\pi_i \).

To reflect (12.14), which in matrix form is

\[
1'_n \pi' = 1 \tag{12.15}
\]

where \(1_n \) is a column vector of all 1s, \(n \) is the number of states, and we replace the removed row in \(I - P \) by a row of all 1s, and in the right-hand side of (12.13) we replace the last 0 by a 1. We can then solve the system.
12.1. DISCRETE-TIME MARKOV CHAINS

All this can be done with R’s solve() function:

```r
findpi1 <- function(p) {
  n <- nrow(p)
  imp <- diag(n) - t(p) # I-P’
  imp[n,] <- rep(1,n) # form row of 1s
  rhs <- c(rep(0,n-1),1) # form right-hand-side vector
  pivec <- solve(imp,rhs) # solve for pi
  return(pivec)
}
```

Or one can note from (12.12) that π is a left eigenvector of P with eigenvalue 1, so one can use R’s eigen() function. It can be proven that if P is irreducible and aperiodic (defined later in this chapter), every eigenvalue other than 1 is smaller than 1 (so we can speak of the eigenvalue 1), and the eigenvector corresponding to 1 has all components real.

Since π is a left eigenvector, the argument in the call to eigen() must be P' rather than P. In addition, since an eigenvector is only unique up to scalar multiplication, we must deal with the fact that the return value of eigen() may have negative components, and will likely not satisfy (12.14). Here is the code:

```r
findpi2 <- function(p) {
  n <- nrow(p)
  # find first eigenvector of P'
  pivec <- eigen(t(p))$vectors[,1]
  # guaranteed to be real, but could be negative
  if (pivec[1] < 0) pivec <- -pivec
  # normalize
  pivec <- pivec / sum(pivec)
  return(pivec)
}
```

But Equation (12.13) may not be easy to solve. For instance, if the state space is infinite, then this matrix equation represents infinitely many scalar equations. In such cases, you may need to try to find some clever trick which will allow you to solve the system, or in many cases a clever trick to analyze the process in some way other than explicit solution of the system of equations.

And even for finite state spaces, the matrix may be extremely large. In some cases, you may need to resort to numerical methods.
12.1.2.3 Periodic Chains

Note again that even if Equation (12.13) has a solution, this does not imply that (12.4) holds. For instance, suppose we alter the random walk example above so that

\[p_{i,i-1} = p_{i,i+1} = \frac{1}{2} \quad (12.16) \]

for \(i = 2, 3, 4 \), with transitions out of states 1 and 5 remaining as before. In this case, the solution to Equation (12.13) is \((\frac{1}{8}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}) \). This solution is still valid, in the sense that Equation (12.3) will hold. For example, we will spend 1/4 of our time at Position 4 in the long run. But the limit of \(P(X_i = 4) \) will not be 1/4, and in fact the limit will not even exist. If say \(X_0 \) is even, then \(X_i \) can be equal to 4 only for even values of \(i \). We say that this Markov chain is **periodic** with period 2, meaning that returns to a given state can only occur after amounts of time which are multiples of 2.

12.1.2.4 The Meaning of the Term “Stationary Distribution”

In most analyses, \(X_0 \) is treated as constant, and typically not paid much attention. Our above limit theorems say, basically, “No matter what state we start in, the chain will converge to \(\pi \).” But we can model it as random too, which in this section will be quite useful.

Though we have informally defined the term **stationary distribution** in terms of long-run proportions, the technical definition is this:

Definition 21 Consider a Markov chain. Suppose we have a vector \(\pi \) of nonnegative numbers that sum to 1. Let \(X_0 \) have the distribution \(\pi \). If that results in \(X_1 \) having that distribution too (and thus also all \(X_n \)), we say that \(\pi \) is the **stationary distribution** of this Markov chain.

Note that this definition stems from (12.7).

For instance, in our (first) random walk example above, this would mean that if we have \(X_0 \) distributed on the integers 1 through 5 with probabilities \((\frac{1}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{1}{11}) \), then for example \(P(X_1 = 1) = \frac{1}{11}, P(X_1 = 4) = \frac{3}{11} \) etc. This is indeed the case, as you can verify using (12.7) with \(t = 0 \).

In our “notebook” view, here is what we would do. Imagine that we generate a random integer between 1 and 5 according to the probabilities \((\frac{1}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{1}{11}) \) and set \(X_0 \) to that number. We would then generate another random number, by rolling an ordinary die, and going left, right or

\[^2 \text{Say by rolling an 11-sided die.} \]
staying put, with probability 1/3 each. We would then write down X_1 and X_2 on the first line of our notebook. We would then do this experiment again, recording the results on the second line, then again and again. In the long run, 3/11 of the lines would have, for instance, $X_0 = 4$, and 3/11 of the lines would have $X_1 = 4$. In other words, X_1 would have the same distribution as X_0.

By the way, by making X_0 random, our Markov chain is no longer Markovian! This may seem counterintuitive, but by making X_0 we now have a mixture distribution. Recall the trick coin example in our mixture chapter, Chapter ???. There a sequence of independent random variables became dependent once the mixing variable (choice of coin) is introduced.

12.1.3 Example: Stuck-At 0 Fault

12.1.3.1 Description

In the above example, the labels for the states consisted of single integers i. In some other examples, convenient labels may be r-tuples, for example 2-tuples (i,j).

Consider a serial communication line. Let $B_1, B_2, B_3, ...$ denote the sequence of bits transmitted on this line. It is reasonable to assume the B_i to be independent, and that $P(B_i = 0)$ and $P(B_i = 1)$ are both equal to 0.5.

Suppose that the receiver will eventually fail, with the type of failure being stuck at 0, meaning that after failure it will report all future received bits to be 0, regardless of their true value. Once failed, the receiver stays failed, and should be replaced. Eventually the new receiver will also fail, and we will replace it; we continue this process indefinitely.

Let ρ denote the probability that the receiver fails on any given bit, with independence between bits in terms of receiver failure. Then the lifetime of the receiver, that is, the time to failure, is geometrically distributed with “success” probability ρ i.e. the probability of failing on receipt of the i-th bit after the receiver is installed is $(1 - \rho)^{i-1}\rho$ for $i = 1, 2, 3, ...$.

However, the problem is that we will not know whether a receiver has failed (unless we test it once in a while, which we are not including in this example). If the receiver reports a long string of 0s, we should suspect that the receiver has failed, but of course we cannot be sure that it has; it is still possible that the message being transmitted just happened to contain a long string of 0s.

Suppose we adopt the policy that, if we receive k consecutive 0s, we will replace the receiver with a new unit. Here k is a design parameter; what value should we choose for it? If we use a very small value, then we will incur great expense, due to the fact that we will be replacing receiver units at an unnecessarily high rate. On the other hand, if we make k too large, then we will often wait too long to replace the receiver, and the resulting error rate in received bits will be sizable. Resolution of this tradeoff between expense and accuracy depends on the relative importance of the two. (There
are also other possibilities, involving the addition of redundant bits for error detection, such as parity bits. For simplicity, we will not consider such refinements here. However, the analysis of more complex systems would be similar to the one below.)

12.1.3.2 Initial Analysis

A natural state space in this example would be

\[
\{(i,j) : i = 0, 1, ..., k - 1; j = 0, 1; i + j \neq 0\}
\]

(12.17)

where \(i\) represents the number of consecutive 0s that we have received so far, and \(j\) represents the state of the receiver (0 for failed, 1 for nonfailed). Note that when we are in a state of the form \((k-1,j)\), if we receive a 0 on the next bit (whether it is a true 0 or the receiver has failed), our new state will be \((0,1)\), as we will install a new receiver. Note too that there is no state \((0,0)\), since if the receiver is down it must have received at least one bit.

The calculation of the transition matrix \(P\) is straightforward, though it requires careful thought. For example, suppose the current state is \((2,1)\), and that we are investigating the expense and bit accuracy corresponding to a policy having \(k = 5\). What can happen upon receipt of the next bit? The next bit will have a true value of either 0 or 1, with probability 0.5 each. The receiver will change from working to failed status with probability \(\rho\). Thus our next state could be:

- \((3,1)\), if a 0 arrives, and the receiver does not fail;
- \((0,1)\), if a 1 arrives, and the receiver does not fail; or
- \((3,0)\), if the receiver fails

The probabilities of these three transitions out of state \((2,1)\) are:

\[
p_{(2,1),(3,1)} = 0.5(1 - \rho)
\]

(12.18)

\[
p_{(2,1),(0,1)} = 0.5(1 - \rho)
\]

(12.19)

\[
p_{(2,1),(3,0)} = \rho
\]

(12.20)

Other entries of the matrix \(P\) can be computed similarly. Note by the way that from state \((4,1)\) we will go to \((0,1)\), no matter what happens.

Formally specifying the matrix \(P\) using the 2-tuple notation as above would be very cumbersome. In this case, it would be much easier to map to a one-dimensional labeling. For example, if \(k =\)
12.1. DISCRETE-TIME MARKOV CHAINS

5, the nine states (1,0),..., (4,0), (0,1), (1,1),..., (4,1) could be renamed states 1, 2, ..., 9. Then we could form P under this labeling, and the transition probabilities above would appear as

\[
\begin{align*}
p_{11} &= 0.5(1 - \rho) \\
p_{21} &= 0.5(1 - \rho) \\
p_{31} &= \rho
\end{align*}
\]

(12.21) (12.22) (12.23)

12.1.3.3 Going Beyond Finding \(\pi \)

Finding the \(\pi_i \) should be just the first step. We then want to use them to calculate various quantities of interest\(^3\). For instance, in this example, it would also be useful to find the error rate \(\epsilon \), and the mean time (i.e., the mean number of bit receptions) between receiver replacements, \(\mu \). We can find both \(\epsilon \) and \(\mu \) in terms of the \(\pi_i \), in the following manner.

The quantity \(\epsilon \) is the proportion of the time during which the true value of the received bit is 1 but the receiver is down, which is 0.5 times the proportion of the time spent in states of the form (i,0):

\[
\epsilon = 0.5(\pi_1 + \pi_2 + \pi_3 + \pi_4)
\]

(12.24)

This should be clear intuitively, but it would also be instructive to present a more formal derivation of the same thing. Let \(E_n \) be the event that the \(n \)-th bit is received in error, with \(D_n \) denoting the event that the receiver is down. Then

\[
\begin{align*}
\epsilon &= \lim_{n \to \infty} P(E_n) \\
&= \lim_{n \to \infty} P(B_n = 1 \text{ and } D_n) \\
&= \lim_{n \to \infty} P(B_n = 1)P(D_n) \\
&= 0.5(\pi_1 + \pi_2 + \pi_3 + \pi_4)
\end{align*}
\]

(12.25) (12.26) (12.27) (12.28)

Here we used the fact that \(B_n \) and the receiver state are independent.

Note that with the interpretation of \(\pi \) as the stationary distribution of the process, in Equations \(\text{(12.25)} \) above, we do not even need to take limits.

\(^3\)Note that unlike a classroom setting, where these quantities would be listed for the students to calculate, in research we must decide on our own which quantities are of interest.
Equations (12.25) follow a pattern we’ll use repeatedly in this chapter. In subsequent examples we will not show the steps with the limits, but the limits are indeed there. Make sure to mentally go through these steps yourself.\footnote{The other way to work this out rigorously is to assume that \(X_0\) has the distribution \(\pi\), as in Section 12.1.2.4. Then no limits are needed in (12.25). But this may be more difficult to understand.}

Now to get \(\mu\) in terms of the \(\pi_i\) note that since \(\mu\) is the long-run average number of bits between receiver replacements, it is then the reciprocal of \(\eta\), the long-run fraction of bits that result in replacements. For example, say we replace the receiver on average every 20 bits. Over a period of 1000 bits, then (speaking on an intuitive level) that would mean about 50 replacements. Thus approximately 0.05 (50 out of 1000) of all bits result in replacements. In other words,

\[
\mu = \frac{1}{\eta} \quad (12.29)
\]

Again suppose \(k = 5\). A replacement will occur only from states of the form \((4,j)\), and even then only under the condition that the next reported bit is a 0. In other words, there are three possible ways in which replacement can occur:

(a) We are in state \((4,0)\). Here, since the receiver has failed, the next reported bit will definitely be a 0, regardless of that bit’s true value. We will then have a total of \(k = 5\) consecutive received 0s, and therefore will replace the receiver.

(b) We are in the state \((4,1)\), and the next bit to arrive is a true 0. It then will be reported as a 0, our fifth consecutive 0, and we will replace the receiver, as in (a).

(c) We are in the state \((4,1)\), and the next bit to arrive is a true 1, but the receiver fails at that time, resulting in the reported value being a 0. Again we have five consecutive reported 0s, so we replace the receiver.

Therefore,

\[
\eta = \pi_4 + \pi_9(0.5 + 0.5\rho) \quad (12.30)
\]

Again, make sure you work through the full version of (12.30), using the pattern in (12.25).

Thus

\[
\mu = \frac{1}{\eta} = \frac{1}{\pi_4 + 0.5\pi_9(1 + \rho)} \quad (12.31)
\]
This kind of analysis could be used as the core of a cost-benefit tradeoff investigation to determine a good value of \(k \). (Note that the \(\pi_i \) are functions of \(k \), and that the above equations for the case \(k = 5 \) must be modified for other values of \(k \).)

12.1.4 Example: Shared-Memory Multiprocessor

(Adapted from Probability and Statistics, with Reliability, Queuing and Computer Science Applications, by K.S. Trivedi, Prentice-Hall, 1982 and 2002, but similar to many models in the research literature.)

12.1.4.1 The Model

Consider a shared-memory multiprocessor system with \(m \) memory modules and \(m \) CPUs. The address space is partitioned into \(m \) chunks, based on either the most-significant or least-significant \(\log_2 m \) bits in the address.

The CPUs will need to access the memory modules in some random way, depending on the programs they are running. To make this idea concrete, consider the Intel assembly language instruction

\[
\text{add} \ %\text{eax}, \ (%\text{ebx})
\]

which adds the contents of the EAX register to the word in memory pointed to by the EBX register. Execution of that instruction will (absent cache and other similar effects, as we will assume here and below) involve two accesses to memory—one to fetch the old value of the word pointed to by EBX, and another to store the new value. Moreover, the instruction itself must be fetched from memory. So, altogether the processing of this instruction involves three memory accesses.

Since different programs are made up of different instructions, use different register values and so on, the sequence of addresses in memory that are generated by CPUs are modeled as random variables. In our model here, the CPUs are assumed to act independently of each other, and successive requests from a given CPU are independent of each other too. A CPU will choose the \(i^{th} \) module with probability \(q_i \). A memory request takes one unit of time to process, though the wait may be longer due to queuing. In this very simplistic model, as soon as a CPU’s memory request is fulfilled, it generates another one. On the other hand, while a CPU has one memory request pending, it does not generate another.

Let’s assume a crossbar interconnect, which means there are \(m^2 \) separate paths from CPUs to memory modules, so that if the \(m \) CPUs have memory requests to \(m \) different memory modules,

\[5\] You may recognize this as high-order and low-order interleaving, respectively.
then all the requests can be fulfilled simultaneously. Also, assume as an approximation that we can ignore communication delays.

How good are these assumptions? One weakness, for instance, is that many instructions, for example, do not use memory at all, except for the instruction fetch, and as mentioned, even the latter may be suppressed due to cache effects.

Another example of potential problems with the assumptions involves the fact that many programs will have code like

\[
\text{for (i = 0; i < 10000; i++) sum += x[i];}
\]

Since the elements of the array `x` will be stored in consecutive addresses, successive memory requests from the CPU while executing this code will not be independent. The assumption would be more justified if we were including cache effects, or if we are studying a timesharing system with a small quantum size.

Thus, many models of systems like this have been quite complex, in order to capture the effects of various things like caching, nonindependence and so on in the model. Nevertheless, one can often get some insight from even very simple models too. In any case, for our purposes here it is best to stick to simple models, so as to understand more easily.

Our state will be an \(m\)-tuple \((N_1, \ldots, N_m)\), where \(N_i\) is the number of requests currently pending at memory module \(i\). Recalling our assumption that a CPU generates another memory request immediately after the previous one is fulfilled, we always have that \(N_1 + \ldots + N_m = m\).

It is straightforward to find the transition probabilities \(p_{ij}\). Here are a couple of examples, with \(m = 2\):

- \(p_{(2,0),(1,1)}\): Recall that state \((2,0)\) means that currently there are two requests pending at Module 1, one being served and one in the queue, and no requests at Module 2. For the transition \((2,0) \to (1,1)\) to occur, when the request being served at Module 1 is done, it will make a new request, this time for Module 2. This will occur with probability \(q_2\). Meanwhile, the request which had been queued at Module 1 will now start service. So, \(p_{(2,0),(1,1)} = q_2\).

- \(p_{(1,1),(1,1)}\): In state \((1,1)\), both pending requests will finish in this cycle. To go to \((1,1)\) again, that would mean that the two CPUs request different modules from each other—CPUs 1 and 2 choose Modules 1 and 2 or 2 and 1. Each of those two possibilities has probability \(q_1q_2\), so \(p_{(1,1),(1,1)} = 2q_1q_2\).
12.1. DISCRETE-TIME MARKOV CHAINS

We then solve for the π, using (12.11). It turns out, for example, that

$$\pi_{(1,1)} = \frac{q_1 q_2}{1 - 2q_1 q_2}$$ \hspace{1cm} (12.32)

12.1.4.2 Going Beyond Finding π

Let B denote the number of memory requests completed in a given memory cycle. Then we may be interested in $E(B)$, the number of requests completed per unit time, i.e. per cycle. We can find $E(B)$ as follows. Let S denote the current state. Then, continuing the case $m = 2$, we have from the Law of Total Expectation (Section ??),

$$E(B) = E[E(B|S)]$$

$$= P(S = (2,0))E(B|S = (2,0)) + P(S = (1,1))E(B|S = (1,1)) + P(S = (0,2))E(B|S = (0,2))$$ \hspace{1cm} (12.33)

$$= \pi_{(2,0)}E(B|S = (2,0)) + \pi_{(1,1)}E(B|S = (1,1)) + \pi_{(0,2)}E(B|S = (0,2))$$ \hspace{1cm} (12.35)

All this equation is doing is finding the overall mean of B by breaking down into the cases for the different states.

Now if we are in state $(2,0)$, only one request will be completed this cycle, and B will be 1. Thus $E(B|S = (2,0)) = 1$. Similarly, $E(B|S = (1,1)) = 2$ and so on. After doing all the algebra, we find that

$$E_B = \frac{1 - q_1 q_2}{1 - 2q_1 q_2}$$ \hspace{1cm} (12.36)

The maximum value of $E(B)$ occurs when $q_1 = q_2 = \frac{1}{2}$, in which case $E(B) = 1.5$. This is a lot less than the maximum capacity of the memory system, which is $m = 2$ requests per cycle.

So, we can learn a lot even from this simple model, in this case learning that there may be a substantial underutilization of the system. This is a common theme in probabilistic modeling:

Simple models may be worthwhile in terms of insight provided, even if their numerical predictions may not be too accurate.

6 Actually, we could take a more direct route in this case, noting that B can only take on the values 1 and 2. Then $E_B = P(B = 1) + 2P(B = 2) = \pi_{(2,0)} + \pi_{(0,2)} + 2\pi_{(1,1)}$. But the analysis below extends better to the case of general m.
12.1.5 Example: Slotted ALOHA

Recall the slotted ALOHA model from Chapter 2:

- Time is divided into slots or epochs.
- There are \(n \) nodes, each of which is either idle or has a **single** message transmission pending. So, a node doesn’t generate a new message until the old one is successfully transmitted (a very unrealistic assumption, but we’re keeping things simple here).
- In the middle of each time slot, each of the idle nodes generates a message with probability \(q \).
- Just before the end of each time slot, each active node attempts to send its message with probability \(p \).
- If more than one node attempts to send within a given time slot, there is a **collision**, and each of the transmissions involved will fail.
- So, we include a **backoff** mechanism: At the middle of each time slot, each node with a message will with probability \(q \) attempt to send the message, with the transmission time occupying the remainder of the slot.

So, \(q \) is a design parameter, which must be chosen carefully. If \(q \) is too large, we will have too many collisions, thus increasing the average time to send a message. If \(q \) is too small, a node will often refrain from sending even if no other node is there to collide with.

Define our state for any given time slot to be the number of nodes currently having a message to send at the very beginning of the time slot (before new messages are generated). Then for \(0 < i < n \) and \(0 < j < n - i \) (there will be a few special boundary cases to consider too), we have

\[
P_{i,i-1} = (1-q)^{n-i} \cdot i(1-p)^{i-1}p \\
\tag{12.37}
\]

\[
P_{ii} = (1-q)^{n-i} \cdot [1-i(1-p)^{i-1}p] + (n-i)(1-q)^{n-i-1}q \cdot (i+1)(1-p)^{i}p \\
\tag{12.38}
\]
12.1. DISCRETE-TIME MARKOV CHAINS

\[p_{i,i+j} = \binom{n-i}{j} q^j (1-q)^{n-i-j} \cdot [1 - (i+j)(1-p)^{i+j-1}p] \]
\[+ \binom{n-i}{j+1} q^{j+1} (1-q)^{n-i-j-1} \cdot (i+j+1)(1-p)^{i+j}p \] \hspace{1cm} (12.39)

Note that in (12.38) and (12.39), we must take into account the fact that a node with a newly-created messages might try to send it. In (12.39), for instance, in the first term we have \(j \) new messages, on top of the \(i \) we already had, so \(i+j \) messages might try to send. The probability that there is no successful transmission is then \(1 - (i+j)(1-p)^{i+j-1}p \).

The matrix \(P \) is then quite complex. We always hope to find a closed-form solution, but that is unlikely in this case. Solving it on a computer is easy, though, say by using the `solve()` function in the R statistical language.

12.1.5.1 Going Beyond Finding \(\pi \)

Once again various interesting quantities can be derived as functions of the \(\pi \), such as the system throughput \(\tau \), i.e. the number of successful transmissions in the network per unit time. Here’s how to get \(\tau \):

First, suppose for concreteness that in steady-state the probability of there being a successful transmission in a given slot is 20%. Then after, say, 100,000 slots, about 20,000 will have successful transmissions—a throughput of 0.2. So, the long-run probability of successful transmission is the same as the long-run fraction of slots in which there are successful transmissions! That in turn can be broken down in terms of the various states:

\[\tau = P(\text{success xmit}) \]
\[= \sum_s P(\text{success xmit} \mid \text{in state } s)P(\text{in state } s) \] \hspace{1cm} (12.40)

Now, to calculate \(P(\text{success xmit} \mid \text{in state } s) \), recall that in state \(s \) we start the slot with \(s \) nonidle nodes, but that we may acquire some new ones; each of the \(n-s \) idle nodes will create a new message,
with probability \(q \). So,

\[
P(\text{success xmit} \mid \text{in state } s) = \sum_{j=0}^{n-s} \binom{n-s}{j} q^j (1-q)^{n-s-j} (s+j)(1-p)^{s+j-1}p
\] (12.41)

Substituting into (12.40), we have

\[
\tau = \sum_{s=0}^{n} \sum_{j=0}^{n-s} \binom{n-s}{j} q^j (1-q)^{n-s-j} (s+j)(1-p)^{s+j-1}p \cdot \pi_s
\] (12.42)

With some more subtle reasoning, one can derive the mean time a message waits before being successfully transmitted, as follows:

Focus attention on one particular node, say Node 0. It will repeatedly cycle through idle and busy periods, I and B. We wish to find \(E(B) \). I has a geometric distribution with parameter \(q \),

\[
E(I) = \frac{1}{q}
\] (12.43)

Then if we can find \(E(I+B) \), we will get \(E(B) \) by subtraction.

To find \(E(I+B) \), note that there is a one-to-one correspondence between I+B cycles and successful transmissions; each I+B period ends with a successful transmission at Node 0. Imagine again observing this node for, say, 100000 time slots, and say \(E(I+B) \) is 2000. That would mean we’d have about 50 cycles, thus 50 successful transmissions from this node. In other words, the throughput would be approximately \(50/100000 = 0.02 = 1/E(I+B) \). So, a fraction

\[
\frac{1}{E(I+B)}
\] (12.44)

of the time slots have successful transmissions from this node.

But that quantity is the throughput for this node (number of successful transmissions per unit time), and due to the symmetry of the system, that throughput is \(1/n \) of the total throughput of the \(n \) nodes in the network, which we denoted above by \(\tau \).

\[\text{footnote}^{7}\]

\[\text{footnote}^{7}\] If a message is sent in the same slot in which it is created, we will count B as 1. If it is sent in the following slot, B = 2, etc. B will have a modified geometric distribution starting at 0 instead of 1, but we will ignore this here for the sake of simplicity.
So,

\[E(I + B) = \frac{n}{\tau} \quad (12.45) \]

Thus from (12.43) we have

\[E(B) = \frac{n}{\tau} - \frac{1}{q} \quad (12.46) \]

where of course \(\tau \) is the function of the \(\pi_i \) in (12.40).

Now let’s find the proportion of attempted transmissions which are successful. This will be

\[\frac{E(\text{number of successful transmissions in a slot})}{E(\text{number of attempted transmissions in a slot})} \quad (12.47) \]

(To see why this is the case, again think of watching the network for 100,000 slots.) Then the proportion of successful transmissions during that period of time is the number of successful transmissions divided by the number of attempted transmissions. Those two numbers are approximately the numerator and denominator of (12.47).

Now, how do we evaluate (12.47)? Well, the numerator is easy, since it is \(\tau \), which we found before. The denominator will be

\[\sum_s \pi_s [sp + (n - s)pq] \quad (12.48) \]

The factor \(sp + spq \) comes from the following reasoning. If we are in state \(s \), the \(s \) nodes which already have something to send will each transmit with probability \(p \), so there will be an expected number \(sp \) of them that try to send. Also, of the \(n-s \) which are idle at the beginning of the slot, an expected \(sq \) of them will generate new messages, and of those \(sq \) and estimated \(sqp \) will try to send.

12.2 Simulation of Markov Chains

Simulation of Markov chains is identical to the patterns we’ve seen in earlier chapters, except for one somewhat subtle difference. To see this, consider the first simulation code presented in this book, in Section 2.14.6.
CHAPTER 12. ADVANCED MARKOV CHAINS

There we were simulating X_1 and X_2, the state of the system during the first two time slots. A rough outline of the code is

```
do nreps times
    simulate X1 and X2
    record X1, X1 and update counts
    calculate probabilities as counts/nreps
```

We “played the movie” $nreps$ times, calculating the behavior of X_1 and X_2 over many plays. But suppose instead that we had been interested in finding

$$
\lim_{n \to \infty} \frac{X_1 + \ldots + X_n}{n}
$$

(12.49)

i.e. the long-run average number of active nodes over infinitely many time slots. In that case, we would need to play the movie only once.

Here’s an example, simulating the stuck-at 0 example from Section [12.1.3]

```r
# simulates the stuck-at 0 fault example, finding mean time between
# replacements; we'll keep simulating until we have nreplace replacements
# of the receiver, then divide that into the number of bits received, to
# get the mean time between replacements
sasim <- function(nreplace,rho,k) {
    replace <- 0 # number of receivers replaced so far
    up <- TRUE # receiver is up
    nbits <- 0 # number of bits received so far
    ncsec0 <- 0 # current number of consecutive 0s
    while (TRUE) {
        bit <- sample(0:1,1)
        nbits <- nbits + 1
        if (runif(1) < rho) {
            up <- FALSE
            bit <- 0
        }
        if (bit == 0) {
            ncsec0 <- ncsec0 + 1
            if (ncsec0 == k) {
                replace <- replace + 1
                ncsec0 <- 0
            }
        }
        if (replace == nreplace) break
    }
    return(nbits/nreplace)
}
```

This follows from the fact that the limit in (12.3) occurs even in “one play.”
12.3 Some Mathematical Conditions

There is a rich mathematical theory regarding the asymptotic behavior of Markov chains. We will not present such material here in this brief introduction, but we will give an example of the implications the theory can have.

(Note: Due to the large number of definitions and properties in this section, they are highlighted via bulleted.)

- A state in a Markov chain is called **recurrent** if it has the property that if we start at that state, we are guaranteed to return to the state.

- A nonrecurrent state is called **transient**.

Let T_{ii} denote the time needed to return to state i if we start there. Keep in mind that T_{ii} is the time from one entry to state i to the next entry to state i. So, it includes time spent in i, which is 1 unit of time for a discrete-time chain and a random exponential amount of time in the continuous-time case, and then time spent away from i, up to the time of next entry to i. Note that an equivalent definition of recurrence is that $P(T_{ii} < \infty) = 1$, i.e. we are sure to return to i. By the Markov property, if we are sure to return once, then we are sure to return again once after that, and so on, so this implies infinitely many visits.

- A recurrent state i is called **positive recurrent** if $E(T_{ii}) < \infty$.

- A state which is recurrent but not positive recurrent is called **null recurrent**.

- In the discrete time case, a state i is recurrent if and only if

$$\sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty$$ \hspace{1cm} (12.50)

where $p_{uv}^{(k)}$ means the row u, column v element of the k^{th} power of the transition matrix of the chain, i.e. the probability of being at state v after n steps if one starts at u.

This last can be easily seen in the “only if” case: Let A_n denote the indicator random variable for the event $T_{ii} = n$ (Section 3.9). Then

$$p_{ii}^{(n)} = EA_n,$$ \hspace{1cm} (12.51)

8Some random variables are finite with probability 1 but have infinite expected value. For instance, suppose $M = 1, 2, 3, \ldots$ with probabilities $1/2, 1/4, 1/8, \ldots$ Those probabilities sum to 1, so $P(M < \infty) = 1$ yet $EM = \infty$.

so the left-hand side of (12.50) is

\[E\left(\sum_{n=1}^{\infty} A_n \right) \]

(12.52)

i.e. the expected value of the total number of visits to state i. If state i is recurrent, then we will visit i infinitely often, and thus that sum should be equal to infinity.

- A chain is **irreducible** if we can get from any state to any other state (though not necessarily in one step).
- One can show that in an irreducible chain, if one state is recurrent then they all are. The same statement holds if “recurrent” is replaced by “positive recurrent.”

Again, this last bullet should make intuitive sense to you for the recurrent case: We make infinitely many visits to state i, and each time we have a nonzero probability of going to state j from there. Thus eventually we will visit j, and indeed each time we visit i we will subsequently visit j at some time. Thus we will make infinitely many visits to j as well, i.e. j is recurrent.

12.3.1 Example: Random Walks

Consider the famous random walk on the full set of integers: At each time step, one goes left one integer or right one integer (e.g. to +3 or +5 from +4), with probability 1/2 each. In other words, we flip a coin and go left for heads, right for tails.

If we start at 0, then we return to 0 when we have accumulated an equal number of heads and tails. So for even-numbered n, i.e. n = 2m, we have

\[p_{ii}^{(n)} = P(m \text{ heads and } m \text{ tails}) = \binom{2m}{m} \frac{1}{2^{2m}} \]

(12.53)

One can use Stirling’s approximation,

\[m! \approx \sqrt{2\pi e^{-m} m^{m+1/2}} \]

(12.54)

to show that the series (12.50) diverges in this case. So, this chain (meaning all states in the chain) is recurrent. However, it turns out not to be not positive recurrent, as we’ll see below.

9Some readers may see the similarity to the notion of a connected graph.
12.3. **SOME MATHEMATICAL CONDITIONS**

The same is true for the corresponding random walk on the two-dimensional integer lattice (moving up, down, left or right with probability 1/4 each). However, in the three-dimensional and higher cases, the chain is not even null recurrent; it is transient.

12.3.2 Finding Hitting and Recurrence Times

We will use the symbol T_{ij} to denote the time it takes to get to state j if we are now in i, known as the hitting time, analogous to the recurrence times T_{ii}. Note that this is measured from the time that we enter state i to the time we enter state j.

12.3.3 Recurrence Times and Stationary Probabilities

Consider a continuous-time chain. For a positive recurrent state i, it turns out that

$$\pi_i = \frac{1}{\lambda_i} \frac{E(T_{ii})}{E(On)}$$

(12.55)

To see this, we take an approach similar to that of Section 12.1.5.1. Define alternating On and Off subcycles, where On means we are at state i and Off means we are elsewhere. Define a full cycle to consist of an On subcycle followed by an Off subcycle. Note again that T_{ii} is measured from the time we enter state i once until the time we enter it again.

Then intuitively the long-run proportion of time we are in state i is

$$\pi_i = \frac{E(On)}{E(T_{ii})}$$

(12.56)

But an On subcycle has an exponential distribution, with mean duration $1/\lambda_i$. That gives us (12.55).

In the discrete-time case, an On subcycle always has duration 1. Thus we have

$$\pi_i = \frac{1}{E(T_{ii})}$$

(12.57)

Thus positive recurrence means that $\pi_i > 0$. For a null recurrent chain, the limits in Equation (12.3) are 0, which means that there may be rather little one can say of interest regarding the long-run behavior of the chain.
Nevertheless, note that (12.57) makes sense even in the null recurrent case. The right-hand side will be 0, and if one views \(\pi_i \) in terms of (12.3), that means that in the long-run we don’t spend a positive proportion of time at this state.

Equation (12.57) also shows that random walk in one or two dimensions, though recurrent, is null recurrent. If they were positive recurrent, then by symmetry all the \(\pi_i \) would have to be equal, and yet they would have to sum to 1, a contradiction. So, \(ET_{ii} = \infty \) for all \(i \).

12.3.3.1 Hitting Times

We are often interested in finding quantities of the form \(E(T_{ij}) \). We can do so by setting up systems of equations similar to the balance equations used for finding stationary distributions.

First consider the discrete case. Conditioning on the first step we take after being at state \(i \), and using the Law of Total Expectation, we have

\[
E(T_{ij}) = \sum_k p_{ik} E(T_{ij} | W = k)
\]

where \(W \) is the first state we go to after leaving state \(i \). There are two cases for \(E(T_{ij} | W = k) \):

- **\(W = j \):**

 This is the trivial case; \(E(T_{ij} | W = k) = 1 \).

- **\(W \neq j \):**

 If our first step is to some state \(k \) other than \(j \), it takes us 1 unit of time to get to \(k \), at which point “time starts over” (Markov property), and our expected remaining time is \(ET_{kj} \). So, in this case \(E(T_{ij} | W = k) = 1 + ET_{kj} \).

So, using the Law of Total Expectation, we have

\[
E(T_{ij}) = \sum_k p_{ik} E(T_{ij} | W = k) = \sum_{k \neq j} p_{ik} [1 + E(T_{kj})] + p_{ij} \cdot 1 = 1 + \sum_{k \neq j} p_{ik} E(T_{kj})
\]

By varying \(i \) and \(j \) in (12.59), we get a system of linear equations which we can solve to find the \(ET_{ij} \). Note that (12.57) gives us equations we can use here too.
12.3. SOME MATHEMATICAL CONDITIONS

The continuous version uses the same reasoning:

\[E(T_{ij}) = \sum_{k \neq j} p_{ik} \left[\frac{1}{\lambda_i} + E(T_{kj}) \right] + p_{ij} \cdot \frac{1}{\lambda_i} = \frac{1}{\lambda_i} + \sum_{k \neq j} p_{ik} E(T_{kj}) \]

(12.60)

One can use a similar analysis to determine the probability of ever reaching a state, in chains in which this probability is not 1. (Some chains have have transient or even absorbing states, i.e. states \(u \) such that \(p_{uv} = 0 \) whenever \(v \neq u \).)

For fixed \(j \) define

\[\alpha_{ij} = P(T_{ij} < \infty) \]

(12.61)

Then denoting by \(S \) the state we next visit after \(i \), we have

\[
\alpha_{ij} = P(T_{ij} < \infty) \\
= \sum_k P(S = k \text{ and } T_{ij} < \infty) \\
= \sum_{k \neq j} P(S = k \text{ and } T_{kj} < \infty) + P(S = j) \\
= \sum_{k \neq j} P(S = k) P(T_{kj} < \infty | S = k) + P(S = j) \\
= \sum_{k \neq j} p_{ik} \alpha_{kj} + p_{ij}
\]

(12.62)

(12.63)

(12.64)

(12.65)

(12.66)

(12.67)

So, again we have a system of linear equations that we can solve for the \(\alpha_{ij} \).

12.3.4 Example: Finite Random Walk

Let’s go back to the example in Section 12.1.1. Suppose we start our random walk at 2. How long will it take to reach state 4? Set \(b_i = E(T_{i4} | \text{start at } i) \). From (12.59) we could set up equations like

\[b_2 = \frac{1}{3} (1 + b_1) + \frac{1}{3} (1 + b_2) + \frac{1}{3} (1 + b_3) \]

(12.68)
Now change the model a little, and make states 1 and 6 absorbing. Suppose we start at position 3. What is the probability that we eventually are absorbed at 6 rather than 1? We could set up equations like \(12.62 \) to find this.

12.3.5 Example: Tree-Searching

Consider the following Markov chain with infinite state space \(\{0, 1, 2, 3, \ldots\} \). The transition matrix is defined by \(p_{i,i+1} = q_i \) and \(p_{00} = 1 - q_i \). This kind of model has many different applications, including in computer science tree-searching algorithms. (The state represents the level in the tree where the search is currently, and a return to 0 represents a backtrack. More general backtracking can be modeled similarly.)

The question at hand is, What conditions on the \(q_i \) will give us a positive recurrent chain?

Assuming \(0 < q_i < 1 \) for all \(i \), the chain is clearly irreducible. Thus, to check for recurrence, we need check only one state, say state 0.

For state 0 (and thus the entire chain) to be recurrent, we need to show that \(P(T_{00} < \infty) = 1 \). But

\[
P(T_{00} > n) = \prod_{i=0}^{n-1} q_i
\]

(In the case \(n = 0 \), define the product to be 1.)

Therefore, the chain is recurrent if and only if

\[
\lim_{n \to \infty} \prod_{i=0}^{n-1} q_i = 0
\]

For positive recurrence, we need \(E(T_{00}) < \infty \). Now, one can show\(^\text{11}\) that for any nonnegative integer-valued random variable \(Y \)

\[
E(Y) = \sum_{n=0}^{\infty} P(Y > n)
\]

\(^\text{10}\) Adapted from *Performance Modelling of Communication Networks and Computer Architectures*, by P. Harrison and N. Patel, pub. by Addison-Wesley, 1993.

\(^\text{11}\) In (3.13), replace \(c \) by \(\sum_{i=1}^{c} 1 \), yielding a double sum. Then reverse the order of summation. In the continuous case, the relation is \(EY = \int_{0}^{\infty} P(Y > t) \, dt \).
Thus for positive recurrence, our condition on the q_i is

$$\sum_{n=0}^{\infty} \prod_{i=0}^{n-1} q_i < \infty \quad (12.72)$$

12.4 Higher-Order Markov Chains

Recall that the Markov property can be summarized as:

The future depends only on the present, not the past.

This is stated formally as

$$P(X_{t+1} = s_{t+1} | X_t = s_t, X_{t-1} = s_{t-1}, \ldots, X_0 = s_0) = P(X_{t+1} = s_{t+1} | X_t = s_t) \quad (12.73)$$

But what if we extend this a bit to

The future depends only on the present, and the most recent past, not the full past.

i.e.

$$P(X_{t+1} = s_{t+1} | X_t = s_t, X_{t-1} = s_{t-1}, \ldots, X_0 = s_0) = P(X_{t+1} = s_{t+1} | X_t = s_t, X_{t-1} = s_{t-1}) \quad (12.74)$$

Denote our original, ordinary Markov chain, state space by $\{1,2,...,r\}$. The new space has r^2 elements, all possible pairs (i,j), with j meaning the present state in terms of the original matrix and i being the immediately previous one. The transition probabilities are now of the form

$$P(i,j),(j,k) \quad (12.75)$$

It is now harder to decide how to model those probabilities, but in principle is can be done.

We can also construct third-order models, and so on.
12.5 Hidden Markov Models

Czech is article-free language”—a Czech colleague

The word hidden in the term Hidden Markov Model (HMM) refers to the fact that the state of the process is hidden, i.e. unobservable.

An HMM consists of a Markov chain X_n which is unobservable, together with observable values Y_n. The X_n are governed by the transition probabilities p_{ij}, and the Y_n are generated from the X_n according to

$$r_{ks} = P(Y_n = s | X_n = k)$$ (12.76)

Typically there is also a conditioning variable M, with the transition probability for the X_n being dependent on M. So, let’s we write them as $p_{ij(m)}$. For each m, there is a different set of transition probabilities. Note that M itself has a distribution, with probabilities denoted q_k. M is unobserved.

A good example of HMMs would be in text mining applications, say in document classification. We may have different types of newspaper articles which we wish to automatically sort by category—sports, politics, etc.

Here the Y_n might be words in the text, and X_n would be their parts of speech (POS)—nouns, verbs, adjectives and so on. Consider the word round, for instance. Your first thought might be that it is an adjective, but it could be a noun (e.g. an elimination round in a tournament) or a verb (e.g. to round off a number or round a corner). “Time” would be the order of a word in the document; the first word would have time 1, the second word time 2, and so on. So, we’d like to have good guesses as to which usage of round we have, and so on. This is called POS tagging. Knowing the POS of the words in our document might help with further analysis, such as document classification.

M would be the document type.

Note that we have a mixture model here (Chapter ??), with M being the mixing variable.

Based on past data, we would know the probability $p_{ij(m)}$, r_{km} and q_k. The goal is generally to guess the X_n from the Y_n. The full details are too complex to give here, but really it is just one giant application of Bayes’ Rule.

HMM models are also used in speech processing, DNA modeling and many other applications.

R’s CRAN repository has various functions for HMM analysis, such as the HiddenMarkov library.
12.6 Further Reading

Exercises

1. Consider a “wraparound” variant of the random walk in Section 12.1.1. We still have a reflecting barrier at 1, but at 5, we go back to 4, stay at 5 or “wrap around” to 1, each with probability 1/3. Find the new set of stationary probabilities.

2. Consider the Markov model of the shared-memory multiprocessor system in Section 12.1.4. In each part below, your answer will be a function of $q_1, ..., q_m$.

 (a) For the case $m = 3$, find $p_{(2,0,1),(1,1,1)}$.

 (b) For the case $m = 6$, give a compact expression for $p_{(1,1,1,1,1,1),(i,j,k,l,m,n)}$.

 Hint: We have an instance of a famous parametric distribution family here.

3. This problem involves the analysis of call centers. This is a subject of much interest in the business world, with there being commercial simulators sold to analyze various scenarios. Here are our assumptions:

 • Calls come in according to a Poisson process with intensity parameter λ.

 • Call duration is exponentially distributed with parameter η.

 • There are always at least b operators in service, and at most $b+r$.

 • Operators work from home, and can be brought into or out of service instantly when needed. They are paid only for the time in service.

 • If a call comes in when the current number of operators is larger than b but smaller than $b+r$, another operator is brought into service to process the call.

 • If a call comes in when the current number of operators is $b+r$, the call is rejected.

 • When an operator completes processing a call, and the current number of operators (including this one) is greater than b, then that operator is taken out of service.

Note that this is a birth/death process, with the state being the number of calls currently in the system.
(a) Find approximate closed-form expressions for the π_i for large $b+r$, in terms of b, r, λ and η. (You should not have any summation symbols.)

(b) Find the proportion of rejected calls, in terms of π_i and b, r, λ and η.

(c) An operator is paid while in service, even if he/she is idle, in which case the wages are “wasted.” Express the proportion of wasted time in terms of the π_i and b, r, λ and η.

(d) Suppose $b = r = 2$, and $\lambda = \eta = 1.0$. When a call completes while we are in state $b+1$, an operator is sent away. Find the mean time until we make our next summons to the reserve pool.

4. The bin-packing problem arises in many computer science applications. Items of various sizes must be placed into fixed-sized bins. The goal is to find a packing arrangement that minimizes unused space. Toward that end, work the following problem.

We are working in one dimension, and have a continuing stream of items arriving, of lengths $L_1, L_2, L_3, ...$. We place the items in the bins in the order of arrival, i.e. without optimizing. We continue to place items in a bin until we encounter an item that will not fit in the remaining space, in which case we go to the next bin.

Suppose the bins are of length 5, and an item has length 1, 2, 3 or 4, with probability 0.25 each. Find the long-run proportion of wasted space.

Hint: Set up a discrete-time Markov chain, with “time” being the number of items packed so far, and the state being the amount of occupied space in the current bin. Define T_n to be 1 or 0, according to whether the n^{th} item causes us to begin packing a new bin, so that the number of bins used by “time” n is $T_1 + ... + T_n$.

5. Suppose we keep rolling a die. Find the mean number of rolls needed to get three consecutive 4s.

Hint: Use the material in Section ??.

6. A system consists of two machines, with exponentially distributed lifetimes having mean 25.0. There is a single repairperson, but he is not usually on site. When a breakdown occurs, he is summoned (unless he is already on his way or on site), and it takes him a random amount of time to reach the site, exponentially distributed with mean 2.0. Repair time is exponentially distributed with mean 8.0. If after completing a repair the repairperson finds that the other machine needs fixing, he will repair it; otherwise he will leave. Repair is performed on a First Come, First Served schedule. Find the following:

(a) The long-run proportion of the time that the repairperson is on site.

(b) The rate per unit time of calls to the repairperson.
(c) The mean time to repair, i.e. the mean time between a breakdown of a machine and completion of repair of that machine.

(d) The probability that, when two machines are up and one of them goes down, the second machine fails before the repairperson arrives.

7. Consider again the random walk in Section 12.1.1. Find

$$\lim_{n \to \infty} \rho(X_n, X_{n+1})$$

(12.77)

Hint: Apply the Law of Total Expectation to $E(X_nX_{n+1})$.

8. Suppose we model a certain database as follows. New items arrive according to a Poisson process with intensity parameter α. Each item stays in the database for an exponentially distributed amount of time with parameter σ, independently of the other items. Our state at time t is the number of items in the database at that time. Find closed-form expressions for the stationary distribution π and the long-run average size of the database.

9. Consider our machine repair example in Section 11.4, with the following change: The repairperson is offsite, and will not be summoned unless both machines are down. Once the repairperson arrives, she will not leave until both machines are up. So for example, if she arrives and repairs machine B, then while repairing A finds that B has gone down again, she will start work on B immediately after finishing with A. Travel time to the site from the maintenance office is 0. Repair is performed on a First Come, First Served schedule. The time a machine is in working order has an exponential distribution with rate ω, and repair is exponentially distributed with rate ρ. Find the following in terms of ω and ρ:

(a) The long-run proportion of the time that the repairperson is on site.

(b) The rate per unit time of calls to the repairperson.

(c) The mean time to repair, i.e. the mean time between a breakdown of a machine and completion of repair of that machine. (Hint: The best approach is to look at rates. First, find the number of breakdowns per unit time. Then, ask how many of these occur during a time when both machines are up, etc. In each case, what is the mean time to repair for the machine that breaks?)
Chapter 13

Introduction to Queuing Models

Seems like we spend large parts of our lives standing in line (or as they say in New York, standing “on” line). This can be analyzed probabilistically, a subject we will be introduced in this chapter.

13.1 Introduction

Like other areas of applied stochastic processes, queuing theory has a vast literature, covering a huge number of variations on different types of queues. Our tutorial here can only just scratch the surface to this field.

Here is a rough overview of a few of the large categories of queuing theory:

- Single-server queues.

- Networks of queues, including open networks (in which jobs arrive from outside the network, visit some of the servers in the network, then leave) and closed networks (in which jobs continually circulate within the network, never leaving).

- Non-First Come, First Served (FCFS) service orderings. For example, there are Last Come, First Served (i.e. stacks) and Processor Sharing (which models CPU timesharing).

In this brief introduction, we will not discuss non-FCFS queues, and will only scratch the surface on the other tops.
CHAPTER 13. INTRODUCTION TO QUEUING MODELS

13.2 M/M/1

The first M here stands for “Markov” or “memoryless,” alluding to the fact that arrivals to the queue are Markovian, i.e. interarrivals are i.i.d. exponentially distributed. The second M means that the service times are also i.i.d. exponential. Denote the reciprocal-mean interarrival and service times by \(\lambda \) and \(\mu \).

The 1 in M/M/1 refers to the fact that there is a single server. We will assume FCFS job scheduling here, but close inspection of the derivation will show that it applies to some other kinds of scheduling too.

This system is a continuous-time Markov chain, with the state \(X_t \) at time \(t \) being the number of jobs in the system (not just in the queue but also including the one currently being served, if any).

13.2.1 Steady-State Probabilities

Intuitively the steady-state probabilities \(\pi_i \) will exist only if \(\lambda < \mu \). Otherwise jobs would come in faster than they could be served, and the queue would become infinite. So, we assume that \(u < 1 \), where \(u = \frac{\lambda}{\mu} \).

Clearly this is a birth-and-death chain. For state \(k \), the birth rate \(\rho_{k,k+1} \) is \(\lambda \) and the death rate \(\rho_{k,k-1} \) is \(\mu \), \(k = 0,1,2,... \) (except that the death rate at state 0 is 0). Using the formula derived for birth/death chains, we have that

\[
\pi_i = u^i \pi_0, \ i \geq 0
\]

and

\[
\pi_0 = \frac{1}{\sum_{j=0}^{\infty} u^j} = 1 - u
\]

In other words,

\[
\pi_i = u^i (1 - u), \ i \geq 0
\]

Note by the way that since \(\pi_0 = 1 - u \), then \(u \) is the utilization of the server, i.e. the proportion of the time the server is busy. In fact, this can be seen intuitively: Think of a very long period of time of length \(t \). During this time approximately \(\lambda t \) jobs having arrived, keeping the server
busy for approximately $\lambda t \cdot \frac{1}{\mu}$ time. Thus the fraction of time during which the server is busy is approximately

$$\frac{\lambda t \cdot \frac{1}{\mu}}{t} = \frac{\lambda}{\mu}$$ \hfill (13.4)

13.2.2 Mean Queue Length

Another way to look at Equation (13.3) is as follows. Let the random variable N have the long-run distribution of X_t, so that

$$P(N = i) = u^i(1-u), \quad i \geq 0 \quad (13.5)$$

Then this says that $N+1$ has a geometric distribution, with “success” probability $1-u$. (N itself is not quite geometrically distributed, since N’s values begin at 0 while a geometric distribution begins at 1.)

Thus the long-run average value $E(N)$ for X_t will be the mean of that geometric distribution, minus 1, i.e.

$$EN = \frac{1}{1-u} - 1 = \frac{u}{1-u}$$ \hfill (13.6)

The long-run mean queue length $E(Q)$ will be this value minus the mean number of jobs being served. The latter quantity is $1 - \pi_0 = u$, so

$$EQ = \frac{u^2}{1-u}$$ \hfill (13.7)

13.2.3 Distribution of Residence Time/Little’s Rule

Let R denote the residence time of a job, i.e. the time elapsed from the job’s arrival to its exit from the system. Little’s Rule says that

$$EN = \lambda ER$$ \hfill (13.8)

This property holds for a variety of queuing systems, including this one. It can be proved formally, but here is the intuition:
Think of a particular job (in the literature of queuing theory, it is called a “tagged job”) at the time it has just exited the system. If this is an “average” job, then it has been in the system for ER amount of time, during which an average of λER new jobs have arrived behind it. These jobs now comprise the total number of jobs in the system, which in the average case is EN.

Applying Little’s Rule here, we know EN from Equation (13.6), so we can solve for ER:

$$ER = \frac{1}{\lambda} \frac{u}{1 - u} = \frac{1/\mu}{1 - u}$$ \hspace{1cm} (13.9)

With a little more work, we can find the actual distribution of R, not just its mean. This will enable us to obtain quantities such as $\text{Var}(R)$ and $P(R > z)$. Here is our approach:

When a job arrives, say there are N jobs ahead of it, including one in service. Then this job’s value of R can be expressed as

$$R = S_{\text{self}} + S_{1,\text{resid}} + S_2 + \ldots + S_N$$ \hspace{1cm} (13.10)

where S_{self} is the service time for this job, $S_{1,\text{resid}}$ is the remaining time for the job now being served (i.e. the residual life), and for $i > 1$ the random variable S_i is the service time for the i^{th} waiting job.

Then the Laplace transform of R, evaluated at say w, is

$$E(e^{-wR}) = \mathbb{E}[e^{-w(S_{\text{self}}+S_{1,\text{resid}}+S_2+\ldots+S_N)}]$$ \hspace{1cm} (13.11)

$$= \mathbb{E}\left(\mathbb{E}[e^{-w(S_{\text{self}}+S_{1,\text{resid}}+S_2+\ldots+S_N)}|N]\right)$$ \hspace{1cm} (13.12)

$$= \mathbb{E}[\{E(e^{-wS_i})\}^{N+1}]$$ \hspace{1cm} (13.13)

$$= \mathbb{E}[g(w)^{N+1}]$$ \hspace{1cm} (13.14)

where

$$g(w) = \mathbb{E}(e^{-wS})$$ \hspace{1cm} (13.15)

is the Laplace transform of the service variable, i.e. of an exponential distribution with parameter equal to the service rate μ. Here we have made use of these facts:

- The Laplace transform of a sum of independent random variables is the product of their individual Laplace transforms.
Due to the memoryless property, $S_{1\text{,resid}}$ has the same distribution as do the other S_i.

The distribution of the service times S_i and queue length N observed by our tagged job is the same as the distributions of those quantities at all times, not just at arrival times of tagged jobs. This property can be proven for this kind of queue and many others, and is called PASTA—Poisson Arrivals See Time Averages.

(Note that the PASTA property is not obvious. On the contrary, given our experience with the Bus Paradox and length-biased sampling in Section 9.4, we should be wary of such things. But the PASTA property does hold and can be proven.)

But that last term in (13.14), $E[g(w)^{N+1}]$, is the generating function of $N+1$, evaluated at $g(w)$. And we know from Section 13.2.2 that $N+1$ has a geometric distribution. The generating function for a nonnegative-integer valued random variable K with success probability p is

$$g_K(s) = E(s^K) = \sum_{i=1}^{\infty} s^i (1-p)^{i-1}p = \frac{ps}{1-s(1-p)} \quad (13.16)$$

In (13.14), we have $p = 1 - u$ and $s = g(w)$. So,

$$E(v^{N+1}) = \frac{g(w)(1-u)}{1-u[g(w)]} \quad (13.17)$$

Finally, by definition of Laplace transform,

$$g(w) = E(e^{-wS}) = \int_0^\infty e^{-wt} \mu e^{-\mu t} dt = \frac{\mu}{w + \mu} \quad (13.18)$$

So, from (13.11), (13.17) and (13.18), the Laplace transform of R is

$$\frac{\mu(1-u)}{w + \mu(1-u)} \quad (13.19)$$

In principle, Laplace transforms can be inverted, and we could use numerical methods to retrieve the distribution of R from (13.19). But hey, look at that! Equation (13.19) has the same form as (13.18). In other words, we have discovered that R has an exponential distribution too, only with parameter $\mu(1-u)$ instead of μ.

This is quite remarkable. The fact that the service and interarrival times are exponential doesn’t mean that everything else will be exponential too, so it is surprising that R does turn out to have an exponential distribution.
It is even more surprising in that \(R \) is a sum of independent exponential random variables, as we saw in \((13.10)\), and we know that such sums have Erlang distributions. The resolution of this seeming paradox is that the number of terms \(N \) in \((13.10)\) is itself random. Conditional on \(N \), \(R \) has an Erlang distribution, but unconditionally \(R \) has an exponential distribution.

13.3 Multi-Server Models

Here we have \(c \) servers, with a common queue. There are many variations.

13.3.1 M/M/c

Here the servers are homogeneous. When a job gets to the head of the queue, it is served by the first available server.

The state is again the number of jobs in the system, including any jobs at the servers. Again it is a birth/death chain, with \(u_{i,i+1} = \lambda \) and

\[
 u_{i,i-1} = \begin{cases}
 i\mu, & \text{if } 0 < i < c \\
 c\mu, & \text{if } i \geq c
 \end{cases} \tag{13.20}
\]

The solution turns out to be

\[
 \pi_k = \begin{cases}
 \pi_0 (\frac{\lambda}{\mu})^k \frac{1}{k!}, & \text{if } k < c \\
 \pi_0 (\frac{\lambda}{\mu})^k \frac{1}{c! (k-c)!}, & \text{if } k \geq c
 \end{cases} \tag{13.21}
\]

where

\[
 \pi_0 = \left[\sum_{k=0}^{c-1} \frac{(cu)^k}{k!} + \frac{(cu)^c}{c!} \frac{1}{1-u} \right]^{-1} \tag{13.22}
\]

and

\[
 u = \frac{\lambda}{c\mu} \tag{13.23}
\]

Note that the latter quantity is still the utilization per server, using an argument similar to that which led to \((13.4)\).
Recalling that the Taylor series for e^z is $\sum_{k=0}^{\infty} \frac{z^k}{k!}$ we see that

$$\pi_0 \approx e^{-cu} \quad (13.24)$$

13.3.2 M/M/2 with Heterogeneous Servers

Here the servers have different rates. We’ll treat the case in which $c = 2$. Assume $\mu_1 < \mu_2$. When a job reaches the head of the queue, it chooses machine 2 if that machine is idle, and otherwise waits for the first available machine. Once it starts on a machine, it cannot be switched to the other.

Denote the state by (i,j,k), where

- i is the number of jobs at server 1
- j is the number of jobs at server 2
- k is the number of jobs in the queue

The key is to notice that states 111, 112, 113, ... act like the M/M/k queue. This will reduce finding the solution of the balance equations to solving a finite system of linear equations.

For $k \geq 1$ we have

$$(\lambda + \mu_1 + \mu_2)\pi_{11k} = (\mu_1 + \mu_2)\pi_{11,k+1} + \lambda\pi_{11,k-1} \quad (13.25)$$

Collecting terms as in the derivation of the stationary distribution for birth/death processes, (13.25) becomes

$$\lambda(\pi_{11k} - \pi_{11,k-1}) = (\mu_1 + \mu_2)(\pi_{11,k+1} - \pi_{11k}), \; k = 1, 2, ... \quad (13.26)$$

Then we have

$$(\mu_1 + \mu_2)\pi_{11,k+1} - \lambda\pi_{11k} = (\mu_1 + \mu_2)\pi_{11k} - \lambda\pi_{11,k-1} \quad (13.27)$$

So, we now have all the π_{11i}, $i = 2, 3, ...$ in terms of π_{111} and π_{110}, thus reducing our task to solving a finite set of linear equations, as promised. Here are the rest of the equations:

$$\lambda\pi_{000} = \mu_2\pi_{010} + \mu_1\pi_{100} \quad (13.28)$$
\[(\lambda + \mu_2)\pi_{010} = \lambda \pi_{000} + \mu_1 \pi_{110} \]
\[(\lambda + \mu_1)\pi_{100} = \mu_2 \pi_{110} \]
\[(\lambda + \mu_1 + \mu_2)\pi_{110} = \lambda \pi_{010} + \lambda \pi_{100} + (\mu_1 + \mu_2)\pi_{111} \]

From (3.91), we have

\[(\mu_1 + \mu_2)\pi_{111} - \lambda \pi_{110} = (\mu_1 + \mu_2)\pi_{110} - \lambda(\pi_{010} + \pi_{100}) \]
(13.32)

Look at that last term, \(\lambda(\pi_{010} + \pi_{100}) \). By adding (13.29) and (13.30), we have that

\[\lambda(\pi_{010} + \pi_{100}) = \lambda \pi_{000} + \mu_1 \pi_{110} + \mu_2 \pi_{110} - \mu_1 \pi_{100} - \mu_2 \pi_{010} \]
(13.33)

Substituting (13.28) changes (13.33) to

\[\lambda(\pi_{010} + \pi_{100}) = \mu_1 \pi_{110} + \mu_2 \pi_{110} \]
(13.34)

So... (13.32) becomes

\[(\mu_1 + \mu_2)\pi_{111} - \lambda \pi_{110} = 0 \]
(13.35)

By induction in (13.27), we have

\[(\mu_1 + \mu_2)\pi_{11,k+1} - \lambda \pi_{11k} = 0, \ k = 1, 2, ... \]
(13.36)

and

\[\pi_{11i} = \delta^i \pi_{110}, \ i = 0, 1, 2, ... \]
(13.37)

where

\[\delta = \frac{\lambda}{\mu_1 + \mu_2} \]
(13.38)
13.4. LOSS MODELS

\[1 = \sum_{i,j,k} \pi_{ijk} \quad (13.39) \]
\[= \pi_{000} + \pi_{010} + \pi_{100} + \sum_{i=0}^{\infty} \pi_{11i} \quad (13.40) \]
\[= \pi_{000} + \pi_{010} + \pi_{100} + \pi_{110} \sum_{i=0}^{\infty} \delta^i \quad (13.41) \]
\[= \pi_{000} + \pi_{010} + \pi_{100} + \pi_{110} \cdot \frac{1}{1 - \delta} \quad (13.42) \]

Finding close-form expressions for the \(\pi_i \) is then straightforward.

13.4 Loss Models

One of the earliest queuing models was M/M/c/c: Markovian interarrival and service times, c servers and a buffer space of c jobs. Any job which arrives when c jobs are already in the system is lost. This was used by telephone companies to find the proportion of lost calls for a bank of c trunk lines.

13.4.1 Cell Communications Model

Let’s consider a more modern example of this sort, involving cellular phone systems. (This is an extension of the example treated in K.S. Trivedi, *Probability and Statistics, with Reliability and Computer Science Applications* (second edition), Wiley, 2002, Sec. 8.2.3.2, which is in turn is based on two papers in the *IEEE Transactions on Vehicular Technology*.)

We consider one particular cell in the system. Mobile phone users drift in and out of the cell as they move around the city. A call can either be a new call, i.e. a call which someone has just dialed, or a handoff call, i.e. a call which had already been in progress in a neighboring cell but now has moved to this cell.

Each call in a cell needs a channel\(^1\). There are n channels available in the cell. We wish to give handoff calls priority over new calls\(^2\). This is accomplished as follows.

\(^1\)This could be a certain frequency or a certain time slot position.

\(^2\)We would rather give the caller of a new call a polite rejection message, e.g. “No lines available at this time, than suddenly terminate an existing conversation.
The system always reserves g channels for handoff calls. When a request for a new call (i.e. a non-handoff call) arrives, the system looks at X_t, the current number of calls in the cell. If that number is less than $n-g$, so that there are more than g idle channels available, the new call is accepted; otherwise it is rejected.

We assume that new calls originate from within the cells according to a Poisson process with rate λ_1, while handoff calls drift in from neighboring cells at rate λ_2. Meanwhile, call durations are exponential with rate μ_1, while the time that a call remains within the cell is exponential with rate μ_2.

13.4.1.1 Stationary Distribution

We again have a birth/death process, though a bit more complicated than our earlier ones. Let $\lambda = \lambda_1 + \lambda_2$ and $\mu = \mu_1 + \mu_2$. Then here is a sample balance equation, focused on transitions into (left-hand side in the equation) and out of (right-hand side) state 1:

$$\pi_0 \lambda + \pi_2 \mu = \pi_1 (\lambda + \mu)$$

(13.43)

Here’s why: How can we enter state 1? Well, we could do so from state 0, where there are no calls; this occurs if we get a new call (rate λ_1) or a handoff call (rate λ_2). In state 2, we enter state 1 if one of the two calls ends (rate μ_1) or one of the two calls leaves the cell (rate μ_2). The same kind of reasoning shows that we leave state 1 at rate $\lambda + \mu$.

As another example, here is the equation for state $n-g$:

$$\pi_{n-g} [\lambda_2 + (n-g)\mu] = \pi_{n-g+1} \cdot (n-g+1) \mu + \pi_{n-g-1} \lambda$$

(13.44)

Note the term λ_2 in (13.44), rather than λ as in (13.43).

Using our birth/death formula for the π_i, we find that

$$\pi_k = \begin{cases}
\pi_0 \frac{A^k}{k!}, & k \leq n-g \\
\pi_0 \frac{A^{n-g}}{k!} A_1^{k-(n-g)}, & k \geq n-g
\end{cases}$$

(13.45)

where $A = \lambda/\mu$, $A_1 = \lambda_2/\mu$ and

$$\pi_0 = \left[\sum_{k=0}^{n-g-1} \frac{A^k}{k!} + \sum_{k=n-g}^{n} \frac{A^{n-g}}{k!} A_1^{k-(n-g)} \right]^{-1}$$

(13.46)
13.5 NONEXPONENTIAL SERVICE TIMES

13.4.1.2 Going Beyond Finding the π

One can calculate a number of interesting quantities from the π_i:

- The probability of a handoff call being rejected is π_n.
- The probability of a new call being dropped is
 \[\sum_{k=n-g}^{n} \pi_k \]
 (13.47)
- Since the per-channel utilization in state i is i/n, the overall long-run per-channel utilization is
 \[\sum_{i=0}^{n} \frac{\pi_i}{n} \]
 (13.48)
- The long-run proportion of accepted calls which are handoff calls is the rate at which handoff calls are accepted, divided by the rate at which calls are accepted:
 \[\frac{\lambda_2 \sum_{i=0}^{n-1} \pi_i}{\lambda_1 \sum_{i=0}^{n-g-1} \pi_i + \lambda_2 \sum_{i=0}^{n-1} \pi_i} \]
 (13.49)

13.5 Nonexponential Service Times

The Markov property is of course crucial to the analyses we made above. Thus dropping the exponential assumption presents a major analytical challenge.

One queuing model which has been found tractable is M/G/1: Exponential interarrival times, general service times, one server. In fact, the mean queue length and related quantities can be obtained fairly easily, as follows.

Consider the residence time R for a tagged job. R is the time that our tagged job must first wait for completion of service of all jobs, if any, which are ahead of it—queued or now in service—plus the tagged job’s own service time. Let T_1, T_2, \ldots be i.i.d. with the distribution of a generic service time random variable S. T_1 represents the service time of the tagged job itself. T_2, \ldots, T_N represent the service times of the queued jobs, if any.

Let N be the number of jobs in the system, either being served or queued; B be either 1 or 0, depending on whether the system is busy (i.e. $N > 0$) or not; and $S_{1,resid}$ be the remaining service
time of the job currently being served, if any. Finally, we define, as before, \(u = \frac{\lambda}{1/ES} \), the utilization. Note that that implies the \(EB = u \).

Then the distribution of \(R \) is that of

\[
BS_{1,resid} + (T_1 + \ldots + T_N) + (1 - B)T_1
\]

(13.50)

Note that if \(N = 0 \), then \(T_1 + \ldots + T_N \) is considered to be 0, i.e. not present in (13.50).

Then

\[
E(R) = uE(S_{1,resid}) + E(T_1 + \ldots + T_N) + (1 - u)ET_1
\]

(13.51)

\[
= uE(S_{1,resid}) + E(N)E(S) + (1 - u)ES
\]

(13.52)

\[
= uE(S_{1,resid}) + \lambda E(R)E(S) + (1 - u)ES
\]

(13.53)

The last equality is due to Little’s Rule. Note also that we have made use of the PASTA property here, so that the distribution of \(N \) is the same at arrival times as general times.

Then

\[
E(R) = \frac{uE(S_{1,resid})}{1 - u} + ES
\]

(13.54)

Note that the two terms here represent the mean residence time as the mean queuing time plus the mean service time.

So we must find \(E(S_{1,resid}) \). This is just the mean of the remaining-life distribution which we saw in Section 15.6 of our unit on renewal theory. Then

\[
E(S_{1,resid}) = \int_0^\infty t \frac{1 - F_S(t)}{ES} \, dt
\]

(13.55)

\[
= \frac{1}{ES} \int_0^\infty t \int_t^\infty f_S(u) \, du \, dt
\]

(13.56)

\[
= \frac{1}{ES} \int_0^\infty f_S(u) \int_0^u t \, dt \, du
\]

(13.57)

\[
= \frac{1}{2ES} E(S^2)
\]

(13.58)
So,

$$E(R) = \frac{uE(S^2)}{2ES(1-u)} + ES \quad (13.59)$$

What is remarkable about this famous formula is that $E(R)$ depends not only on the mean service time but also on the variance. This result, which is not so intuitively obvious at first glance, shows the power of modeling. We might observe the dependency of $E(R)$ on the variance of service time empirically if we do simulation, but here is a compact formula that shows it for us.

13.6 Reversed Markov Chains

We can get insight into some kinds of queuing systems by making use of the concepts of reversed Markov chains, which involve “playing the Markov chain backward,” just as we could play a movie backward.

Consider a continuous-time, irreducible, positive recurrent Markov chain $X(t)$. For any fixed time τ (typically thought of as large), define the reversed version of $X(t)$ as $Y(t) = X(\tau-t)$, for $0 \leq t \leq \tau$. We will discuss a number of properties of reversed chains. These properties will enable what mathematicians call “soft analysis” of some Markov chains, especially those related to queues. This term refers to short, simple, elegant proofs or derivations.

13.6.1 Markov Property

The first property to note is that $Y(t)$ is a Markov chain! Here is our first chance for soft analysis. The “hard analysis” approach would be to start with the definition, which in continuous time would be that

$$P(Y(t) = k|Y(u), u \leq s) = P(Y(t) = k|Y(s)) \quad (13.60)$$

for all $0 < s < t$ and all k, using the fact that $X(t)$ has the same property. That would involve making substitutions in Equation (13.60) like $Y(t) = X(\tau-t)$, etc.

3Recall that a Markov chain is irreducible if it is possible to get from each state to each other state in a finite number of steps, and that the term positive recurrent means that the chain has a long-run state distribution π. Also, concerning our assumption here of continuous time, we should note that there are discrete-time analogs of the various points we’ll make below.
CHAPTER 13. INTRODUCTION TO QUEUING MODELS

But it is much easier to simply observe that the Markov property holds if and only if, conditional on the present, the past and the future are independent. Since that property holds for X(t), it also holds for Y(t) (with the roles of the “past” and the “future” interchanged).

13.6.2 Long-Run State Proportions

Clearly, if the long-run proportion of the time X(t) = k is \(\pi_i \), the same long-run proportion will hold for Y(t). This of course only makes sense if you think of larger and larger \(\tau \).

13.6.3 Form of the Transition Rates of the Reversed Chain

Let \(\tilde{\rho}_{ij} \) denote the number of transitions from state i to state j per unit time in the reversed chain. That number must be equal to the number of transitions from j to i in the original chain. Therefore,

\[
\pi_i \tilde{\rho}_{ij} = \pi_j \rho_{ji}
\]

(13.61)

This gives us a formula for the \(\tilde{\rho}_{ij} \):

\[
\tilde{\rho}_{ij} = \frac{\pi_j}{\pi_i} \rho_{ji}
\]

(13.62)

13.6.4 Reversible Markov Chains

In some cases, the reversed chain has the same probabilistic structure as the original one! Note carefully what that would mean. In the continuous-time case, it would mean that \(\tilde{\rho}_{ij} = \rho_{ij} \) for all i and j, where the \(\tilde{\rho}_{ij} \) are the transition rates of Y(t).\(^4\) If this is the case, we say that X(t) is reversible.

That is a very strong property. An example of a chain which is not reversible is the tree-search model in Section \([12.3.5]\). There the state space consists of all the nonnegative integers, and transitions were possible from states n to n+1 and from n to 0. Clearly this chain is not reversible, since we can go from n to 0 in one step but not vice versa.

\(^4\)Note that for a continuous-time Markov chain, the transition rates do indeed uniquely determined the probabilistic structure of the chain, not just the long-run state proportions. The short-run behavior of the chain is also determined by the transition rates, and at least in theory can be calculated by solving differential equations whose coefficients make use of those rates.

\(^5\)That is a discrete-time example, but the principle here is the same.
13.6. **REVERSED MARKOV CHAINS**

13.6.4.1 Conditions for Checking Reversibility

Equation (13.61) shows that the original chain $X(t)$ is reversible if and only if

$$\pi_i \rho_{ij} = \pi_j \rho_{ji} \quad (13.63)$$

for all i and j. These equations are called the **detailed balance equations**, as opposed to the general **balance equations**,

$$\sum_{j \neq i} \pi_j \rho_{ji} = \pi_i \lambda_i \quad (13.64)$$

which are used to find the π values. Recall that (13.64) arises from equating the flow into state i with the flow out of it. By contrast, Equation (13.63) equates the flow into i from a particular state j to the flow from i to j. Again, that is a much stronger condition, so we can see that most chains are not reversible. However, a number of important ones are reversible, as we’ll see.

For example, consider birth/death chains. Here, the only cases in which ρ_{rs} is nonzero are those in which $|i - j| = 1$. Now, Equation (11.19) in our derivation of π for birth/death chains is exactly (13.63)! So we see that birth/death chains are reversible.

More generally, equations (13.63) may not be so easy to check, since for complex chains we may not be able to find closed-form expressions for the π values. Thus it is desirable to have another test available for reversibility. One such test is **Kolmogorov’s Criterion**:

The chain is reversible if and only if for any loop of states, the product of the transition rates is the same in both the forward and backward directions.

For example, consider the loop $i \rightarrow j \rightarrow k \rightarrow i$. Then we would check whether $\rho_{ij} \rho_{jk} \rho_{ki} = \rho_{ik} \rho_{kj} \rho_{ji}$.

Technically, we do have to check all loops. However, in many cases it should be clear that just a few loops are representative, as the other loops have the same structure.

Again consider birth/death chains. Kolmogorov’s Criterion trivially shows that they are reversible, since any loop involves a path which is the same path when traversed in reverse.

13.6.4.2 Making New Reversible Chains from Old Ones

Since reversible chains are so useful (when we are lucky enough to have them), a very useful trick is to be able to form new reversible chains from old ones. The following two properties are very handy in that regard:
(a) Suppose \(U(t) \) and \(V(t) \) are reversible Markov chains, and define \(W(t) \) to be the tuple \([U(t), V(t)]\). Then \(W(t) \) is reversible.

(b) Suppose \(X(t) \) is a reversible Markov chain, and \(A \) is an irreducible subset of the state space of the chain, with long-run state distribution \(\pi \). Define a chain \(W(t) \) with transition rates \(\rho'_{ij} \) for \(i \in A \), where \(\rho'_{ij} = \rho_{ij} \) if \(j \in A \) and \(\rho'_{ij} = 0 \) otherwise. Then \(W(t) \) is reversible, with long-run state distribution given by

\[
\pi_{ti} = \frac{\pi_i}{\sum_{j \in A} \pi_j} \tag{13.65}
\]

13.6.4.3 Example: Distribution of Residual Life

In Section 15.6.2, we used Markov chain methods to derive the age distribution at a fixed observation point in a renewal process. From remarks made there, we know that residual life has the same distribution. This could be proved similarly, at some effort, but it comes almost immediately from reversibility considerations. After all, the residual life in the reversed process is the age in the original process.

13.6.4.4 Example: Queues with a Common Waiting Area

Consider two M/M/1 queues, with chains \(G(t) \) and \(H(t) \), with independent arrival streams but having a common waiting area, with jobs arriving to a full waiting area simply being lost.

First consider the case of an infinite waiting area. Let \(u_1 \) and \(u_2 \) be the utilizations of the two queues, as in (13.3). \(G(t) \) and \(H(t) \), being birth/death processes, are reversible. Then by property (a) above, the chain \([G(t), H(t)]\) is also reversible. Long-run proportion of the time that there are \(m \) jobs in the first queue and \(n \) jobs in the second is

\[
\pi_{mn} = (1 - u_1)^m u_1 (1 - u_2)^n u_2 \tag{13.66}
\]

for \(m, n = 0, 1, 2, 3, \ldots \)

Now consider what would happen if these two queues were to have a common, finite waiting area. Denote the amount of space in the waiting area by \(w \). The new process is the restriction of the original process to a subset of states \(A \) as in (b) above. (The set \(A \) will be precisely defined below.) It is easily verified from the Kolmogorov Criterion that the new process is also reversible.

13.6. REVERSED MARKOV CHAINS

Recall that the state m in the original queue $U(t)$ is the number of jobs, including the one in service if any. That means the number of jobs waiting is $(m - 1)^+ + (n - 1)^+ = \max(x, 0)$. That means that for our new system, with the common waiting area, we should take our subset A to be

$$\{(m, n) : m, n \geq 0, (m - 1)^+ + (n - 1)^+ \leq w\} \quad (13.67)$$

So, by property (b) above, we know that the long-run state distribution for the queue with the finite common waiting area is

$$\pi_{mn} = \frac{1}{a} (1 - u_1)^m u_1 (1 - u_2)^n u_2 \quad (13.68)$$

where

$$a = \sum_{(i,j) \in A} (1 - u_1)^i u_1 (1 - u_2)^j u_2 \quad (13.69)$$

In this example, reversibility was quite useful. It would have been essentially impossible to derive (13.68) algebraically. And even if intuition had suggested that solution as a guess, it would have been quite messy to verify the guess.

13.6.4.5 Closed-Form Expression for π for Any Reversible Markov Chain

(Adapted from Ronald Nelson, Probability, Stochastic Processes and Queueing Theory, Springer-Verlag, 1995.)

Recall that most Markov chains, especially those with infinite state spaces, do not have closed-form expressions for the steady-state probabilities. But we can always get such expressions for reversible chains, as follows.

Choose a fixed state s, and find paths from s to all other states. Denote the path to i by

$$s = j_{i_1} \rightarrow j_{i_2} \rightarrow ... \rightarrow j_{i_m} = i \quad (13.70)$$

Define

$$\psi_i = \begin{cases} 1, & i = s \\ \Pi_{k=1}^m r_{ik}, & i \neq s \end{cases} \quad (13.71)$$
where

\[r_{ik} = \frac{\rho(j_{ik}, j_{i,k+1})}{\rho(j_{i,k+1}, j_{i,k})} \] (13.72)

Then the steady-state probabilities are

\[\pi_i = \frac{\psi_i}{\sum_k \psi_k} \] (13.73)

You may notice that this looks similar to the derivation for birth/death processes, which as has been pointed out, are reversible.

13.7 Networks of Queues

13.7.1 Tandem Queues

Let’s first consider an M/M/1 queue. As mentioned earlier, this is a birth/death process, thus reversible. This has an interesting and very useful application, as follows.

Think of the times at which jobs depart this system, i.e. the times at which jobs finish service. In the reversed process, these times are arrivals. Due to the reversibility, that means that the distribution of departure times is the same as that of arrival times. In other words:

- Departures from this system behave as a Poisson process with rate \(\lambda \).

Also, let the initial state \(X(0) \) be distributed according to the steady-state probabilities \(\pi^7 \). Due to the PASTA property of Poisson arrivals, the distribution of the system state at arrival times is the same as the distribution of the system state at nonrandom times \(t \). Then by reversibility, we have that:

- The state distribution at departure times is the same as at nonrandom times.

And finally, noting as in Section 13.6.1 that, given \(X(t) \), the states \(\{X(s), s \leq t\} \) of the queue before time \(t \) are statistically independent of the arrival process after time \(t \), reversibility gives us that:

\[\text{Recall Section 12.1.2.4} \]
13.7. NETWORKS OF QUEUES

- Given t, the departure process before time t is statistically independent of the states $\{X(s), s \geq t\}$ of the queue after time t.

Let’s apply that to tandem queues, which are queues acting in series. Suppose we have two such queues, with the first, $X_1(t)$ feeding its output to the second one, $X_2(t)$, as input. Suppose the input into $X_1(t)$ is a Poisson process with rate λ, and service times at both queues are exponentially distributed, with rates μ_1 and μ_2.

$X_1(t)$ is an M/M/1 queue, so its steady-state probabilities for $X_1(t)$ are given by Equation (13.3), with $u = \lambda/\mu_1$.

By the first bulleted item above, we know that the input into $X_2(t)$ is also Poisson. Therefore, $X_2(t)$ also is an M/M/1 queue, with steady-state probabilities as in Equation (13.3), with $u = \lambda/\mu_2$.

Now, what about the joint distribution of $[X_1(t), X_2(t)]$? The third bulleted item above says that the input to $X_2(t)$ up to time t is independent of $\{X_1(s), s \geq t\}$. So, using the fact that we are assuming that $X_1(0)$ has the steady-state distribution, we have that

$$P[X_1(t) = i, X_2(t) = j] = (1 - u_1)u_1^i P[X_2(t) = j]$$

(13.74)

Now letting $t \to \infty$, we get that the long-run probability of the vector $[X_1(t), X_2(t)]$ being equal to (i,j) is

$$(1 - u_1)u_1^i(1 - u_2)u_2^j$$

(13.75)

In other words, the steady-state distribution for the vector has the two components of the vector being independent.

Equation (13.75) is called a product form solution to the balance equations for steady-state probabilities.

By the way, the vector $[X_1(t), X_2(t)]$ is not reversible.

13.7.2 Jackson Networks

The tandem queues discussed in the last section comprise a special case of what are known as Jackson networks. Once again, there exists an enormous literature of Jackson and other kinds of queuing networks. The material can become very complicated (even the notation is very complex), and we will only present an introduction here. Our presentation is adapted from I. Mittrani, *Modelling of Computer and Communication Systems*, Cambridge University Press, 1987.
Our network consists of \(N \) nodes, and jobs move from node to node. There is a queue at each node, and service time at node \(i \) is exponentially distributed with mean \(1/\mu_i \).

13.7.2.1 Open Networks

Each job originally arrives externally to the network, with the arrival rate at node \(i \) being \(\gamma_i \). After moving among various nodes, the job will eventually leave the network. Specifically, after a job completes service at node \(i \), it moves to node \(j \) with probability \(q_{ij} \), where

\[
\sum_j q_{ij} < 1 \quad (13.76)
\]

reflecting the fact that the job will leave the network altogether with probability \(1 - \sum_j q_{ij} \). It is assumed that the movement from node to node is memoryless.

As an example, you may wish to think of movement of packets among routers in a computer network, with the packets being jobs and the routers being nodes.

Let \(\lambda_i \) denote the total traffic rate into node \(i \). By the usual equating of flow in and flow out, we have

\[
\lambda_i = \gamma_i + \sum_{j=1}^{N} \lambda_j q_{ji} \quad (13.77)
\]

Let the in Equations (13.77), the knowns are \(\gamma_i \) and the \(q_{ji} \). We can solve this system of linear equations for the unknowns, \(\lambda_i \).

The utilization at node \(i \) is then \(u_i = \lambda_i / \mu_i \), as before. Jackson’s Theorem then says that in the long run, node \(i \) acts as an M/M/1 queue with that utilization, and that the nodes are independent in the long run:

\[
\lim_{t \to \infty} P[X_1(t) = i_1, \ldots, X_N(t) = i_N] = \prod_{i=1}^{N} (1 - u_i) u^i \quad (13.78)
\]

So, again we have a product form solution.

\(^8\)By the way, \(q_{ii} \) can be nonzero, allowing for feedback loops at nodes.

\(^9\)We do not present the proof here, but it really is just a matter of showing that the distribution here satisfies the balance equations.
Let L_i denote the average number of jobs at node i. From Equation (13.6), we have $L_i = u_i / (1 - u_i)$. Thus the mean number of jobs in the system is

$$L = \sum_{i=1}^{N} \frac{u_i}{1 - u_i}$$

(13.79)

From this we can get the mean time that jobs stay in the network, W: From Little’s Rule, $L = \gamma W$, so

$$W = \frac{1}{\gamma} \sum_{i=1}^{N} \frac{u_i}{1 - u_i}$$

(13.80)

where $\gamma = \gamma_1 + \ldots + \gamma_N$ is the total external arrival rate.

Jackson networks are not generally reversible. The reversed versions of Jackson networks are worth studying for other reasons, but we cannot pursue them here.

13.7.3 Closed Networks

In a closed Jackson network, we have for all i, $\gamma_i = 0$ and

$$\sum_j q_{ij} = 1$$

(13.81)

In other words, jobs never enter or leave the network. There have been many models like this in the computer performance modeling literature. For instance, a model might consist of some nodes representing CPUs, some representing disk drives, and some representing users at terminals.

It turns out that we again get a product form solution. The notation is more involved, so we will not present it here.

Exercises

1. Investigate the robustness of the M/M/1 queue model with respect to the assumption of exponential service times, as follows. Suppose the service time is actually uniformly distributed on $(0,c)$, so that the mean service time would be $c/2$. Assume that arrivals do follow the exponential model, with mean interarrival time 1.0. Find the mean residence time, using (13.9), and compare

This is confusing, since the different nodes are now not independent, due to the fact that the number of jobs in the overall system is constant.
it to the true value obtained from (13.59). Do this for various values of c, and graph the two curves using R.

2. Many mathematical analyses of queuing systems use finite source models. There are always a fixed number j of jobs in the system. A job queues up for the server, gets served in time S, then waits a random time W before queuing up for the server again.

A typical example would be a file server with j clients. The time W would be the time a client does work before it needs to access the file server again.

(a) Use Little’s Rule, on two or more appropriately chosen boxes, to derive the following relation:

$$ER = \frac{JE}{U} - EW \tag{13.82}$$

where R is residence time (time spent in the queue plus service time) in one cycle for a job and U is the utilization fraction of the server.

(b) Set up a continuous time Markov chain, assuming exponential distributions for S and W, with state being the number of jobs currently at the server. Derive closed-form expressions for the π_i.

3. Consider the following variant of an M/M/1 queue: Each customer has a certain amount of patience, varying from one customer to another, exponentially distributed with rate η. When a customer’s patience wears out while the customer is in the queue, he/she leaves (but not if his/her job is now in service). Arrival and service rates are λ and ν, respectively.

(a) Express the π_i in terms of λ, ν and η.

(b) Express the proportion of lost jobs as a function of the π_i, λ, ν and η.

4. A shop has two machines, with service time in machine i being exponentially distributed with rate μ_i, $i = 1,2$. Here $\mu_1 > \mu_2$. When a job reaches the head of the queue, it chooses machine 1 if that machine is idle, and otherwise waits for the first available machine. If when a job finishes on machine 1 there is a job in progress at machine 2, the latter job will be transferred to machine 1, getting priority over any queued jobs. Arrivals follow the usual Poisson process, parameter λ.

(a) Find the mean residence time.

(b) Find the proportion of jobs that are originally assigned to machine 2.
Chapter 14

Describing “Failure”

Here we will study the distributions of times until event occurrence. There are numerous applications, such as:

- Medical research: E.g. time of recurrence of a disease.
- Software reliability: E.g. time until the next bug is discovered.
- Software development processes: Time until a new team member is added to an open source project.
- Hardware reliability: Time until failure.
- Marketing: E.g. time until your customer moves to some other provider.
- Employment discrimination litigation: E.g. time until a worker is fired.

Here in this chapter, we study the mathematical underpinnings.

14.1 Hazard Functions

In addition to density functions, another useful description of a continuous distribution is its hazard function. Again think of the lifetimes of light bulbs, not necessarily assuming an exponential distribution. Intuitively, the hazard function states the likelihood of a bulb failing in the next short interval of time, given that it has lasted up to now. To understand this, let’s review a certain property of the exponential distribution family.

\footnote{This can be done for discrete random variables too.}
14.1.1 Basic Concepts

Suppose the lifetimes of light bulbs L were discrete. Suppose a particular bulb has already lasted 80 hours. The probability of it failing in the next hour could be written in terms of the pmf and cdf of the distribution of lifetimes of bulbs:

$$P(L = 81 | L > 80) = \frac{P(L = 81 \text{ and } L > 80)}{P(L > 80)} = \frac{P(L = 81)}{P(L > 80)} = \frac{p_L(81)}{1 - F_L(80)} \quad (14.1)$$

In general, for discrete L, we define its hazard function as

$$h_L(i) = \frac{p_L(i)}{1 - F_L(i - 1)} \quad (14.2)$$

By analogy, for continuous L we define

$$h_L(t) = \frac{f_L(t)}{1 - F_L(t)} \quad (14.3)$$

Again, the interpretation is that $h_L(t)$ is the likelihood of the item failing very soon after t, given that it has lasted t amount of time. The probability of failing within the next δ amount of time is approximately $h_L(t)\delta$, for small δ.

Note carefully that the word “failure” here should not be taken literally. In our Davis railroad crossing example in Chapter 9, “failure” means that the train ends—a “failure” which those of us who are waiting will welcome!

Since we know that exponentially distributed random variables are memoryless, we would expect intuitively that their hazard functions are constant. We can verify this by evaluating (14.3) for an exponential density with parameter λ; sure enough, the hazard function is constant, with value λ.

The reader should verify that in contrast to an exponential distribution’s constant failure rate, a uniform distribution has an increasing failure rate (IFR). Some distributions have decreasing failure rates, while most have non-monotone rates.

Hazard function models have been used extensively in software testing. Here “failure” is the discovery of a bug, and with quantities of interest include the mean time until the next bug is discovered, and the total number of bugs.

Some parametric families of distributions have strictly increasing failure rates (IFR). Some have strictly decreasing failure rates (DFR). People have what is called a “bathtub-shaped” hazard function. It is high near 0 (reflecting infant mortality) and after, say, 70, but is low and rather flat in between.
14.1. HAZARD FUNCTIONS

You may have noticed that the right-hand side of (14.3) is the derivative of $-\ln[1-F_L(t)]$. Therefore

$$\int_0^t h_L(s) \, ds = -\ln[1-F_L(t)]$$ \hspace{1cm} (14.4)

so that

$$1 - F_L(t) = e^{-\int_0^t h_L(s) \, ds} \tag{14.5}$$

and thus\(^2\)

$$f_L(t) = h_L(t)e^{-\int_0^t h_L(s) \, ds} \tag{14.6}$$

In other words, just as we can find the hazard function knowing the density, we can also go in the reverse direction. This establishes that there is a one-to-one correspondence between densities and hazard functions.

This may guide our choice of parametric family for modeling some random variable. We may not only have a good idea of what general shape the density takes on, but may also have an idea of what the hazard function looks like. These two pieces of information can help guide us in our choice of model.

14.1.2 Example: Software Reliability Models

Hazard function models have been used successfully to model the “arrivals” (i.e. discoveries) of bugs in software. Questions that arise are, for instance, “When are we ready to ship?”, meaning when can we believe with some confidence that most bugs have been found?

Typically one collects data on bug discoveries from a number of projects of similar complexity, and estimates the hazard function from that data. Some investigations, such as Ohishia et al, Gompertz Software Reliability Model: Estimation Algorithm and Empirical Validation, *Journal of Systems and Software*, 82, 3, 2009, 535-543.

\(^2\)Recall that the derivative of the integral of a function is the original function!
14.2 Residual-Life Distribution

In the bus-paradox example, if we had been working with light bulbs instead of buses, the analog of the time we wait for the next bus would be the remaining lifetime of the current light bulb. The time from a fixed time point \(t \) until the next bulb replacement, is known as the residual life. (Another name for it is the forward recurrence time.)

Our aim here is to derive the distribution of renewal times. To do this, let’s first bring in some terminology from renewal theory.

14.2.1 Renewal Theory

Recall the light bulb example of Section 9.1. Every time a light bulb burns out, we immediately replace it with a new one. The time of the \(r \)th replacement is denoted by \(T_r \), and satisfies the relation
\[
N(t) = \max\{k : T_k \leq t\}
\]
(14.7)

where \(N(t) \) is the number of replacements that have occurred by time \(t \) and \(X_i \) is the lifetime of the \(i \)th bulb. The random variables \(X_1, X_2, ... \) are assumed independent and identically distributed (i.i.d.); we will NOT assume that their common distribution is exponential, though.

Note that for each \(t > 0 \), \(N(t) \) is a random variable, and since we have a collection of random variables indexed by \(t \). This collection is called a renewal process, the name being motivated by the idea of “renewals” occurring when light bulbs burn out. We say that \(N(t) \) is the number of renewals by time \(t \).

In the bus paradox example, we can think of bus arrivals as renewals too, with the interbus times being analogous to the light bulb lifetimes, and with \(N(t) \) being the number of buses that have arrived by time \(t \).

Note the following for general renewal processes:

Duality Between “Lifetime Domain” and “Counts Domain”:

A very important property of renewal processes is that
\[
N(t) \geq k \text{ if and only if } T_k \leq t
\]
(14.8)

This is just a formal mathematical of common sense: There have been at least \(k \) renewals by now if and only if the \(k \)th renewal has already occurred! But it is a very important device in renewal analysis.
14.2. RESIDUAL-LIFE DISTRIBUTION

Equation (15.1) might be described as relating the “counts domain” (left-hand side of the equation) to the “lifetimes domain” (right-hand side).

There is a very rich theory of renewal processes, but let's move on to our goal of finding the distribution of residual life.

14.2.2 Intuitive Derivation of Residual Life for the Continuous Case

Here is a derivation for the case of continuous X_i. For concreteness think of the bus case, but the derivation is general.

In the context of the bus and stick examples in Section 9.4, denote by V the length of the interbus arrival that we happen to hit when we arrive at the bus stop, and let D denote the residual life, i.e. the time until the next bus. The key point is that, given V, D is uniformly distributed on $(0, V)$. To see this, think of the stick example. If the stick that we happen to touch first has length V, the point on which we touched it could be anywhere from one end to the other with equal likelihood. So,

$$f_{D|V}(s, t) = \frac{1}{t}, \quad 0 < s < t$$

(14.9)

Thus

$$f_{D,V}(s, t) = \frac{1}{t} \cdot f_V(t), \quad 0 < s < t$$

(14.10)

Then

$$f_D(s) = \int_s^\infty \frac{1}{t} \cdot f_V(t) \, dt$$

(14.11)

$$= \int_s^\infty \frac{1}{EX} \cdot f_X(t) \, dt$$

(14.12)

$$= \frac{1 - F_X(s)}{EX}$$

(14.13)

This is a classic result, of central importance and usefulness, as seen in our upcoming examples later in this section.

\footnote{If you are wondering about that first equality in (15.64), it is basically a continuous analog of

$$P(A) = P(A \text{ and } B_1 \text{ or } A \text{ and } B_2 \text{ or } ...) = P(A \mid B_1)P(B_1) + P(A \mid B_2)P(B_2) + ...$$

for disjoint events $B_1, B_2, ...$. This is stated more precisely in Section ??.
It should be noted that all of this assume a “long-run” situation. In our bus example, for instance, it implicitly assumes that when we arrive at the bus stop at 5:00, the buses have been running for quite a while. To state this more precisely, let’s let D depend on t: D(t) will be the residual life at time t, e.g. the time we must wait for the next bus if we arrive at the stop at time t. Then (15.64) is really the limiting density of $f_{D(t)}$ as $t \to \infty$.

14.2.3 Age Distribution

Analogous to the residual lifetime D(t), let A(t) denote the age (sometimes called the backward recurrence time) of the current light bulb, i.e. the length of time it has been in service. (In the bus-paradox example, A(t) would be the time which has elapsed since the last arrival of a bus, to the current time t.) One can show that

$$\lim_{t \to \infty} f_{A(t)}(w) = 1 - \frac{F_L(w)}{E(L)}$$

(14.14)

In other words, A(t) has the same long-run distribution as D(t)!

The derivation in the continuous case mimics that taken in Section 14.2.2 above. But actually, one can make a direct argument based on the reversed process:

A reversed process is defined loosely to be “an ordinary stochastic process, with the ‘movie’ played backwards.” Consider for instance a discrete time Markov chain X_1, X_2, \ldots. Choose some “far future” time, say 1000000, and define a new process Y_i, where $Y_1 = X_{1000000}$, $Y_2 = X_{999999}$, $Y_3 = X_{999998}$ and so on.

There is a rich theory for reversed processes, including a theorem that says that a reversed Markov chain will itself be Markovian if and only if

$$\pi_i p_{ij} = \pi_j p_{ji}$$

(14.15)

for all i and j.

But in our case here, renewal processes, you can see that the reversed process is again a renewal process with the same distribution for lifetimes as in the original process. Moreover, the residual life distribution for the reversed process is the same as the age distribution of the original.

So, it’s quite clear that (15.65) holds, and we really don’t need any more derivations. But let’s look at one for the discrete case anyway, as it is an application of Markov chains.

4We’ll have to take time 0 of the renewal process to be the time of a renewal in the original process.
Let \(L \) be the generic random variable for lifetime. Remember, our fixed observation point \(t \) is assumed large, so that the system is in steady-state. Let \(W \) denote the lifetime so far for the current bulb. Say we have a new bulb at time 52. Then \(W \) is 0 at that time. If the total lifetime turns out to be, say, 12, then \(W \) will be 0 again at time 64.

Then we have a Markov chain in which our state at any time is the value of \(W \). In fact, the transition probabilities for this chain are the values of the hazard function of \(L \):

First note that when we are in state \(i \), i.e. \(W = i \), we know that the current bulb’s lifetime is at least \(i+1 \). If its lifetime is exactly \(i+1 \), our next state will be 0. So,

\[
p_{i,0} = P(L = i + 1 | L > i) = \frac{p_L(i + 1)}{1 - F_L(i)} \tag{14.16}
\]

\[
p_{i,i+1} = \frac{1 - F_L(i + 1)}{1 - F_L(i)} \tag{14.17}
\]

Define

\[
q_i = \frac{1 - F_L(i + 1)}{1 - F_L(i)} \tag{14.18}
\]

and write

\[
\pi_{i+1} = \pi_i q_i \tag{14.19}
\]

Applying (15.69) recursively, we have

\[
\pi_{i+1} = \pi_0 q_i q_{i-1} \cdots q_0 \tag{14.20}
\]

But the right-hand side of (15.70) telescopes down to

\[
\pi_{i+1} = \pi_0 [1 - F_L(i + 1)] \tag{14.21}
\]

Then

\[
1 = \sum_{i=0}^{\infty} \pi_i = \pi_0 \sum_{i=0}^{\infty} [1 - F_L(i)] = \pi_0 E(L) \tag{14.22}
\]
Thus

\[\pi_i = \frac{1 - F_L(i + 1)}{EL} \] (14.23)

in analogy to (15.65).

14.2.4 Mean of the Residual and Age Distributions

Taking the expected value of (15.64) or (15.65), we get a double integral. Reversing the order of integration, we find that the mean residual life or age is given by

\[\frac{E(L^2)}{2EL} \] (14.24)

14.2.5 Example: Estimating Web Page Modification Rates

Suppose we are interested in the rate of modification of a file in some FTP repository on the Web. We have a spider visit the site at regular intervals. At each visit, the spider records the time of last modification to the site. We do not observe how MANY times the site was modified. The problem then is how to estimate the modification rate from the last-modification time data that we do have.

I assumed that the modifications follow a renewal process. Then the difference between the spider visit time and the time of last modification is equal to the age \(A(t) \). I then applied a lot of renewal theory to develop statistical estimators for the modification rate.

14.2.6 Example: Disk File Model

Suppose a disk will store backup files. We place the first file in the first track on the disk, then the second file right after the first in the same track, etc. Occasionally we will run out of room on a track, and the file we are placing at the time must be split between this track and the next. Suppose the amount of room \(X \) taken up by a file (a continuous random variable in this model) is uniformly distributed between 0 and 3 tracks.

Some tracks will contain data from only one file. (The file may extend onto other tracks as well.) Let’s find the long-run proportion of tracks which have this property.
Think of the disk as consisting of a Very Long Line, with the end of one track being followed immediately by the beginning of the next track. The points at which files begin then form a renewal process, with “time” being distance along the Very Long Line. If we observe the disk at the end of the k^{th} track, this is observing at “time” k. That track consists entirely of one file if and only if the “age” A of the current file—i.e. the distance back to the beginning of that file—is greater than 1.0.

Then from Equation (15.65), we have

$$f_A(w) = \frac{1 - \frac{w}{1.5}}{2 - \frac{2}{9}w}$$ \hspace{1cm} (14.25)

Then

$$P(A > 1) = \int_1^3 \left(2 - \frac{2}{9}w\right) \, dw = \frac{4}{9}$$ \hspace{1cm} (14.26)

14.2.7 Example: Memory Paging Model

(Adapted from *Probability and Statistics, with Reliability, Queuing and Computer Science Applications*, by K.S. Trivedi, Prentice-Hall, 1982 and 2002.)

Consider a computer with an address space consisting of n pages, and a program which generates a sequence of memory references with addresses (page numbers) $D_1, D_2, ...$. In this simple model, the D_i are assumed to be i.i.d. integer-valued random variables. For each page i, let T_{ij} denote the time at which the j^{th} reference to page i occurs. Then for each fixed i, the T_{ij} form a renewal process, and thus all the theory we have developed here applies. Let F_i be the cumulative distribution function for the interrenewal distribution, i.e. $F_i(m) = P(L_{ij} \leq m)$, where $L_{ij} = T_{ij} - T_{i,j-1}$ for $m = 0, 1, 2, ...$

Let $W(t, \tau)$ denote the working set at time t, i.e. the collection of page numbers of pages accessed during the time $(t - \tau, t)$, and let $S(t, \tau)$ denote the size of that set. We are interested in finding the value of

$$s(\tau) = \lim_{t \to \infty} E[S(t, \tau)]$$ \hspace{1cm} (14.27)

Since the definition of the working set involves looking backward τ amount of time from time t, a good place to look for an approach to finding $s(\tau)$ might be to use the limiting distribution of backward-recurrence time, given by Equation (15.73).

Note, though, that all random variables here are discrete, not continuous.
Accordingly, let $A_i(t)$ be the age at time t for page i. Then

Page i is in the working set if and only if it has been accessed after time $t - \tau$, i.e. $A_i(t) < \tau$.

Thus, using (15.73) and letting 1_i be 1 or 0 according to whether or not $A_i(t) < \tau$, we have that

$$s(\tau) = \lim_{t \to \infty} E(\sum_{i=1}^{n} 1_i)$$

$$= \lim_{t \to \infty} \sum_{i=1}^{n} P(A_i(t) < \tau)$$

$$= \sum_{i=1}^{n} \sum_{j=0}^{\tau-1} \frac{1 - F_i(j)}{E(L_i)}$$

(14.28)

Exercises

1. Use R to plot the hazard functions for the gamma distributions plotted in Figure 7.2, plus the case $r = 0.5$. Comment on the implications for trains at 8th and J Streets in Davis.

2. Consider the “random bucket” example in Section 9.4. Suppose bucket diameter D, measured in meters, has a uniform distribution on $(1,2)$. Let W denote the diameter of the bucket in which the tossed ball lands.

(a) Find the density, mean and variance of W, and also $P(W > 1.5)$

(b) Write an R function that will generate random variates having the distribution of W.

3. In Section 9.2, we showed that the exponential distribution is memoryless. In fact, it is the only continuous distribution with that property. Show that the U(0,1) distribution does NOT have that property. To do this, evaluate both sides of (9.9).

4. Suppose $f_X(t) = 1/t^2$ on $(1, \infty)$, 0 elsewhere. Find $h_X(2.0)$

5. Consider the three-sided die on page 37. Find the hazard function $h_V(t)$, where V is the number of dots obtained on one roll (1, 2 or 3).

6. Suppose $f_X(t) = 2t$ for $0 < t < 1$ and the density is 0 elsewhere.
14.2. RESIDUAL-LIFE DISTRIBUTION

(a) Find $h_X(0.5)$.

(b) Which statement concerning this distribution is correct? (i) IFR (ii) DFR. (iii) U-shaped failure rate. (iv) Sinusoidal failure rate. (v) Failure rate is undefined for $t > 0.5$.
Chapter 15

Renewal Theory and Some Applications

Remember the light bulb example in Section 7.6.3.1? You may be startled to learn that entire books have been written on a generalization of that example. This chapter will just scratch the surface of the important topic.

15.1 Introduction

15.1.1 The Light Bulb Example, Generalized

Suppose a certain lamp is used continuously, and that whenever its bulb burns out, it is immediately replaced by a new one. Let \(N(t) \) denote the number of replacements, called renewals here, that have occurred up through time \(t \). Assume the lifetimes of the bulbs, \(L_1, L_2, L_3, \ldots \) are independent and identically distributed. The collection of random variables \(N(t), t \geq 0 \) is called a renewal process. The quantities \(R_i = L_1 + \ldots + L_i \) are called the renewal points.

We will see that most renewal processes are not Markovian. However, time does “start over” at the renewal points. We say the process is regenerative at these points.

Note that although we are motivating this with the light bulb example, in which the \(L_i \) measure time, the theory we will present here is not limited to such a context. All that is needed is that the \(L_i \) be i.i.d. and nonnegative.

There is a very rich collection of mathematical material on renewal processes, and there are myriad applications to a variety of fields.
15.1.2 Duality Between “Lifetime Domain” and “Counts Domain”

A very important property of renewal processes is that

\[N(t) \geq k \text{ if and only if } R_k \leq t \] \hspace{1cm} (15.1)

This is just a formal mathematical of common sense: There have been at least \(k \) renewals by now if and only if the \(k^{th} \) renewal has already occurred! But it is a very important device in renewal analysis.

Equation (15.1) might be described as relating the “counts domain” (left-hand side of the equation) to the “lifetimes domain” (right-hand side).

15.2 Where We Are Going

Some of the material in Sections 15.3 and 15.4 of this chapter may seem a little theoretical. However, it all does have practical value, and it will also exercise some of the concepts you’ve learned in earlier chapters.

After those two sections, the focus will mainly be on concepts which apply the theory, and on specific examples.

15.3 Properties of Poisson Processes

15.3.1 Definition

A renewal process \(N(t) \) is called a Poisson process if each \(N(t) \) has a Poisson distribution, i.e. for some \(\lambda \) we have

\[P(N(t) = k) = \frac{e^{-\lambda t}(\lambda t)^k}{k!}, \quad k = 0, 1, 2, 3, ... \] \hspace{1cm} (15.2)

The parameter \(\lambda \) is called the intensity parameter of the process, and since \(E[N(t)] = \lambda t \), it has the natural interpretation of the (average) rate at which renewal events occur per unit time.
15.3. Alternate Characterizations of Poisson Processes

15.3.2.1 Exponential Interrenewal Times

Theorem 22 A renewal process $N(t)$ is a Poisson process if and only if the interrenewal times L_i have an exponential distribution with parameter λ.

Note that this shows that a Poisson process is also a Markov chain (with state being the current number of renewals), due to the memoryless property of the exponential distribution.

Proof

For the “only if” part of the claim, note that from the “domain switching” discussed in Section 15.1.2,

$$F_{L_1}(t) = 1 - P(L_1 > t) = 1 - P(N(t) = 0) = 1 - e^{-\lambda t} \quad (15.3)$$

Differentiating with respect to t, we find that $f_{L_1}(t) = \lambda e^{-\lambda t}$. Since the L_i are i.i.d. by definition of renewal processes, this shows that all the L_i have an exponential distribution.

15.3.2.2 Stationary, Independent Increments

Theorem 23 Suppose $N(t)$ is a renewal process for which the L_i are continuous random variables.

Then $N(t)$ is a Poisson process if and only if it has stationary, independent increments. The latter term means that for all $0 < r < s < t < u$ we have the following properties:

(a) Independent increments: $N(s) - N(r)$ and $N(u) - N(t)$ are independent random variables.

(b) Stationarity: The distribution of $N(s) - N(r)$ is the same as that of $N(s+z) - N(r+z)$ for any $z > 0$.

Proof

(Sketch.)

For the “only if” part: As noted above, Poisson processes have the Markov property, which immediately implies independent increments. Also, since “time starts over,” say at time r, then for $s > r$ we will have that $N(s) - N(r)$ has the same distribution as $N(s-r)$.

Note that this shows that a Poisson process is also a Markov chain (with state being the current number of renewals), due to the memoryless property of the exponential distribution.
For the “if” part: The independence of the increments implies the Markov property, and since the only continuous distribution which is memoryless is the exponential, that implies the the L_i have exponential distributions, which we saw above implies that $N(t)$ is Poisson.

Note too that for these reasons $N(s)-N(r)$ will have the same distribution as $N(s-r)$.

We can use these properties to find the autocorrelation function of the Poisson process, which shows the correlation of the process with itself at different times $s < t$:

$$c(s, t) = \frac{Cov[N(s), N(t)]}{\sqrt{Var[N(s)]Var[N(t)]}}$$ \hspace{1cm} \text{(15.4)}$$

To derive this quantity, note first that

$$E[N(s)N(t)] = E[N(s)\{N(t) - N(s)\} + N^2(s)] \quad \text{(algebra)}$$ \hspace{1cm} \text{(15.5)}$$

$$= E[N(s)\{N(t) - N(s)\}] + E[N^2(s)] \quad \text{(E is lin.)}$$ \hspace{1cm} \text{(15.6)}$$

$$= E[N(s)]E[N(t) - N(s)] + E[N^2(s)] \quad \text{(indep. incs.)}$$ \hspace{1cm} \text{(15.7)}$$

$$= [\lambda s \cdot \lambda (t - s)] + [\lambda s + (\lambda s)^2] \quad \text{(Pois., (3.41))}$$ \hspace{1cm} \text{(15.8)}$$

Here we used the property of independent increments in going from the second to third line. In the last line we have used the fact that $N(u)$ has mean and variance both equal to λu for all $u > 0$.

After performing the remaining calculations, we find that

$$c(s, t) = \sqrt{\frac{s}{t}}$$ \hspace{1cm} \text{(15.9)}$$

15.3.3 Conditional Distribution of Renewal Times

Theorem 24 Suppose $N(t)$ is a Poisson process. Let $R_i = L_1 + ... + L_i$ be the renewal times, $i = 1, 2, 3, ...$

Given $N(t) = k$, then $M_1, ..., M_k$ are i.i.d. $U(0,t)$ (uniform distribution on $(0,t)$), where the $(M_1, ..., M_k)$ is a random permutation of $(R_1, ..., R_k)$.

In other words, conditional on there being k renewals within $(0,t)$, the unordered renewal times are independent and uniformly distributed on $(0,t)$.
15.3. **PROPERTIES OF POISSON PROCESSES**

This fact often plays a key role in analyses of Poisson models.

Let’s look at the intuitive meaning of this, using our “notebook” view, taking $k = 3$ and $t = 12.0$ for concreteness.

Each line of the notebook would consist of the results of our observing the process up to time 12.0. The first column would show the R_1, the second R_2 and so on.

We would also have columns for M_1, M_2 and M_3. These would be filled with NAs (“not applicable”) in rows for which $N(12.0)$ is not equal 3, while in rows for which $N(12.0)$ is equal to 3, (M_1, M_2, M_3) would be a random scrambling of (R_1, R_2, R_3).

The uniform distribution part of the theorem is saying that among the rows in which $N(12.0) = 3$, 1/2 of them will have, for instance, $M_1 < 6.0$. That will NOT be true for R_1; considerably fewer than 1/2 of the rows will have $R_1 < 6.0$. The independence part of the theorem is saying, for example, that 1/4 of these rows will have both $M_1 < 6.0$ and $M_2 < 6.0$.

Here’s the proof.

Proof

Let Y denote the number of $M_i \leq s$. Then

$$P(Y = b|N(t) = k) = \frac{P(Y = b \text{ and } N(t) = k)}{P[N(t) = k]} \quad (15.10)$$

$$= \frac{P[N(s) = b \text{ and } N(t) - N(s) = k - b]}{P[N(t) = k]} \quad (15.11)$$

$$= \frac{e^{-\lambda s}(\lambda s)^b}{b!} \cdot \frac{e^{-\lambda(t-s)}(\lambda(t-s))^{k-b}}{(k-b)!} \quad (15.12)$$

$$= \frac{e^{\lambda(t)}(\lambda)^k}{k!} \quad (15.13)$$

This is the probability that would arise if the M_i were i.i.d. $U(0,t)$ as claimed in the theorem.

15.3.3.1 **Example: Message Buildup at a Broken Network Link**

Suppose messages arrive to a network link according to a Poisson process. Unfortunately, the link is down, and the messages just keep piling up. Suppose at time 60.0 we see 10 messages in the
buffer. Find the variance of the total wait time of those messages.

Solution: Number the messages 1 through 10, not necessarily in the order of their arrival. Say for instance that these messages came from mouse clicks of 10 Web users, and we order the messages by the surnames of the users. That gives us a random permutation of the 10 messages, and since we are only analyzing the total of the 10 wait times, it doesn’t matter which permutation we have.

Let $W_1, ..., W_{10}$ be the wait times of our 10 messages. Then, conditional on $N(60.0)$, the W_i are independent and i.i.d. $U(0,60.0)$. Then from Section 7.6.1.1, $EW_i = 30.0$ and $Var(W_i) = 60^2/12 = 300$. The mean and variance of the total wait time are thus 300 and 3000.

15.3.4 Decomposition and Superposition of Poisson Processes

Theorem 25 Poisson processes can be split and combined:

(a) Let $N(t)$ be a Poisson process with intensity parameter λ. Say we decompose $N(t)$ into $N_1(t)$ and $N_2(t)$ by assigning each renewal in $N(t)$ to either $N_1(t)$ or $N_2(t)$ with probability p and $1-p$ respectively. Then the two resulting processes are again Poisson processes. They are independent of each other, and have intensity parameters $p\lambda$ and $(1-p)\lambda$.

(b) If we superimpose two independent Poisson processes $N_1(t)$ and $N_2(t)$, the result $N(t) = N_1(t) + N_2(t)$ will be a Poisson process, with intensity parameter equal to the sum of the two original parameters.

These properties are often useful in queuing models, where an arrival process is subdivided in two processes corresponding to two job classes.

15.3.5 Nonhomogeneous Poisson Processes

A useful variant of Poisson processes is the nonhomogeneous Poisson process. The key here is that the intensity parameter λ varies over time. We will write it as $\lambda(t)$. I’ll define it this way:

Definition 26 Let $N(t), t \geq 0$ be a counting process with independent increments, and let

$$m(t) = E[N(t)] \quad (15.14)$$

If for all $0 < s < t$ we have

$$P[N(t) - N(s) = k] = \frac{e^{-m(t-s)}[m(t-s)]^k}{k!}, k = 0, 1, 2, ... \quad (15.15)$$
then we say that $N(t), t \geq 0$ is a nonhomogeneous Poisson process with intensity function

$$\lambda(t) = \frac{d}{dt} m(t) \quad (15.16)$$

Intuitively, $N(t), t \geq 0$ is a Markov process with states of the form $[t, N(t)]$. In that state, the probability that there will be a renewal in the next Δt amount of time is approximately $\Delta t \cdot \lambda(t)$, for small increments of time Δt.

15.3.5.1 Example: Software Reliability

Nonhomogeneous Poisson process models have been used successfully to model the “arrivals” (i.e. discoveries) of bugs in software. Questions that arise are, for instance, “When are we ready to ship?”, meaning when can we believe with some confidence that most bugs have been found?

Typically one collects data on bug discoveries from a number of projects of similar complexity, and estimates $m(t)$ from that data.

15.4 Properties of General Renewal Processes

We now turn our attention to the general case, in which the L_i are not necessarily exponentially distributed. We will still assume the L_i to be continuous random variables, though.

15.4.1 The Regenerative Nature of Renewal Processes

Recall that Markov chains are “memoryless.” If we are now at time t, “time starts over,” and the probabilities of events after time t do not depend on what happened before time t.

If the L_i are not exponentially distributed, $N(t)$ is not Markovian, since the exponential distribution is the only continuous memoryless distribution. However, it is true that “time starts over” at each renewal epoch $R_i = L_1 + \ldots + L_i$. Note the difference: The definition of the Markov property concerns time starting over at a fixed time, t. Here, in the context of renewal processes, “time starts over” at random times, of the form R_i.
15.4.2 Some of the Main Theorems

Let \(m(t) = \mathbb{E}[N(t)] \). Many of the results concern this function \(m \). Please forgive a bit of abuse of notation:

\[
F = F_L \tag{15.17}
\]

\[
f = f_L \tag{15.18}
\]

\[
F_n = F_{R_n} \tag{15.19}
\]

15.4.2.1 The Functions \(F_n \) Sum to \(m \)

First, we need a general property of means of nonnegative random variables (this was an exercise in Chapter 1):

Lemma 27 For any nonnegative-integer valued random variable \(Z \),

\[
E(Z) = \sum_{j=1}^{\infty} P(Z \geq j) = \sum_{j=0}^{\infty} [1 - F_Z(j)] \tag{15.20}
\]

If \(Z \) is a nonnegative continuous random variable, then

\[
E(Z) = \int_{0}^{\infty} [1 - F_Z(t)] \, dt \tag{15.21}
\]

Proof

In the discrete case,
$E(Z) = \sum_{i=1}^{\infty} i P(Z = i)$ \hspace{1cm} (15.22)

$= \sum_{i=1}^{\infty} P(Z = i) \sum_{j=1}^{i} 1$ \hspace{1cm} (15.23)

$= \sum_{j=1}^{\infty} \sum_{i=j}^{\infty} P(Z = i)$ \hspace{1cm} (15.24)

$= \sum_{j=1}^{\infty} P(Z \geq j)$ \hspace{1cm} (15.25)

$= \sum_{j=0}^{\infty} P(Z > j)$ \hspace{1cm} (15.26)

$= \sum_{j=0}^{\infty} \left[1 - F_Z(j) \right]$ \hspace{1cm} (15.27)

The continuous case is similar.

Now, let’s apply that:

Theorem 28

$m(t) = \sum_{n=1}^{\infty} F_n(t)$ \hspace{1cm} (15.28)

Proof

Let $Z = N(t)$. Then yet again switching domains as in Section 15.1.2,

$m(t) = \sum_{j=1}^{\infty} P(N(t) \geq j) = \sum_{j=1}^{\infty} P(R_j \leq t) = \sum_{j=1}^{\infty} F_j(t)$ \hspace{1cm} (15.29)
15.4.2.2 The Renewal Equation

Theorem 29 The function \(m \) satisfies the equation

\[
m(t) = F(t) + \int_0^t m(t - w) f(w) \, dw
\]

(15.30)

Proof

Using the Law of Total Expectation, we have

\[
m(t) = E[N(t)] = E\{E[N(t)|L_1]\}
\]

(15.31)

But at time \(L_1 \) “time starts over again,” by the regenerative property of renewal processes. So,

\[
E[N(t)|L_1) = \begin{cases}
1 + m(t - L_1), & \text{if } L_1 < t \\
0, & \text{otherwise}
\end{cases}
\]

(15.32)

Remember, \(E[N(t)|L_1] \) is a function of \(L_1 \). Thus its expected value, which we want to find now (see (15.31)), is the integral of that function times the density of \(L_1 \):

\[
m(t) = \int_0^t [1 + m(t - w)] f(w) \, dw = F(t) + \int_0^t m(t - w) f(w) \, dw
\]

(15.33)

If \(f \) is known, then \(F \) is known too, then Equation (15.30) can be solved for \(m \). This is known as an **integral equation** for \(m \), analogous to a differential equation. In fact, it can be converted to a differential equation by taking the derivative of both sides. There are various techniques for solving integral equations, including numerical approximations, but we will not pursue those here.

The function \(m \) is useful in a number of contexts (one of which will be seen in Section 15.5.2), so we will now look at some of its properties.

15.4.2.3 The Function \(m(t) \) Uniquely Determines \(F(t) \)

Remember, each different distribution for the \(L_i \) gives rise to a different distribution for the \(N(t) \), thus a different \(m(t) \). The converse is also true:
Theorem 30 The function \(m(t) \) uniquely determines \(F(t) \).

Proof

For any function \(h \) (for which the absolute value has a finite integral on \((0, \infty)\)), let \(\Lambda_h \) define the Laplace transform of \(h \),

\[
\Lambda_h(s) = \int_0^\infty e^{-st}h(t)\,dt
\]

(15.34)

Now, we will take the Laplace transform of both sides of (15.30). To do so, we will need to state some facts about Laplace transforms.

Remember, Laplace transforms are, except for a change of variable, just like generating functions or moment generating functions, which you probably studied in your undergraduate probability course. Thus Laplace transforms have the same properties as generating functions.

Now recall that the generating function of the sum of two independent nonnegative random variables is the product of their individual moment generating functions. Well, the density of such a sum has the same integral form as in (15.30), which we call a convolution. Even though the \(m \) part of the integral is not a density function, it is still true that the Laplace transform of a convolution of two functions is the product of their individual Laplace transforms.

So, taking the Laplace transform of both sides of (15.30) yields:

\[
\Lambda_m(s) = \Lambda_F(s) + \Lambda_m(s)\Lambda_f(s)
\]

(15.35)

i.e.

\[
\Lambda_m(s) = \frac{\Lambda_F(s)}{1 - \Lambda_f(s)}
\]

(15.36)

This says that \(m \) uniquely determines the Laplace transforms of \(F \) and \(f \), and since there is a one-to-one correspondence between distributions and Laplace transforms, we see that \(m \) uniquely determines the interrenewal distribution. In other words, there is only one possible interrenewal distribution for any given mean function.
In fact, some similar analysis, which we will not present here, yields:

\[\Lambda_f(s) = \frac{\Lambda_r(s)}{1 + \Lambda_r(s)} \] \hspace{1cm} (15.37)

where \(r(t) = \frac{d}{dt} m(t) \). So, we can recover \(f \) from \(m \).

As an example, we earlier saw that there are three equivalent definitions of a Poisson process, i.e. each implies the other. We can use the above result to show one of those equivalences:

Suppose a renewal process has stationary, independent increments. This would imply that \(m(t) = ct \) for some \(c > 0 \), and thus \(r(t) = c \). Then

\[\Lambda_r(s) = \int_0^{\infty} e^{-st} c dt = \frac{c}{s} \] \hspace{1cm} (15.38)

so (15.37) gives us

\[\Lambda_f(s) = \frac{c}{s + c} \] \hspace{1cm} (15.39)

This is the Laplace transform for the exponential distribution with parameter \(c \). So, we see how the stationary, independent increments property implies exponential interrenewal times.

15.4.2.4 Asymptotic Behavior of \(m(t) \)

Theorem 31

\[\lim_{t \to \infty} \frac{m(t)}{t} = \frac{1}{E(L)} \] \hspace{1cm} (15.40)

This should make good intuitive sense to you. By the way, this (and some other things we’ll find in this chapter) can be used to formally prove some assertions we made on only an intuitive basis in early chapters.

15.5 Alternating Renewal Processes

15.5.1 Definition and Main Result

Suppose we have a sequence of pairs of random variables \((Y_n, Z_n)\) which are i.i.d. as pairs. In other words, for instance the pair \((Y_1, Z_1)\) is independent of, but has the same distribution as, \((Y_2, Z_2)\)
and so on, but on the other hand Y_n and Z_n are allowed dependency.

Imagine a machine being busy, then idle, then busy, then idle, and so on, with Y_n being the amount of “on” time in the n^{th} cycle, and similarly Z_n being the “off” time. Each time an on/off pair finishes, call that a “renewal.” The sequence is called an alternating renewal process.

It is intuitively clear, and can be proven, that

$$\lim_{t \to \infty} P(\text{on at time } t) = \frac{E(Y)}{E(Y) + E(Z)} \quad (15.41)$$

and

$$\lim_{t \to \infty} P(\text{off at time } t) = \frac{E(Z)}{E(Y) + E(Z)} \quad (15.42)$$

Again, these results can be used to formally prove some assertions we have made in earlier chapters on just an intuitive basis.

15.5.2 Example: Inventory Problem (difficult)

(Adapted from *Stochastic Processes*, by Sheldon Ross, Wiley, 1996.)

Consider a vendor which uses an (s,S) policy for replenishing its inventory\footnote{I generally try to reserve capital letters for names of random variables, using lower-case letters (or Greek) to denote constants, but am using Ross’ notation here.} What this means is that after filling a customer order, if inventory of the item falls below level s, the inventory is replenished to level S. Suppose customer orders arrive as a renewal process, with the L_n in this case being i.i.d. interarrival times. Let O_n denote the size of the n^{th} order, and let $I(t)$ denote the amount of inventory on hand at time t. Take $I(0)$ to be S. We wish to find the long-run distribution of $I(t)$, i.e.

$$\lim_{t \to \infty} P(I(t) \geq u) \quad (15.43)$$

for all $s < u < S$.

To do this, define the following alternating renewal process: The system is “on” when the inventory level is at least u, and “off” otherwise. So, we start out with inventory S, begin losing it during this “on” period, and eventually it falls below u, which is a transition from on to off. The inventory continues to fall, during this off time, and it eventually falls below s, at which time there is a replenishment back up to S. At that point the next “on” period starts, etc.
Note that each on/off cycle begins with the inventory being at level \(S \), and that each transition from on to off and vice versa coincides with some renewal time \(R_n \) in the customer arrival process.

Then Equation (15.41) says that

\[
\lim_{t \to \infty} P(I(t) \geq u) = \frac{\text{E(amount of time inventory } \geq \text{ u in an on/off cycle)}}{\text{E(time of an on/off cycle)}} \quad (15.44)
\]

To evaluate numerator and denominator in (15.44), consider the first cycle, and let

\[
N_x = \min\{n : O_1 + \ldots + O_n > S - x\} \quad (15.45)
\]

In other words, \(N_x \) is the index of the first order which makes the inventory fall below \(x \). All the time prior to this order, the inventory is at least \(x \). Then our earlier point that all transitions into the on and off states coincide with some \(R_i \) can be refined to say that

- Customer number \(N_u \) triggers the end of the on cycle. Thus the length of the on cycle is \(R_{N_u} \).
- Customer number \(N_s \) ends the full cycle. Thus the length of the full cycle is \(R_{N_s} \).

Therefore the fraction in (15.44) is equal to

\[
\frac{E(R_{N_u})}{E(R_{N_s})} = \frac{E(\sum_{i=1}^{N_u} L_i)}{E(\sum_{i=1}^{N_s} L_i)} = \frac{E(N_u)E(L)}{E(N_s)E(L)} = \frac{E(N_u)}{E(N_s)} \quad (15.46)
\]

where \(L \) is a random variable having the common distribution of the \(L_i \). Here we have used the fact that the \(O_i \) are independent of the \(L_j \).

Now consider a new “renewal process,” with the \(O_i \) playing the role of “lightbulb lifetimes.” This is a bit difficult to get used to, since the \(O_i \) are of course not times, but they are nonnegative random variables, and thus from the considerations of (15.1) we see that

\[
\tilde{N}(t) = \max\{n : O_1 + \ldots + O_n \leq t\} \quad (15.47)
\]

is indeed a renewal process. The importance of that renewal process is that

\[
\tilde{N}(t) + 1 = N_{S-t} \quad (15.48)
\]
Now let

\[m_0(x) = E\tilde{N}(x) \]

(15.49)

Then (15.44) and (15.46) imply that

\[\lim_{t \to \infty} P(I(t) \geq u) = \frac{m_0(S - u) + 1}{m_0(S - s) + 1} \]

(15.50)

Though Ross’ treatment ends at this point, we can also extend it by using (15.40) if \(S-s\) is large, yielding

\[\lim_{t \to \infty} P(I(t) \geq u) \approx \frac{S-u}{E\tilde{O}} + 1 = \frac{S - u + E\tilde{O}}{S - s + E\tilde{O}} \]

(15.51)

\section*{15.6 Residual-Life Distribution}

(It is assumed here that you know about the “bus paradox,” described in Section 9.4 of our chapter on continuous distributions.)

\subsection*{15.6.1 Residual-Life Distribution}

In the bus-paradox example, if we had been working with light bulbs instead of buses, the analog of the time we wait for the next bus would be the remaining lifetime of the current light bulb. So, in general, the time from a fixed time point \(t\) until the next renewal, is known as the residual life. (Another name for it is the forward recurrence time.)

Here is a derivation for the continuous case. Consider a renewal process, which for concreteness we will describe in the “light bulb” context but is fully general. Define the following for any time \(t, w \geq 0\):

\[D(t) = \text{remaining life of the current bulb} \]

(15.52)

\[Q_{\text{last}}(t) = \text{time of the most recent burnout} \]

(15.53)

\[Q_{\text{next}}(t) = \text{time of the next burnout} \]

(15.54)

\[W(t) = \max[Q_{\text{next}}(t) - w, Q_{\text{last}}(t)] \]

(15.55)
The definition of $W(t)$ sounds complicated, but it is merely saying this: Looking at the picture, start at $Q_{\text{next}}(t)$ and move your eyes leftward a distance w, but no further leftward than $Q_{\text{last}}(t)$. The place where you end up is defined to be $W(t)$.

Though $W(t)$ is shown in the picture as being to the right of t, the opposite could be true. In fact, $D(t) \leq w$ if and only if $W(t) \leq t$ \hspace{1cm} (15.56)

Our goal is to find

$$\lim_{t \to \infty} P[D(t) \leq w] \hspace{1cm} (15.57)$$

But (15.56) shows that

$$\lim_{t \to \infty} P[D(t) \leq w] = \lim_{t \to \infty} P[W(t) \leq t] = \text{long-run fraction of the time } W(t) \leq t \text{ as } t \to \infty \hspace{1cm} (15.58)$$

(Existence of that long-run fraction as a constant can be shown mathematically to imply that the limiting probability exists and is equal to that constant. But the result is intuitively clear.)

Now let’s evaluate the far right-hand side of (15.58). For each light bulb, let $Z(t)$ the length of the portion of its lifetime to the right of $W(t)$, i.e.

$$Z(t) = Q_{\text{next}}(t) - W(t) \hspace{1cm} (15.59)$$
15.6. RESIDUAL-LIFE DISTRIBUTION

and let $Y(t)$ be the portion to the left of $W(t)$. Then:

$$W(t) \leq t \text{ if and only if } t \text{ is in the interval covered by } Z(t) \quad (15.60)$$

The Ys and Z form an alternating renewal process as we move from bulb to bulb. Thus from Equations (15.42), (15.58) and (15.60) we have that

$$\lim_{t \to \infty} P(D(t) \leq w) = \frac{E(Z)}{E(Y) + E(Z)} = \frac{E[\min(L, w)]}{E(L)} \quad (15.61)$$

$$= \left[\min(L, w) \right] \frac{E[L]}{E(L)} \quad (15.62)$$

where L is the lifetime of a bulb.

By Lemma 27 we have

$$E[\min(L, w)] = \int_{0}^{\infty} P[\min(L, w) > u] \, du = \int_{0}^{w} P(L > u) \, du = \int_{0}^{w} [1 - F_L(u)] \, du \quad (15.63)$$

since $P[\min(L, w) > u] = 0$ whenever $u > w$.

Substituting this into (15.61), and taking derivatives with respect to w, we have that

$$\lim_{t \to \infty} f_{D(t)}(w) = \frac{1 - F_L(w)}{E(L)} \quad (15.64)$$

This is a classic result, of central importance and usefulness, as seen in our upcoming examples later in this section.

15.6.2 Age Distribution

Analogous to the residual lifetime $D(t)$, let $A(t)$ denote the age (sometimes called the **backward recurrence time**) of the current light bulb, i.e. the length of time it has been in service. (In the bus-paradox example, $A(t)$ would be the time which has elapsed since the last arrival of a bus, to the current time t.) Using an approach similar to that taken above, one can show that

$$\lim_{t \to \infty} f_{A(t)}(w) = \frac{1 - F_L(w)}{E(L)} \quad (15.65)$$
In other words, $A(t)$ has the same long-run distribution as $D(t)$!

Here is a derivation for the case in which the L_i are discrete. Remember, our fixed observation point t is assumed large, so that the system is in steady-state. Let W denote the lifetime so far for the current bulb. Then we have a Markov chain in which our state at any time is the value of W. Say we have a new bulb at time 52. Then W is 0 at that time. If the total lifetime turns out to be, say, 12, then W will be 0 again at time 64.

Let’s find the transition probabilities. First note that when we are in state i, i.e. $W = i$, we know that the current bulb’s lifetime is at least $i+1$. If its lifetime is exactly $i+1$, our next state will be 0. So,

\[
p_{i,0} = P(L = i + 1|L > i) = \frac{p_L(i + 1)}{1 - F_L(i)}
\]

(15.66)

\[
p_{i,i+1} = \frac{1 - F_L(i + 1)}{1 - F_L(i)}
\]

(15.67)

Define

\[
q_i = \frac{1 - F_L(i + 1)}{1 - F_L(i)}
\]

(15.68)

and write

\[
\pi_{i+1} = \pi_i q_i
\]

(15.69)

Applying (15.69) recursively, we have

\[
\pi_{i+1} = \pi_0 q_i q_{i-1} \cdots q_0
\]

(15.70)

But the right-hand side of (15.70) telescopes down to

\[
\pi_{i+1} = \pi_0 [1 - F_L(i + 1)]
\]

(15.71)

Then

\[
1 = \sum_{i=0}^{\infty} \pi_i = \pi_0 \sum_{i=0}^{\infty} [1 - F_L(i)] = \pi_0 E(L)
\]

(15.72)
15.6. RESIDUAL-LIFE DISTRIBUTION

by [27].

Thus

\[\pi_i = \frac{1 - F_L(i + 1)}{E_L} \] \hspace{1cm} (15.73)

in analogy to (15.65).

15.6.3 Mean of the Residual and Age Distributions

Taking the expected value of (15.64) or (15.65), we get a double integral. Reversing the order of integration, we find that the mean residual life or age is given by

\[\frac{E(L^2)}{2E_L} \] \hspace{1cm} (15.74)

15.6.4 Example: Estimating Web Page Modification Rates

Suppose we are interested in the rate of modification of a file in some FTP repository on the Web. We have a spider visit the site at regular intervals. At each visit, the spider records the time of last modification to the site. We do not observe how MANY times the site was modified. The problem then is how to estimate the modification rate from the last-modification time data that we do have.

I assumed that the modifications follow a renewal process. Then the difference between the spider visit time and the time of last modification is equal to the age A(t). I then applied a lot of renewal theory to develop statistical estimators for the modification rate.

15.6.5 Example: The (S,s) Inventory Model Again

Here I extend Ross’ example that we saw in Section 15.5.2.

When an order causes the inventory to go below s, we must dip into our reserves to fill it. Let R be the amount of reserves we must draw upon. Assuming that we always have sufficient reserves, what is the distribution of R?

Recall the renewal process \(\tilde{N}(t) \) in Section 15.5.2. Then the distribution of R is that of the residual life for the process \(\tilde{N}(t) \), given approximately by (15.64).
Suppose for instance that $S = 20.0$, $s = 2.5$ and $f_O(x) = 2x$ for $0 < x < 1$. Then from (15.74),

$$ER = \frac{E(O^2)}{2EO} = \frac{3}{8} \quad (15.75)$$

15.6.6 Example: Disk File Model

Suppose a disk will store backup files. We place the first file in the first track on the disk, then the second file right after the first in the same track, etc. Occasionally we will run out of room on a track, and the file we are placing at the time must be split between this track and the next. Suppose the amount of room X taken up by a file (a continuous random variable in this model) is uniformly distributed between 0 and 3 tracks.

Some tracks will contain data from only one file. (The file may extend onto other tracks as well.) Let’s find the long-run proportion of tracks which have this property.

Think of the disk as consisting of a Very Long Line, with the end of one track being followed immediately by the beginning of the next track. The points at which files begin then form a renewal process, with “time” being distance along the Very Long Line. If we observe the disk at the end of the k^{th} track, this is observing at “time” k. That track consists entirely of one file if and only if the “age” A of the current file—i.e. the distance back to the beginning of that file—is greater than 1.0.

Then from Equation (15.65), we have

$$f_A(w) = \frac{1 - \frac{w}{3}}{1.5} = \frac{2}{3} - \frac{2}{9}w \quad (15.76)$$

Then

$$P(A > 1) = \int_1^3 \left(\frac{2}{3} - \frac{2}{9}w \right) \, dw = \frac{4}{9} \quad (15.77)$$

15.6.7 Example: Event Sets in Discrete Event Simulation (difficult)

Discrete event simulation involves systems whose states change in a discrete rather than a continuous manner. For example, the number of packets currently waiting in a network router changes discretely, while the air temperature in a weather model changes continuously.

2 Actually, the values of S and s do not matter here, though of course the larger $S-s$ is, the better the approximation.
A discrete event simulation program must maintain an event set, which is a data structure containing all the pending events. To make this concrete, suppose we are simulating a k-server queue. There are two kinds of events—job service completions and customer arrivals. Since we have k servers, at any time in the simulation we could have as many as k+1 pending events. If k = 2, for instance, our event set could be, say, consist of a service completion for Machine 1 at time 124.3, one for Machine 2 at 95.4, and a customer arrival at time 99.0.

The core of the program consists of a main loop that repeatedly loops through the following:

(a) Delete the earliest member of the event set.
(b) Update simulated time to the time for that event.
(c) Generate a new event triggered by the one just executed.
(d) Add the new event to the event set.

In our k-server queue example, say the event in (a) is a service completion. Then if there are jobs waiting in the queue, this will trigger the start of service for the new job at the head of the queue, in (c).

Due to (a), the event list is a priority queue, and thus any of the wealth of data structures for priority queues could be used to implement it. Here we will assume the simplest one, a linear linked list, which is always maintained in sorted order.

The question is this: In (d) above, we need to search the list to determine where to insert our new event in order to enhance our program’s run speed. Should we start our search at the head of the list or at its tail?

An answer to this question was provided in an old paper: On the Distribution of Event Times for the Notices in a Simulation Event List, Jean Vaucher, INFOR, June 1977. Vaucher realized that this problem was right up renewal theory’s alley. Our presentation here is adapted from that paper.

First, think of all events that are ever generated during the entire simulation. They comprise the renewal process. Let \(L_i \) denote the (simulated) time between the \((i - 1)^{st}\) and \(i^{th}\) events.

Let \(t_c \) denote the time of the event in (a), and let \(t_d \) denote earliest time in the event list after step (a) is performed. Let L denote the duration of the event generated in (c), so that that event’s simulated occurrence time will be \(t_c + L \).

We will assume that the the size of the event list stays constant at r. (This is true for many simulations, and approximately true for many others.) Now, the question of where in the event list should we begin our search?

CHAPTER 15. RENEWAL THEORY AND SOME APPLICATIONS

to place our new event is equivalent to asking how many events in the list have their times \(t_e \) after \(t_e + L \). That in turn is the same as asking how many of the events have a residual life \(Z \) of greater than \(L \). Call that number \(K \).

The quantity of interest is

\[
\gamma = \frac{E(K)}{r}
\]

(15.78)

If \(\gamma < 0.5 \) we should start our search at the head of the list; otherwise we should start at the tail.

So, let’s derive \(E(K) \). First write

\[
E(K) = E[E(K|L)]
\]

(15.79)

To simplify notation, let \(g \) denote the residual life density \((15.64)\). Then, using the point above concerning residual life and keeping in mind that \(L \) is a “constant” in our conditional computation here, we have

\[
E(K|L) = rP(Z > L) = r \cdot \int_L^\infty g(t) \, dt
\]

(15.80)

Now use this in (15.79):

\[
E(K) = r \int_0^\infty \left(\int_s^\infty g(t) \, dt \right) f_L(s) \, ds
\]

(15.81)

One then does an integration by parts, making use of the fact that \(g(t) = -\frac{f(t)}{E(L)} \). After all the dust clears, it turns out that

\[
\gamma = 1 - E(L) \int_0^\infty g^2(t) \, dt
\]

(15.82)

In Vaucher’s paper, he then evaluated this expression for various distributions of \(L \), and found that for most of the distributions he tried, \(\gamma \) was in the 0.6 to 0.8 range. In other words, one typically should start the search from the tail end.

15.6.8 Example: Memory Paging Model

(Adapted from Probability and Statistics, with Reliability, Queuing and Computer Science Applications, by K.S. Trivedi, Prentice-Hall, 1982 and 2002.)
Consider a computer with an address space consisting of n pages, and a program which generates a sequence of memory references with addresses (page numbers) D_1, D_2, \ldots. In this simple model, the D_i are assumed to be i.i.d. integer-valued random variables.

For each page i, let T_{ij} denote the time at which the j^{th} reference to page i occurs. Then for each fixed i, the T_{ij} form a renewal process, and thus all the theory we have developed here applies. Let F_i be the cumulative distribution function for the interrenewal distribution, i.e. $F_i(m) = P(L_{ij} \leq m)$, where $L_{ij} = T_{ij} - T_{i,j-1}$ for $m = 0, 1, 2, \ldots$

Let $W(t, \tau)$ denote the working set at time t, i.e. the collection of page numbers of pages accessed during the time $(t - \tau, t)$, and let $S(t, \tau)$ denote the size of that set. We are interested in finding the value of

$$s(\tau) = \lim_{t \to \infty} E[S(t, \tau)]$$

(15.83)

Since the definition of the working set involves looking backward τ amount of time from time t, a good place to look for an approach to finding $s(\tau)$ might be to use the limiting distribution of backward-recurrence time, given by Equation (15.73).

Accordingly, let $A_i(t)$ be the age at time t for page i. Then

Page i is in the working set if and only if it has been accessed after time $t - \tau$, i.e. $A_i(t) < \tau$.

Thus, using (15.73) and letting 1_i be 1 or 0 according to whether or not $A_i(t) < \tau$, we have that

$$s(\tau) = \lim_{t \to \infty} E(\sum_{i=1}^{n} 1_i)$$

$$= \lim_{t \to \infty} \sum_{i=1}^{n} P(A_i(t) < \tau)$$

$$= \sum_{i=1}^{n} \sum_{j=0}^{\tau-1} \frac{1 - F_i(j)}{E(L_i)}$$

(15.84)

Exercises

1. Consider a renewal process in which lifetimes have the values 1, 2, 3 or 4, with probability $1/4$ each.

4Note, though, that all random variables here are discrete, not continuous.
(a) Find $P[N(3) = 2]$.
(b) For large integer t, find the probability that the current renewal period began at $t-2$.

2. Suppose the burn time for light bulbs is normally distributed with mean 100.0 and variance 225, and consider the associated renewal process (the lamp’s bulb is replaced as soon as it burns out). Find $P[N(500) \geq 4]$.

3. Consider a renewal process in which lifetimes have the values 1, 2, 3 or 4, with probability $\frac{1}{4}$ each. Express your answers as single fractions, e.g. $\frac{25}{6}$ (not as decimal numbers or numerical algebraic expressions).

 (a) Find $P[N(3) = 2]$.

 (b) For large integer t, find the probability that the current renewal period began at $t-2$.

Chapter 16

Covariance and Random Vectors

Most applications of probability and statistics involve the interaction between variables. For instance, when you buy a book at Amazon.com, the software will likely inform you of other books that people bought in conjunction with the one you selected. Amazon is relying on the fact that sales of certain pairs or groups of books are correlated.

Thus we need the notion of distributions that describe how two or more variables vary together. This chapter develops that notion, which forms the very core of statistics.

16.1 Measuring Co-variation of Random Variables

16.1.1 Covariance

Definition 32 The covariance between random variables X and Y is defined as

$$Cov(X, Y) = E[(X - EX)(Y - EY)] \quad (16.1)$$

Suppose that typically when X is larger than its mean, Y is also larger than its mean, and vice versa for below-mean values. Then (16.1) will likely be positive. In other words, if X and Y are positively correlated (a term we will define formally later but keep intuitive for now), then their covariance is positive. Similarly, if X is often smaller than its mean whenever Y is larger than its mean, the covariance and correlation between them will be negative. All of this is roughly speaking, of course, since it depends on how much and how often X is larger or smaller than its mean, etc.
CHAPTER 16. COVARIANCE AND RANDOM VECTORS

Linearity in both arguments:

\[\text{Cov}(aX + bY, cU + dV) = ac\text{Cov}(X, U) + ad\text{Cov}(X, V) + bc\text{Cov}(Y, U) + bd\text{Cov}(Y, V) \] (16.2)

for any constants a, b, c and d.

Insensitivity to additive constants:

\[\text{Cov}(X, Y + q) = \text{Cov}(X, Y) \] (16.3)

for any constant q and so on.

Covariance of a random variable with itself:

\[\text{Cov}(X, X) = \text{Var}(X) \] (16.4)

for any X with finite variance.

Shortcut calculation of covariance:

\[\text{Cov}(X, Y) = E(XY) - EX \cdot EY \] (16.5)

The proof will help you review some important issues, namely (a) \(E(U+V) = EU + EV\), (b) \(E(cU) = c EU\) and \(Ec = c\) for any constant c, and (c) \(EX\) and \(EY\) are constants in (16.5).

\[
\text{Cov}(X, Y) = E[(X - EX)(Y - EY)] \quad \text{(definition)} \tag{16.6}
\]

\[
= E[XY - EX \cdot Y - EY \cdot X + EX \cdot EY] \quad \text{(algebra)} \tag{16.7}
\]

\[
= E(XY) + E[-EX \cdot Y] + E[-EY \cdot X] + E[EX \cdot EY] \quad \text{(E[U+V]=EU+EV)} \tag{16.8}
\]

\[
= E(XY) - EX \cdot EY \quad \text{(E[cU] = cEU, Ec = c)} \tag{16.9}
\]

Variance of sums:

\[\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) + 2\text{Cov}(X, Y) \] (16.10)

This comes from (16.5), the relation \(\text{Var}(X) = E(X^2) - EX^2\) and the corresponding one for Y. Just substitute and do the algebra.
16.1. MEASURING CO-VARIATION OF RANDOM VARIABLES

By induction, (16.10) generalizes for more than two variables:

\[
\text{Var}(W_1 + \ldots + W_r) = \sum_{i=1}^{r} \text{Var}(W_i) + 2 \sum_{1 \leq j < i \leq r} \text{Cov}(W_i, W_j) \tag{16.11}
\]

16.1.2 Example: Variance of Sum of Nonindependent Variables

Consider random variables \(X_1\) and \(X_2\), for which \(\text{Var}(X_i) = 1.0\) for \(i = 1, 2\), and \(\text{Cov}(X_1, X_2) = 0.5\). Let’s find \(\text{Var}(X_1 + X_2)\).

This is quite straightforward, from (16.10):

\[
\text{Var}(X_1 + X_2) = \text{Var}(X_1) + \text{Var}(X_2) + 2\text{Cov}(X_1, X_2) = 3 \tag{16.12}
\]

16.1.3 Example: the Committee Example Again

Let’s find \(\text{Var}(M)\) in the committee example of Section 3.9.2. In (3.97), we wrote \(M\) as a sum of indicator random variables:

\[
M = G_1 + G_2 + G_3 + G_4 \tag{16.13}
\]

and found that

\[
P(G_i = 1) = \frac{2}{3} \tag{16.14}
\]

for all \(i\).

You should review why this value is the same for all \(i\), as this reasoning will be used again below. Also review Section 3.9.

Applying (16.11) to (16.13), we have

\[
\text{Var}(M) = 4\text{Var}(G_1) + 12\text{Cov}(G_1, G_2) \tag{16.15}
\]

Finding that first term is easy, from (3.79):

\[
\text{Var}(G_1) = \frac{2}{3} \left(1 - \frac{2}{3}\right) = \frac{2}{9} \tag{16.16}
\]
CHAPTER 16. COVARIANCE AND RANDOM VECTORS

Now, what about \(\text{Cov}(G_1,G_2) \)? Equation (16.5) will be handy here:

\[
\text{Cov}(G_1,G_2) = \mathbb{E}(G_1G_2) - \mathbb{E}(G_1)\mathbb{E}(G_2) \tag{16.17}
\]

That first term in (16.17) is

\[
\mathbb{E}(G_1G_2) = P(G_1 = 1 \text{ and } G_2 = 1) \tag{16.18}
\]

\[
= P(\text{choose a man on both the first and second pick}) \tag{16.19}
\]

\[
= \frac{6}{9} \cdot \frac{5}{8} \tag{16.20}
\]

\[
= \frac{5}{12} \tag{16.21}
\]

That second term in (16.17) is, again from Section 3.9,

\[
\left(\frac{2}{3}\right)^2 = \frac{4}{9} \tag{16.22}
\]

All that’s left is to put this together in (16.15), left to the reader.

16.2 Correlation

Covariance does measure how much or little \(X \) and \(Y \) vary together, but it is hard to decide whether a given value of covariance is “large” or not. For instance, if we are measuring lengths in feet and change to inches, then (16.2) shows that the covariance will increase by \(12^2 = 144 \). Thus it makes sense to scale covariance according to the variables’ standard deviations. Accordingly, the correlation between two random variables \(X \) and \(Y \) is defined by

\[
\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)}\sqrt{\text{Var}(Y)}} \tag{16.23}
\]

So, correlation is unitless, i.e. does not involve units like feet, pounds, etc.

It is shown later in this chapter that

- \(-1 \leq \rho(X,Y) \leq 1\)
- \(|\rho(X,Y)| = 1\) if and only if \(X \) and \(Y \) are exact linear functions of each other, i.e. \(Y = cX + d \) for some constants \(c \) and \(d \)
16.2.1 Example: a Catchup Game

Consider the following simple game. There are two players, who take turns playing. One’s position after k turns is the sum of one’s winnings in those turns. Basically, a turn consists of generating a random U(0,1) variable, with one difference—if that player is currently losing, he gets a bonus of 0.2 to help him catch up.

Let X and Y be the total winnings of the two players after 10 turns. Intuitively, X and Y should be positively correlated, due to the 0.2 bonus which brings them closer together. Let’s see if this is true.

Though very simply stated, this problem is far too tough to solve mathematically in an elementary course (or even an advanced one). So, we will use simulation. In addition to finding the correlation between X and Y, we’ll also find $F_{X,Y}(5.8, 5.2) = P(X \leq 5.8 \text{ and } Y \leq 5.2)$.

```r
1 taketurn <- function(a,b) {
2   win <- runif(1)
3   if (a >= b) return(win)
4   else return(win+0.2)
5 }
6
7 nturns <- 10
8 xyvals <- matrix(nrow=nreps,ncol=2)
9 for (rep in 1:nreps) {
10   x <- 0
11   y <- 0
12   for (turn in 1:nturns) {
13     # x’s turn
14     x <- x + taketurn(x,y)
15     # y’s turn
16     y <- y + taketurn(y,x)
17   }
18   xyvals[rep,] <- c(x,y)
19 }
20 print(cor(xyvals[,1],xyvals[,2]))
```

The output is 0.65. So, X and Y are indeed positively correlated as we had surmised.

Note the use of R’s built-in function `cor()` to compute correlation, a shortcut that allows us to avoid summing all the products xy and so on, from (16.5). The reader should make sure he/she understands how this would be done.

16.3 Sets of Independent Random Variables

Recall from Section 3.3.
Definition 33 Random variables X and Y are said to be **independent** if for any sets I and J, the events \{ X is in I \} and \{ Y is in J \} are independent, i.e. $P(X$ is in I and Y is in J) = $P(X$ is in I) $P(Y$ is in J).

Intuitively, though, it simply means that knowledge of the value of X tells us nothing about the value of Y, and vice versa.

Great mathematical tractability can be achieved by assuming that the X_i in a random vector $X = (X_1, ..., X_k)$ are independent. In many applications, this is a reasonable assumption.

16.3.1 Properties

In the next few sections, we will look at some commonly-used properties of sets of independent random variables. For simplicity, consider the case $k = 2$, with X and Y being independent (scalar) random variables.

16.3.1.1 Expected Values Factor

If X and Y are independent, then

$$E(XY) = E(X)E(Y) \quad (16.24)$$

16.3.1.2 Covariance Is 0

If X and Y are independent, we have

$$Cov(X, Y) = 0 \quad (16.25)$$

and thus

$$\rho(X, Y) = 0$$

as well.

This follows from (16.24) and (16.5).

However, the converse is false. A counterexample is the random pair (X, Y) that is uniformly distributed on the unit disk, \{(s, t) : s^2 + t^2 \leq 1\}. Clearly $0 = E(XY) = EX = EY$ due to the symmetry of the distribution about $(0,0)$, so $Cov(X, Y) = 0$ by (16.5).

But X and Y just as clearly are not independent. If for example we know that $X > 0.8$, say, then $Y^2 < 1 - 0.8^2$ and thus $|Y| < 0.6$. If X and Y were independent, knowledge of X should not tell
us anything about Y, which is not the case here, and thus they are not independent. If we also
know that X and Y are bivariate normally distributed (Section ??), then zero covariance does imply
independence.

16.3.1.3 Variances Add

If X and Y are independent, then we have

$$Var(X + Y) = Var(X) + Var(Y). \quad (16.26)$$

This follows from (16.10) and (16.24).

16.3.2 Examples Involving Sets of Independent Random Variables

16.3.2.1 Example: Dice

In Section [16.2.1] we speculated that the correlation between X, the number on the blue die, and
S, the total of the two dice, was positive. Let’s compute it.

Write $S = X + Y$, where Y is the number on the yellow die. Then using the properties of covariance
presented above, we have that

$$Cov(X, S) = Cov(X, X + Y) \quad \text{(def. of } S) \quad (16.27)$$
$$= Cov(X, X) + Cov(X, Y) \quad \text{(from } 16.2) \quad (16.28)$$
$$= Var(X) + 0 \quad \text{(from } 16.4, \ 16.25) \quad (16.29)$$

Also, from (16.26),

$$Var(S) = Var(X + Y) = Var(X) + Var(Y) \quad (16.30)$$

But $Var(Y) = Var(X)$. So the correlation between X and S is

$$\rho(X, S) = \frac{Var(X)}{\sqrt{Var(X)\sqrt{2Var(X)}}} = 0.707 \quad (16.31)$$

Since correlation is at most 1 in absolute value, 0.707 is considered a fairly high correlation. Of
course, we did expect X and S to be highly correlated.
16.3.2.2 Example: Variance of a Product

Suppose X_1 and X_2 are independent random variables with $EX_i = \mu_i$ and $Var(X_i) = \sigma_i^2$, $i = 1, 2$. Let’s find an expression for $Var(X_1X_2)$.

\[
Var(X_1X_2) = E(X_1^2X_2^2) - [E(X_1X_2)]^2 \tag{3.41} \tag{16.32}
\]

\[
= E(X_1^2) \cdot E(X_2^2) - \mu_1^2\mu_2^2 \tag{16.24} \tag{16.33}
\]

\[
= (\sigma_1^2 + \mu_1^2)(\sigma_2^2 + \mu_2^2) - \mu_1^2\mu_2^2 \tag{16.34}
\]

\[
= \sigma_1^2\sigma_2^2 + \mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2 \tag{16.35}
\]

Note that $E(X_1^2) = \sigma_1^2 + \mu_1^2$ by virtue of (3.41).

16.3.2.3 Example: Ratio of Independent Geometric Random Variables

Suppose X and Y are independent geometrically distributed random variables with success probability p. Let $Z = X/Y$. We are interested in EZ and F_Z.

First, by (16.24), we have

\[
EZ = E(X \cdot \frac{1}{Y}) \tag{16.36}
\]

\[
= EX \cdot E\left(\frac{1}{Y}\right) \tag{16.24} \tag{16.37}
\]

\[
= \frac{1}{p} \cdot E\left(\frac{1}{Y}\right) \quad \text{(mean of geom is 1/p)} \tag{16.38}
\]

So we need to find $E(1/Y)$. Using (3.36), we have

\[
E\left(\frac{1}{Y}\right) = \sum_{i=1}^{\infty} \frac{1}{i} (1-p)^{i-1}p \tag{16.39}
\]

Unfortunately, no further simplification seems possible.

Now let’s find $F_Z(m)$ for a positive integer m.

\[F_Z(m) = P\left(\frac{X}{Y} \leq m \right) \] \hspace{1cm} (16.40)
\[= P(X \leq mY) \] \hspace{1cm} (16.41)
\[= \sum_{i=1}^{\infty} P(Y = i) \cdot P(X \leq mY | Y = i) \] \hspace{1cm} (16.42)
\[= \sum_{i=1}^{\infty} (1-p)^{i-1}p \cdot P(X \leq mi) \] \hspace{1cm} (16.43)
\[= \sum_{i=1}^{\infty} (1-p)^{i-1}p \cdot [1 - (1-p)^{mi}] \] \hspace{1cm} (16.44)

this last step coming from (4.16).

We can actually reduce (16.44) to closed form, by writing

\[(1-p)^{i-1}(1-p)^{mi} = (1-p)^{mi+i-1} = \frac{1}{1-p} \left[(1-p)^{m+1} \right]^i \] \hspace{1cm} (16.45)

and then using (4.6). Details are left to the reader.

16.4 Matrix Formulations

(Note that there is a review of matrix algebra in Appendix ??.)

In your first course in matrices and linear algebra, your instructor probably motivated the notion of a matrix by using an example involving linear equations, as follows.

Suppose we have a system of equations

\[a_{i1}x_1 + \ldots + a_{in}x_n = b_i, \quad i = 1, \ldots, n, \] \hspace{1cm} (16.46)

where the \(x_i \) are the unknowns to be solved for.

This system can be represented compactly as

\[AX = B, \] \hspace{1cm} (16.47)

where A is nxn and X and B are nx1.
That compactness coming from the matrix formulation applies to statistics too, though in different ways, as we will see. (Linear algebra in general is used widely in statistics—matrices, rank and subspace, eigenvalues, even determinants.)

When dealing with multivariate distributions, some very messy equations can be greatly compactified through the use of matrix algebra. We will introduce this here.

Throughout this section, consider a random vector $W = (W_1, \ldots, W_k)'$ where $'$ denotes matrix transpose, and a vector written horizontally like this without a $'$ means a row vector.

16.4.1 Properties of Mean Vectors

In statistics, we frequently need to find covariance matrices of linear combinations of random vectors.

Definition 34 The expected value of W is defined to be the vector

$$EW = (EW_1, \ldots, EW_k)'$$ \hspace{1cm} (16.48)

The linearity of the components implies that of the vectors:

For any scalar constants c and d, and any random vectors V and W, we have

$$E(cV + dW) = cEV + dEW$$ \hspace{1cm} (16.49)

where the multiplication and equality is now in the vector sense.

Also, multiplication by a constant matrix factors:

If A is a nonrandom matrix having k columns, then

$$E(AW) = AEW$$ \hspace{1cm} (16.50)

16.4.2 Covariance Matrices

Definition 35 The covariance matrix $\text{Cov}(W)$ of $W = (W_1, \ldots, W_k)'$ is the $k \times k$ matrix whose (i,j)th element is $\text{Cov}(W_i, W_j)$.

Note that that implies that the diagonal elements of the matrix are the variances of the W_i, and that the matrix is symmetric.
16.4. MATRIX FORMULATIONS

As you can see, in the statistics world, the Cov() notation is “overloaded.” If it has two arguments, it is ordinary covariance, between two variables. If it has one argument, it is the covariance matrix, consisting of the covariances of all pairs of components in the argument. When people mean the matrix form, they always say so, i.e. they say “covariance MATRIX” instead of just “covariance.”

The covariance matrix is just a way to compactly do operations on ordinary covariances. Here are some important properties:

Say \(c \) is a constant scalar. Then \(cW \) is a \(k \)-component random vector like \(W \), and

\[
\text{Cov}(cW) = c^2 \text{Cov}(W) \tag{16.51}
\]

Suppose \(V \) and \(W \) are independent random vectors, meaning that each component in \(V \) is independent of each component of \(W \). (But this does NOT mean that the components within \(V \) are independent of each other, and similarly for \(W \).) Then

\[
\text{Cov}(V + W) = \text{Cov}(V) + \text{Cov}(W) \tag{16.52}
\]

Of course, this is also true for sums of any (nonrandom) number of independent random vectors.

In analogy with (3.41), for any random vector \(Q \),

\[
\text{Cov}(Q) = \mathbb{E}(QQ') - \mathbb{E}Q \mathbb{E}Q' \tag{16.53}
\]

16.4.3 Covariance Matrices Linear Combinations of Random Vectors

Suppose \(A \) is an \(r \times k \) but nonrandom matrix. Then \(AW \) is an \(r \)-component random vector, with its \(i^{th} \) element being a linear combination of the elements of \(W \). Then one can show that

\[
\text{Cov}(AW) = A \text{Cov}(W) A' \tag{16.54}
\]

An important special case is that in which \(A \) consists of just one row. In this case \(AW \) is a vector of length 1—a scalar! And its covariance matrix, which is of size \(1 \times 1 \), is thus simply the variance of that scalar. In other words:

Suppose we have a random vector \(U = (U_1, \ldots, U_k)' \) and are interested in the variance of a linear combination of the elements of \(U \),

\[
Y = c_1 U_1 + \ldots + c_k U_k \tag{16.55}
\]
for a vector of constants $c = (c_1, ..., c_k)'$.

Then

$$\text{Var}(Y) = c' \text{Cov}(U)c$$

(16.56)

16.4.4 Example: (X,S) Dice Example Again

Recall Sec. 16.3.2.1. We rolled two dice, getting X and Y dots, and set S to X+Y. We then found $\rho(X, S)$. Let’s find $\rho(X, S)$ using matrix methods.

The key is finding a proper choice for A in (16.54). A little thought shows that

$$\begin{pmatrix} X \\ S \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

(16.57)

Thus the covariance matrix of $(X, S)'$ is

$$\text{Cov}[(X, S)'] = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \text{Var}(X) & 0 \\ 0 & \text{Var}(Y) \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

(16.58)

$$= \begin{pmatrix} \text{Var}(X) & 0 \\ \text{Var}(X) & \text{Var}(Y) \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

(16.59)

$$= \begin{pmatrix} \text{Var}(X) & \text{Var}(X) \\ \text{Var}(X) & \text{Var}(X) + \text{Var}(Y) \end{pmatrix}$$

(16.60)

since X and Y are independent. We would then proceed as before.

This matches what we found earlier, as it should, but shows how matrix methods can be used. This example was fairly simple, so those methods did not produce a large amount of streamlining, but in other examples later in the book, the matrix approach will be key.

16.4.5 Example: Easy Sum Again

Let’s redo the example in Section 16.1.2 again, this time using matrix methods.

First note that

$$X_1 + X_2 = (1, 1) \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

(16.61)
i.e. it is of the form (16.55). So, (16.56) gives us

\[\text{Var}(X_1 + X_2) = (1, 1) \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 3 \]

(16.62)

Of course using the matrix formulation didn’t save us much time here, but for complex problems it’s invaluable. We will frequently have need for finding the variance of a linear combination of the elements of a vector, exactly what we did above.

16.5 The Multivariate Normal Family of Distributions

This is a generalization of the normal distribution. It is covered in detail in Section ??, but here is the overview:

- Just as the univariate normal family is parameterized by the mean and variance, the multivariate normal family has as its parameters the mean \(\text{vector} \) and the covariance \(\text{matrix} \).
- In the bivariate case, the density looks like a three-dimensional bell, as on the cover of this book.
- If a random vector \(W \) has a multivariate normal distribution, and \(A \) is a constant matrix, then the new random vector \(AW \) is also multivariate normally distributed.
- The multivariate version of the Central Limit Theorem holds, i.e. the sum of i.i.d. random vectors has an approximate multivariate normal distribution.

16.5.1 R Functions

R provides functions that compute probabilities involving this family of distributions, in the library \texttt{mvtnorm}. In particular the R function \texttt{pmvnorm()}, which computes probabilities of “rectangular” regions for multivariate normally distributed random vectors \(W \). The arguments we’ll use for this function here are:

- \texttt{mean}: the mean vector
- \texttt{sigma}: the covariance matrix
- \texttt{lower, upper}: bounds for a multidimensional “rectangular” region of interest
Since a multivariate normal distribution is characterized by its mean vector and covariance matrix, the first two arguments above shouldn’t surprise you. But what about the other two?

The function finds the probability of our random vector falling into a multidimensional rectangular region that we specify, through the arguments are lower and upper. For example, suppose we have a trivariate normally distributed random vector \((U, V, W)'\), and we want to find

\[
P(1.2 < U < 5 \text{ and } -2.2 < V < 3 \text{ and } 1 < W < 10)
\]

Then lower would be \((1.2,-2.2,1)\) and upper would be \((5,3,10)\).

Note that these will typically be specified via R’s \(\text{c()}\) function, but default values are recycled versions of \(-\text{Inf}\) and \(\text{Inf}\), built-in R constants for \(-\infty\) and \(\infty\).

An important special case is that in which we specify upper but allow lower to be the default values, thus computing a probability of the form

\[
P(W_1 \leq c_1, ..., W_r \leq c_r)
\]

16.5.2 Special Case: New Variable Is a Single Linear Combination of a Random Vector

Suppose the vector \(U = (U_1, ..., U_k)'\) has an approximately \(k\)-variate normal distribution, and we form the scalar

\[
Y = c_1U_1 + ... + c_kU_k
\]

Then \(Y\) is approximately univariate normal, and its (exact) variance is given by (16.56). It’s mean is obtained via (16.50).

We can then use the R functions for the univariate normal distribution, e.g. \texttt{pnorm()}.

16.6 Indicator Random Vectors

Let’s extend the notion of indicator random variables in Section 3.9 to vectors.

Say one of events \(A_1, ..., A_k\) must occur, and they are disjoint. So, their probabilities sum to 1. Define the \(k\)-component random vector \(I\) to consist of \(k\)-1 0s and one 1, where the position of the 1 is itself random; if \(A_i\) occurs, then \(I_i\) is 1.
For example, say U has a $U(0,1)$ distribution, and say A_1, A_2 and A_3 are the events corresponding to $U < 0.2$, $0.2 \leq U \leq 0.7$ and $U > 0.7$, respectively. Then the random vector I would be $(1, 0, 0)'$ in the first case, and so on.

Let $p_i = P(A_i)$. The analogs of (3.78) and (3.79) can easily be shown to be as follows:

- The mean vector is $E(I) = (p_1, ..., p_k)'$.
- Cov(I) has $p_i(1 - p_i)$ as its ith element, and for $i \neq j$, element (i,j) is $-p_ip_j$.

16.7 Example: Dice Game

This example will be short on some details, but it will really illustrate the value of using matrices.

Suppose we roll a die 50 times. Let X denote the number of rolls in which we get one dot, and let Y be the number of times we get either two or three dots. For convenience, let’s also define Z to be the number of times we get four or more dots. Suppose also that we win $5 for each roll of a one, and $2 for each roll of a two or three.

Let’s find the approximate values of the following:

- $P(X \leq 12$ and $Y \leq 16)$
- P(win more than $90)$
- $P(X > Y > Z)$

The exact probabilities could, in principle, be calculated. But that would be rather cumbersome. But we can get approximate answers by noting that the triple (X,Y,Z) has an approximate multivariate normal distribution. This is shown in Section ??, but it basically the derivation works like this:

- Write (X,Y,Z) as a sum of indicator vectors (Section 16.6), analogous to what we did in Section 4.3
- Invoke the multivariate CLT.

Since the parameters of the multivariate normal family are the mean vector and the covariance matrix, we’ll of course need to know those for the random vector $(X,Y,Z)'$ when we call pmvnorm().
Once again, this will be shown later, but basically it follows from Section 16.6 above. Here are the results:

\[E[(X,Y,Z)] = \left(\frac{50}{6}, \frac{50}{3}, \frac{50}{2} \right) \] (16.66)

and

\[\text{Cov}[(X,Y,Z)] = 50 \begin{pmatrix} 5/36 & -1/18 & -1/12 \\ -1/18 & 2/9 & -1/6 \\ -1/12 & -1/6 & 1/4 \end{pmatrix} \] (16.67)

Here’s a partial check: X has a binomial distribution with 50 trials and success probability 1/6, so (4.30) tells us that \(\text{Var}(X) = \frac{250}{36} \), just as seen above.

We can now use the R multivariate normal probability function mentioned in Section 16.5 to find \(P(X \leq 12 \text{ and } Y \leq 16) \).

To account for the integer nature of X and Y, we call the function with upper limits of 12.5 and 16.5, rather than 12 and 16, which is often used to get a better approximation. (Recall the “correction for continuity,” Section 8.13.) Our code is

```r
1 p1 <- 1/6
2 p23 <- 1/3
3 meanvec <- 50*c(p1,p23)
4 var1 <- 50*p1*(1-p1)
5 var23 <- 50*p23*(1-p23)
6 covar123 <- -50*p1*p23
7 covarmat <- matrix(c(var1,covar123,covar123,var23),nrow=2)
8 print(pmvnorm(upper=c(12.5,16.5),mean=meanvec,sigma=covarmat))
```

We find that

\[P(X \leq 12 \text{ and } Y \leq 16) \approx 0.43 \] (16.68)

Now, let’s find the probability that our total winnings, \(T \), is over $90. We know that \(T = 5X + 2Y \), and Section 16.5.2 above applies. We simply choose the vector \(c \) to be

\[c = (5, 2, 0)' \] (16.69)
since

\[(5, 2, 0) \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = 5X + 2Y \quad (16.70)\]

Then Section [16.5.2] tells us that \(5X + 2Y\) also has an approximate univariate normal distribution. Excellent—we can now use \(\text{pnorm()}\). We thus need the mean and variance of \(T\), again using Section [16.5.2].

\[
ET = E(5X + 2Y) = 5EX + 2EY = \frac{250}{6} + \frac{100}{3} = 75 \quad (16.71)
\]

\[
\text{Var}(T) = c^\prime \text{Cov} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} c = (5, 2, 0) \begin{pmatrix} 5/36 & -1/18 & -1/12 \\ -1/18 & 2/9 & -1/6 \\ -1/12 & -1/6 & 1/4 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \\ 0 \end{pmatrix} = 162.5 \quad (16.72)
\]

So, we have our answer:

\[
> 1 - \text{pnorm}(90, 75, \sqrt{162.5}) \\
[1] \quad 0.1196583
\]

Now to find \(P(X > Y > Z)\), we need to work with \((U, V)' = (X - Y, Y - Z)\). \(U\) and \(V\) are both linear functions of \(X\), \(Y\) and \(Z\), so let’s write the matrix equation:

We need to have

\[
\begin{pmatrix} X - Y \\ Y - Z \end{pmatrix} = A \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \quad (16.73)
\]

so set

\[
A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \quad (16.74)
\]

and then proceed as before to find \(P(U > 0, V > 0)\). Now we take \text{lower} to be \((0, 0)\), and \text{upper} to be the default values, \(\infty\) in \text{pmvnorm()}.
16.7.1 Correlation Matrices

The correlation matrix corresponding to a given covariance matrix is defined as follows. Element (i,j) is the correlation between the ith and the jth elements of the given random vector.

Here is R code to compute a correlation matrix from a covariance matrix:

```r
covtocorr <- function(covmat) {
  n <- nrow(covmat)
  stddev <- vector(length=n)
  cormat <- matrix(nrow=n, ncol=n)
  for (i in 1:n) {
    stddev[i] <- sqrt(covmat[i,i])
    cormat[i,i] <- 1.0
  }
  for (i in 1:(n-1)) {
    for (j in (i+1):n) {
      tmp <- covmat[i,j] / (stddev[i]*stddev[j])
      cormat[i,j] <- tmp
      cormat[j,i] <- tmp
    }
  }
  return(cormat)
}
```

16.7.2 Further Reading

You can see some more examples of the multivariate normal distribution, covariance matrices etc. in a computer science context in my paper A Modified Random Perturbation Method for Database Security (with Patrick Tendick). ACM Transactions on Database Systems, 1994, 19(1), 47-63. The application is database security.

Exercises

1. Suppose the pair (X,Y)' has mean vector (0,2) and covariance matrix

 \[
 \begin{pmatrix}
 1 & 2 \\
 2 & 6 \\
 \end{pmatrix}
 \]

 Find the covariance matrix of the pair U = (X+Y,X-2Y).
2. Show that

\[\rho(aX + b, cY + d) = \rho(X, Y) \]

(16.75)

for any constants a, b, c and d.

3. Suppose X, Y and Z are "i.i.d." (independent, identically distributed) random variables, with \(E(X^k) \) being denoted by \(\nu_k \), \(k = 1, 2, 3 \). Find \(\text{Cov}(XY, XZ) \) in terms of the \(\nu_k \).

4. Using the properties of covariance in Section [16.1.1] show that for any random variables X and Y, \(\text{Cov}(X+Y, X-Y) = \text{Var}(X) - \text{Var}(Y) \).

5. Suppose we wish to predict a random variable \(Y \) by using another random variable, \(X \). We may consider predictors of the form \(cX + d \) for constants \(c \) and \(d \). Show that the values of \(c \) and \(d \) that minimize the mean squared prediction error, \(E[(Y - cX - d)^2] \) are

\[c = \frac{E(XY) - EX \cdot EY}{\text{Var}(X)} \]

(16.76)

\[d = \frac{E(X^2) \cdot EY - EX \cdot E(XY)}{\text{Var}(X)} \]

(16.77)

6. Suppose we have random variables X and Y, and define the new random variable \(Z = 8Y \). Then which of the following is correct? (i) \(\rho(X, Z) = \rho(X, Y) \). (ii) \(\rho(X, Z) = 0 \). (iii) \(\rho(Y, Z) = 0 \). (iv) \(\rho(X, Z) = 8 \rho(X, Y) \). (v) \(\rho(X, Z) = \frac{1}{8} \rho(X, Y) \). (vi) There is no special relationship.

7. Derive [16.3]. Hint: A constant, q here, is a random variable, trivially, with 0 variance.

8. Consider a three-card hand drawn from a 52-card deck. Let \(X \) and \(Y \) denote the number of hearts and diamonds, respectively. Find \(\rho(X, Y) \).

9. Consider the lightbulb example in Section [9.1] Use the “mailing tubes” on \(\text{Var}() \) and \(\text{Cov}() \) to find \(\rho(X_1, T_2) \).

10. Find the following quantities for the dice example in Section [16.3.2.1]

(a) \(\text{Cov}(X, 2S) \)

(b) \(\text{Cov}(X, S+Y) \)

(c) \(\text{Cov}(X+2Y, 3X-Y) \)

(d) \(p_{X,S}(3,8) \)
11. Suppose X_i, $i = 1,2,3,4,5$ are independent and each have mean 0 and variance 1. Let $Y_i = X_{i+1} - X_i$, $i = 1,2,3,4$. Using the material in Section 16.4 find the covariance matrix of $Y = (Y_1, Y_2, Y_3, Y_4)$.
Chapter 17

Multivariate PMFs and Densities

Individual pmfs p_X and densities f_X don’t describe correlations between variables. We need something more. We need ways to describe multivariate distributions.

17.1 Multivariate Probability Mass Functions

Recall that for a single discrete random variable X, the distribution of X was defined to be a list of all the values of X, together with the probabilities of those values. The same is done for a pair of discrete random variables U and V, as follows.

Suppose we have a bag containing two yellow marbles, three blue ones and four green ones. We choose four marbles from the bag at random, without replacement. Let Y and B denote the number of yellow and blue marbles that we get. Then define the two-dimensional pmf of Y and B to be

$$p_{Y,B}(i,j) = P(Y = i \text{ and } B = j) = \binom{2}{i} \binom{3}{j} \binom{4}{4-i-j} \binom{9}{4}$$

(17.1)

Here is a table displaying all the values of $P(Y = i \text{ and } B = j)$:

<table>
<thead>
<tr>
<th>$i \downarrow$, $j \rightarrow$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0079</td>
<td>0.0952</td>
<td>0.1429</td>
<td>0.0317</td>
</tr>
<tr>
<td>1</td>
<td>0.0635</td>
<td>0.2857</td>
<td>0.1905</td>
<td>0.1587</td>
</tr>
<tr>
<td>2</td>
<td>0.0476</td>
<td>0.0952</td>
<td>0.0238</td>
<td>0.000</td>
</tr>
</tbody>
</table>

So this table is the distribution of the pair (Y,B).

Recall further that in the discrete case, we introduced a symbolic notation for the distribution of
a random variable X, defined as $p_X(i) = P(X = i)$, where i ranged over all values that X takes on. We do the same thing for a pair of random variables:

Definition 36 For discrete random variables U and V, their probability mass function is defined to be

$$p_{U,V}(i,j) = P(U = i \text{ and } V = j) \quad (17.2)$$

where (i,j) ranges over all values taken on by (U,V). Higher-dimensional pmfs are defined similarly, e.g.

$$p_{U,V,W}(i,j,k) = P(U = i \text{ and } V = j \text{ and } W = k) \quad (17.3)$$

So in our marble example above, $p_{Y,B}(1,2) = 0.048$, $p_{Y,B}(2,0) = 0.012$ and so on. Just as in the case of a single discrete random variable X we have

$$P(X \in A) = \sum_{i \in A} p_X(i) \quad (17.4)$$

for any subset A of the range of X, for a discrete pair (U,V) and any subset A of the pair’s range, we have

$$P((U,V) \in A) = \sum_{(i,j) \in A} p_{U,V}(i,j) \quad (17.5)$$

Again, consider our marble example. Suppose we want to find $P(Y < B)$. Doing this “by hand,” we would simply sum the relevant probabilities in the table above, which are marked in bold face below:

<table>
<thead>
<tr>
<th>$i \downarrow, j \rightarrow$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.002</td>
<td>0.024</td>
<td>0.036</td>
<td>0.008</td>
</tr>
<tr>
<td>1</td>
<td>0.162</td>
<td>0.073</td>
<td>0.048</td>
<td>0.004</td>
</tr>
<tr>
<td>2</td>
<td>0.012</td>
<td>0.024</td>
<td>0.006</td>
<td>0.000</td>
</tr>
</tbody>
</table>

The desired probability would then be $0.024 + 0.036 + 0.008 + 0.048 + 0.004 = 0.12$. Writing it in the more formal way using (??), we would set

$$A = \{(i,j) : i < j\} \quad (17.6)$$
and then

\[P(Y < B) = P((Y, B) \in A) = \sum_{i=0}^{2} \sum_{j=i+1}^{3} p_{Y,B}(i, j) \] (17.7)

Note that the lower bound in the inner sum is \(j = i+1 \). This reflects the common-sense point that
in the event \(Y < B \), B must be at least equal to \(Y+1 \).

Of course, this sum still works out to 0.12 as before, but it’s important to be able to express this
as a double sum of \(p_{Y,B}() \), as above. We will rely on this to motivate the continuous case in the
next section.

Expected values are calculated in the analogous manner. Recall that for a function \(g() \) of \(X \)

\[E[g(X)] = \sum_i g(i)p_X(i) \] (17.8)

So, for any function \(g() \) of two discrete random variables \(U \) and \(V \), define

\[E[g(U,V)] = \sum_i \sum_j g(i,j)p_{U,V}(i,j) \] (17.9)

For instance, if for some bizarre reason we wish to find the expected value of the product of the
numbers of yellow and blue marbles above\(^1\), the calculation would be

\[E(YB) = \sum_{i=0}^{2} \sum_{j=0}^{3} ij p_{Y,B}(i, j) = 0.255 \] (17.10)

The univariate pmfs, called marginal pmfs, can of course be recovered from the multivariate pmf:

\[p_U(i) = P(U = i) = \sum_j P(U = i, V = j) = \sum_j p_{U,V}(i, j) \] (17.11)

For example, look at the table following (??). Evaluating (??) for \(i = 1 \), say, with \(U = Y \) and \(V = B \), would give us \(0.012 + 0.024 + 0.006 + 0.000 = 0.042 \). Then all that (??) tells us is the \(P(Y = 1) = 0.042 \), which is obvious from the table; (??) simply is an application of our old principle,
“Break big events down into small events.”

\(^1\)Not so bizarre, we’ll find in Section 16.1.1.
Needless to say, we can recover the marginal distribution of V similarly to (17.12):

\[p_V(j) = P(V = j) = \sum_i P(U = i, V = j) = \sum_i p_{U,V}(i, j) \]

(17.12)

17.2 Multivariate Densities

17.2.1 Motivation and Definition

Extending our previous definition of cdf for a single variable, we define the two-dimensional cdf for a pair of random variables X and Y (discrete or continuous) as

\[F_{X,Y}(u,v) = P(X \leq u \text{ and } Y \leq v) \]

(17.13)

If X and Y were discrete, we would evaluate that cdf via a double sum of their bivariate pmf. You may have guessed by now that the analog for continuous random variables would be a double integral, and it is. The integrand is the bivariate density:

\[f_{X,Y}(u,v) = \frac{\partial^2}{\partial u \partial v} F_{X,Y}(u,v) \]

(17.14)

Densities in higher dimensions are defined similarly.

As in the univariate case, a bivariate density shows which regions of the X-Y plane occur more frequently, and which occur less frequently.

17.2.2 Use of Multivariate Densities in Finding Probabilities and Expected Values

Again by analogy, for any region A in the X-Y plane,

\[P[(X,Y) \in A] = \int_A \int f_{X,Y}(u,v) \, du \, dv \]

(17.15)

\[^2 \text{Just as we noted in Section ?? that some random variables are neither discrete nor continuous, there are some pairs of continuous random variables whose cdfs do not have the requisite derivatives. We will not pursue such cases here.} \]
So, just as probabilities involving a single variable X are found by integrating f_X over the region in question, for probabilities involving X and Y, we take the double integral of $f_{X,Y}$ over that region. Also, for any function $g(X,Y)$,

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u,v) f_{X,Y}(u,v) \, du \, dv$$

(17.16)

where it must be kept in mind that $f_{X,Y}(u,v)$ may be 0 in some regions of the U-V plane. Note that there is no set A here as in (??). See (??) below for an example.

Finding marginal densities is also analogous to the discrete case, e.g.

$$f_X(s) = \int_t f_{X,Y}(s,t) \, dt$$

(17.17)

Other properties and calculations are analogous as well. For instance, the double integral of the density is equal to 1, and so on.

17.2.3 Example: a Triangular Distribution

Suppose (X,Y) has the density

$$f_{X,Y}(s,t) = 8st, \ 0 < t < s < 1$$

(17.18)

The density is 0 outside the region $0 < t < s < 1$.

First, think about what this means, say in our notebook context. We do the experiment many times. Each line of the notebook records the values of X and Y. Each of these (X,Y) pairs is a point in the triangular region $0 < t < s < 1$. Since the density is highest near the point $(1,1)$ and lowest near $(0,0)$, (X,Y) will be observed near $(1,1)$ much more often than near $(0,0)$, with points near, say, $(1,0.5)$ occurring with middling frequencies.

Let’s find $P(X + Y > 1)$. This calculation will involve a double integral. The region A in (??) is

$$\{(s,t) : s + t > 1, 0 < t < s < 1\}$$

We have a choice of integrating in the order ds dt or dt ds. The latter will turn out to be more convenient.

To see how the limits in the double integral are obtained, first review (??). We use the same reasoning here, changing from sums to integrals and applying the current density, as shown in this figure:
Here s represents X and t represents Y. The gray area is the region in which (X,Y) ranges. The subregion A in (??), corresponding to the event X+Y > 1, is shown in the striped area in the figure.

The dark vertical line shows all the points (s,t) in the striped region for a typical value of s in the integration process. Since s is the variable in the outer integral, considered it fixed for the time being and ask where t will range for that s. We see that for X = s, Y will range from 1-s to s; thus we set the inner integral’s limits to 1-s and s. Finally, we then ask where s can range, and see from the picture that it ranges from 0.5 to 1. Thus those are the limits for the outer integral.

\[
P(X+Y > 1) = \int_{0.5}^{1} \int_{1-s}^{s} 8st \, dt \, ds = \int_{0.5}^{1} 8s \cdot (s - 0.5) \, ds = \frac{5}{6}
\]

(17.19)

Following (??),

\[
E[\sqrt{X+Y}] = \int_{0}^{1} \int_{0}^{s} \sqrt{s+t} \, 8st \, dt \, ds
\]

(17.20)

Let’s find the marginal density \(f_Y(t) \). Just as we “summed out” in (??), in the continuous case we
must “integrate out” the s in (17.19):

$$f_Y(t) = \int_t^1 8st \, ds = 4t - 4t^3 \quad (17.21)$$

for $0 < t < 1$, 0 elsewhere.

Let’s find the correlation between X and Y for this density.

$$E(XY) = \int_0^1 \int_0^s st \cdot 8st \, dt \, ds \quad (17.22)$$

$$= \int_0^1 8s^2 \cdot s^3 / 3 \, ds \quad (17.23)$$

$$= \frac{4}{9} \quad (17.24)$$

$$f_X(s) = \int_0^s 8st \, dt \quad (17.25)$$

$$= 4st^2 \Big|_0^s \quad (17.26)$$

$$= 4s^3 \quad (17.27)$$

$$f_Y(t) = \int_t^1 8st \, ds \quad (17.28)$$

$$= 4t \cdot s^2 \Big|_t^1 \quad (17.29)$$

$$= 4t(1 - t^2) \quad (17.30)$$

$$EX = \int_0^1 s \cdot 4s^3 \, ds = \frac{4}{5} \quad (17.31)$$

$$E(X^2) = \int_0^1 s^2 \cdot 4s^3 \, ds = \frac{2}{3} \quad (17.32)$$

$$Var(X) = \frac{2}{3} - \left(\frac{4}{5} \right)^2 = 0.027 \quad (17.33)$$
\[EY = \int_0^1 t \cdot (4t - 4t^3) \, ds = \frac{4}{3} - \frac{4}{5} = \frac{8}{15} \quad (17.34) \]

\[E(Y^2) = \int_0^1 t^2 \cdot (4t - 4t^3) \, dt = 1 - \frac{4}{6} = \frac{1}{3} \quad (17.35) \]

\[Var(Y) = \frac{1}{3} - \left(\frac{8}{15} \right)^2 = 0.049 \quad (17.36) \]

\[Cov(X, Y) = \frac{4}{9} - \frac{4}{5} \cdot \frac{8}{15} = 0.018 \quad (17.37) \]

\[\rho(X, Y) = \frac{0.018}{\sqrt{0.027} \cdot 0.049} = 0.49 \quad (17.38) \]

17.2.4 Example: Train Rendezvous

Train lines A and B intersect at a certain transfer point, with the schedule stating that trains from both lines will arrive there at 3:00 p.m. However, they are often late, by amounts \(X \) and \(Y \), measured in hours, for the two trains. The bivariate density is

\[f_{X,Y}(s, t) = 2 - s - t, \quad 0 < s, t < 1 \quad (17.39) \]

Two friends agree to meet at the transfer point, one taking line A and the other B. Let \(W \) denote the time in minutes the person arriving on line B must wait for the friend. Let’s find \(P(W > 6) \).

First, convert this to a problem involving \(X \) and \(Y \), since they are the random variables for which we have a density, and then use (??):

\[P(W > 0.1) = P(Y + 0.1 < X) \]

\[= \int_0^1 \int_0^{s-0.1} (2 - s - t) \, dt \, ds \quad (17.40, 17.41) \]
17.3 More on Sets of Independent Random Variables

17.3.1 Probability Mass Functions and Densities Factor in the Independent Case

If X and Y are independent, then

\[p_{X,Y} = p_X p_Y \] (17.42)

in the discrete case, and

\[f_{X,Y} = f_X f_Y \] (17.43)

in the continuous case. In other words, the joint pmf/density is the product of the marginal ones. This is easily seen in the discrete case:

\[p_{X,Y}(i,j) = P(X = i \text{ and } Y = j) \quad \text{(definition)} \] (17.44)
\[= P(X = i) P(Y = j) \quad \text{(independence)} \] (17.45)
\[= p_X(i) p_Y(j) \quad \text{(definition)} \] (17.46)

Here is the proof for the continuous case;

\[f_{X,Y}(u,v) = \frac{\partial^2}{\partial u \partial v} F_{X,Y}(u,v) \] (17.47)
\[= \frac{\partial^2}{\partial u \partial v} P(X \leq u \text{ and } Y \leq v) \] (17.48)
\[= \frac{\partial^2}{\partial u \partial v} [P(X \leq u) \cdot P(Y \leq v)] \] (17.49)
\[= \frac{\partial^2}{\partial u \partial v} F_X(u) \cdot F_Y(v) \] (17.50)
\[= f_X(u) f_Y(v) \] (17.51)
17.3.2 Convolution

Definition 37 Suppose g and h are densities of continuous random variables X and Y, respectively. The convolution of g and h, denoted $g * h$, is another density, defined to be that of the random variable $X + Y$. In other words, convolution is a binary operation on the set of all densities.

If X and Y are nonnegative and independent, then the convolution reduces to

$$f_Z(t) = \int_0^t g(s)h(t - s) \, ds \tag{17.52}$$

You can get intuition on this by considering the discrete case. Say U and V are nonnegative integer-valued random variables, and set $W = U + V$. Let’s find p_W:

$$p_W(k) = P(W = k) \text{ (by definition)} \tag{17.53}$$

$$= P(U + V = k) \text{ (substitution)} \tag{17.54}$$

$$= \sum_{i=0}^{k} P(U = i \text{ and } V = k - i) \text{ ("In what ways can it happen?") } \tag{17.55}$$

$$= \sum_{i=0}^{k} p_{U,V}(i, k - i) \text{ (by definition)} \tag{17.56}$$

$$= \sum_{i=0}^{k} p_U(i)p_V(k - i) \text{ (from Section ??) } \tag{17.57}$$

Review the analogy between densities and pmfs in our unit on continuous random variables, Section 7.3.2 and then see how (??) is analogous to (??) through (??):

- k in (??) is analogous to t in (??)
- the limits 0 to k in (??) are analogous to the limits 0 to t in (??)
- the expression $k-i$ in (??) is analogous to $t-s$ in (??)
- and so on

3The reason for the asterisk, suggesting a product, will become clear in Section ??.
17.3. Example: Ethernet

Consider this network, essentially Ethernet. Here nodes can send at any time. Transmission time is 0.1 seconds. Nodes can also “hear” each other; one node will not start transmitting if it hears that another has a transmission in progress, and even when that transmission ends, the node that had been waiting will wait an additional random time, to reduce the possibility of colliding with some other node that had been waiting.

Suppose two nodes hear a third transmitting, and thus refrain from sending. Let \(X \) and \(Y \) be their random backoff times, i.e. the random times they wait before trying to send. (In this model, assume that they do not do “listen before talk” after a backoff.) Let’s find the probability that they clash, which is \(P(|X - Y| \leq 0.1) \).

Assume that \(X \) and \(Y \) are independent and exponentially distributed with mean 0.2, i.e. they each have density \(5e^{-5u} \) on \((0, \infty)\). Then from (\ref{eq:exponential_density}), we know that their joint density is the product of their marginal densities,

\[
 f_{X,Y}(s,t) = 25e^{-5(s+t)}, s, t > 0 \quad \text{(17.58)}
\]

Now

\[
 P(|X - Y| \leq 0.1) = 1 - P(|X - Y| > 0.1) = 1 - P(X > Y + 0.1) - P(Y > X + 0.1) \quad \text{(17.59)}
\]

Look at that first probability. Applying (\ref{eq:exponential_density}) with \(A = \{(s,t) : s > t + 0.1, 0 < s, t\} \), we have

\[
 P(X > Y + 0.1) = \int_{0}^{\infty} \int_{t+0.1}^{\infty} 25e^{-5(s+t)} \, ds \, dt = 0.303 \quad \text{(17.60)}
\]

By symmetry, \(P(Y > X + 0.1) \) is the same. So, the probability of a clash is 0.394, rather high. We may wish to increase our mean backoff time, though a more detailed analysis is needed.

17.3.4 Example: Analysis of Seek Time

This will be an analysis of seek time on a disk. Suppose we have mapped the innermost track to 0 and the outermost one to 1, and assume that (a) the number of tracks is large enough to treat the position \(H \) of the read/write head the interval \([0,1]\) to be a continuous random variable, and (b) the track number requested has a uniform distribution on that interval.
Consider two consecutive service requests for the disk, denoting their track numbers by X and Y. In the simplest model, we assume that X and Y are independent, so that the joint distribution of X and Y is the product of their marginals, and is thus equal to 1 on the square $0 \leq X, Y \leq 1$.

The seek distance will be $|X - Y|$. Its mean value is found by taking $g(s,t)$ in (17.58) to be $|s - t|$.

$$\int_0^1 \int_0^1 |s - t| \cdot 1 \, ds \, dt = \frac{1}{3}$$

Let’s find the density of the seek time $S = |X - Y|$:

$$F_S(v) = P(|X - Y| \leq v)$$
$$= P(-v \leq X - Y \leq v)$$
$$= 1 - P(X - Y < -v) - P(X - Y > v)$$
$$= 1 - (1 - v)^2$$

where for instance $P(X - Y > v)$ the integral of 1 on the triangle with vertices $(v,0)$, $(1,0)$ and $(1,1-v)$, thus equal to the area of that triangle, $0.5(1 - v)^2$.

Then

$$f_S(v) = \frac{d}{dv}F_S(v) = 2(1 - v)$$

By the way, what about the assumptions here? The independence would be a good assumption, for instance, for a heavily-used file server accessed by many different machines. Two successive requests are likely to be from different machines, thus independent. In fact, even within the same machine, if we have a lot of users at this time, successive requests can be assumed independent. On the other hand, successive requests from a particular user probably can’t be modeled this way.

As mentioned in our unit on continuous random variables, page 140, if it’s been a while since we’ve done a defragmenting operation, the assumption of a uniform distribution for requests is probably good.

Once again, this is just scratching the surface. Much more sophisticated models are used for more detailed work.
17.3. **MORE ON SETS OF INDEPENDENT RANDOM VARIABLES**

17.3.5 **Example: Backup Battery**

Suppose we have a portable machine that has compartments for two batteries. The main battery has lifetime \(X \) with mean 2.0 hours, and the backup's lifetime \(Y \) has mean life 1 hour. One replaces the first by the second as soon as the first fails. The lifetimes of the batteries are exponentially distributed and independent. Let's find the density of \(W \), the time that the system is operational (i.e. the sum of the lifetimes of the two batteries).

Recall that if the two batteries had the same mean lifetimes, \(W \) would have a gamma distribution. But that's not the case here. But we notice that the distribution of \(W \) is a convolution of two exponential densities, as it is the sum of two nonnegative independent random variables. Using (??), we have

\[
f_W(t) = \int_0^t f_X(s)f_Y(t-s) \, ds = \int_0^t 0.5e^{-0.5s}e^{-(t-s)} \, ds = e^{-0.5t} - e^{-t}, \quad 0 < t < \infty \quad (17.67)
\]

17.3.6 **Example: Minima of Uniformly Distributed Random Variables**

Suppose \(X \) and \(Y \) be independent and each have a uniform distribution on the interval \((0,1)\). Let \(Z = \min(X,Y) \). Find \(f_Z \):

\[
F_Z(t) = P(Z \leq t) \quad \text{(def. of cdf)} \\
= 1 - P(Z > t) \quad \text{(17.68)} \\
= 1 - P(X > t \text{ and } Y > t) \quad \text{(min}(u,v) > t \text{ iff both } u,v > t) \quad \text{(17.69)} \\
= 1 - P(X > t)P(Y > t) \quad \text{(indep.)} \quad \text{(17.70)} \\
= 1 - (1 - t)^2 \quad \text{(indep.)} \quad \text{(17.71)}
\]

The density of \(Z \) is then the derivative of that last expression:

\[
f_Z(t) = 2(1-t), \quad 0 < t < 1 \quad \text{(17.72)}
\]

17.3.7 **Example: Ethernet Again**

In the Ethernet example in Section ??, we assumed that transmission time was a constant, 0.1. Now let’s account for messages of varying sizes, by assuming that transmission time \(T \) for a message is random, exponentially distributed with mean 0.1. Let’s find \(P(X < Y \text{ and there is no collision}) \).
That probability is equal to $P(X + T < Y)$. Well, this sounds like we’re going to have to deal with triple integrals, but actually not. The derivation in Section ?? shows that the density of $S = X + T$ is

$$f_S(t) = e^{-0.1t} - e^{-0.2t}, \ 0 < t < \infty \quad (17.75)$$

Thus the joint density of S and Y is

$$f_{S,Y}(u,v) = (e^{-0.1u} - e^{-0.2u})0.2e^{-0.2v}, \ 0 < u, v, < \infty \quad (17.76)$$

We can then evaluate $P(S < Y)$ as a double integral, along the same lines as we did for instance in (??).

17.4 Example: Finding the Distribution of the Sum of Nonindependent Random Variables

In Section ??, we found a general formula for the distribution of the sum of two independent random variables. What about the nonindependent case?

Suppose for instance $f_{X,Y}(s,t) = 2$ on $0 < t < s < 1$, 0 elsewhere. Let’s find $f_{X+Y}(w)$ for the case $0 < w < 1$.

Since X and Y are not independent, we cannot use convolution. But:

$$F_{X+Y}(w) = P(X + Y) \leq w \quad (17.77)$$

$$= \int_0^{w/2} \int_t^{w-t} 2 \ ds \ dt \quad (17.78)$$

$$= w^2/2 \quad (17.79)$$

So $f_{X+Y}(w) = w$.

The case $1 < w < 2$ is similar.

17.5 Parametric Families of Multivariate Distributions

Since there are so many ways in which random variables can correlate with each other, there are rather few parametric families commonly used to model multivariate distributions (other than
17.5. **PARAMETRIC FAMILIES OF MULTIVARIATE DISTRIBUTIONS**

those arising from sets of independent random variables have a distribution in a common parametric univariate family). We will discuss two here.

17.5.1 The Multinomial Family of Distributions

17.5.1.1 Probability Mass Function

This is a generalization of the binomial family.

Suppose one rolls a die 8 times. What is the probability that the results consist of two 1s, one 2, one 4, three 5s and one 6? Well, if the rolls occur in that order, i.e. the two 1s come first, then the 2, etc., then the probability is

\[
\left(\frac{1}{6} \right)^2 \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^3 \left(\frac{1}{6} \right)^1
\]

(17.80)

But there are many different orderings, in fact

\[
\frac{8!}{2!1!0!1!3!1!}
\]

(17.81)

of them, from Section 2.15.5 and thus

\[
P(\text{two 1s, one 2, no 3s, one 4, three 5s, one 6}) = \frac{8!}{2!1!0!1!3!1!} \left(\frac{1}{6} \right)^2 \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^3 \left(\frac{1}{6} \right)^1
\]

(17.82)

From this, we can more generally see the following. Suppose:

- we have n trials, each of which has r possible outcomes or categories
- the trials are independent
- the ith outcome has probability \(p_i\)

Let \(X_i\) denote the number of trials with outcome \(i\), \(i = 1,\ldots,r\). In the die example above, for instance, \(r = 6\) for the six possible outcomes of one trial, i.e. one roll of the die, and \(X_1\) is the number of times we got one dot, in our \(n = 8\) rolls.
Then we say that the vector \(X = (X_1, ..., X_r) \) have a **multinomial distribution**. Since the \(X_i \) are discrete random variables, they have a joint pmf \(p_{X_1,...,X_r}() \). Taking the above die example for illustration again, the probability of interest there is \(p_{X_1,...,X_5}(2,1,0,1,3,1) \). We then have in general,

\[
p_{X_1,...,X_r}(j_1, ..., j_r) = \frac{n!}{j_1!...j_r!} p_1^{j_1} ... p_r^{j_r} \tag{17.83}
\]

Note that this family of distributions has \(r+1 \) parameters: \(n \) and the \(p_i \). Of course, you might count it as only \(r \), since the \(p_i \) sum to one and thus are not free of each other.

R has the function `dmultinom()` for the multinomial pmf. The call `dmultinom(x,n,prob)` evaluates \((??)\), where \(x \) is the vector \((j_1, ..., j_r)\) and \(\text{prob} \) is \((p_1, ..., p_r)\).

We can simulate multinomial random vectors in R using the `sample()` function:

```r
multinom <- function(n,p) {
  r <- length(p)
  outcome <- sample(x=1:r,size=n,replace=T,prob=p)
  counts <- vector(length=r) # counts of the various categories
  for (i in 1:n) {
    j <- outcome[i]
    counts[j] <- counts[j] + 1
  }
  return(counts)
}
```

17.5.1.2 Example: Component Lifetimes

Say the lifetimes of some electronic component, say a disk drive, are exponentially distributed with mean 4.5 years. If we have six of them, what is the probability that two fail before 1 year, two last between 1 and 2 years, and the remaining two last more than 2 years?

Let \((X,Y,Z)\) be the number that last in the three time intervals. Then this vector has a multinomial distribution, with \(n = 6 \) trials, and

\[
p_1 = \int_0^1 \frac{1}{4.5} e^{-t/4.5} \, dt = 0.20 \tag{17.84}
\]

\[
p_2 = \int_1^2 \frac{1}{4.5} e^{-t/4.5} \, dt = 0.16 \tag{17.85}
\]
We then use (17.86) to find the specified probability, which is:

\[\frac{6!}{2!2!2!} 0.20^2 0.16^2 0.64^2 = 0.64 \]
(17.87)

17.5.1.3 Mean Vectors and Covariance Matrices in the Multinomial Family

Consider a multinomially distributed random vector \(X = (X_1, ..., X_r)' \), with \(n \) trials and category probabilities \(p_i \). Let’s find its mean vector and covariance matrix.

First, note that the marginal distributions of the \(X_i \) are binomial! So, \(EX_i = np_i \) and \(Var(X_i) = np_i(1 - p_i) \)
(17.88)

So we know \(EX \) now:

\[
EX = \begin{pmatrix} np_1 \\ ... \\ np_r \end{pmatrix}
\]
(17.89)

We also know the diagonal elements of \(Cov(X) \)—\(np_i(1 - p_i) \) is the \(i^{th} \) diagonal element, \(i = 1, ..., r \).

But what about the rest? The derivation will follow in the footsteps of those of (4.30), but now in a vector context. Prepare to use your indicator random variable, random vector and covariance matrix skills! Also, this derivation will really build up your “probabilistic stamina level.” So, it’s good for you! But **now is the time to review (4.30), Section 3.9 and Section 16.4, before continuing.**

We’ll continue the notation of the last section. In order to keep on eye on the concrete, we’ll often illustrate the notation with the die example above; there we rolled a die 8 times, and defined 6 categories (one dot, two dots, etc.). We were interested in probabilities involving the number of trials that result in each of the 6 categories.

Define the random vector \(T_i \) to be the outcome of the \(i^{th} \) trial. It is a vector of indicator random variables, one for each of the \(r \) categories. In the die example, for instance, consider the second
roll, which is recorded in \(T_2 \). If that roll turns out to be, say, 5, then

\[
T_2 = \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{pmatrix}
\]

(17.90)

Here is the key observation:

\[
\begin{pmatrix}
X_1 \\
\vdots \\
X_r
\end{pmatrix} = \sum_{i=1}^{n} T_i
\]

(17.91)

Keep in mind, (??) is a vector equation. In the die example, the first element of the left-hand side, \(X_1 \), is the number of times the 1-dot face turns up, and on the right-hand side, the first element of \(T_i \) is 1 or 0, according to whether the 1-dot face turns up on the \(i^{th} \) roll. Make sure you believe this equation before continuing.

Since the trials are independent, (16.52) and (??) now tell us that

\[
\text{Cov}[(X_1, ..., X_r)'] = \sum_{i=1}^{n} \text{Cov}(T_i)
\]

(17.92)

But the trials are not only independent, but also identically distributed. (The die, for instance, has the same probabilities on each trial.) So the last equation becomes

\[
\text{Cov} \left(\begin{pmatrix} X_1 \\ \vdots \\ X_r \end{pmatrix} \right) = n\text{Cov}(T_1)
\]

(17.93)

One more step to go. Remember, \(T_1 \) is a vector, recording what happens on the first trial, e.g. the first roll of the die. Write it as

\[
T_1 = \begin{pmatrix}
U_1 \\
\vdots \\
U_r
\end{pmatrix}
\]

(17.94)
Then the covariance matrix of T_1 consists of elements of the form

$$Cov(U_i, U_j)$$ (17.95)

Let’s evaluate them.

Case 1: $i = j$

$$Cov(U_i, U_j) = Var(U_i)$$ (16.4) (17.96)

$$= p_i(1 - p_i)$$ (3.79) (17.97)

Case 2: $i \neq j$

$$Cov(U_i, U_j) = E(U_iU_j) - EU_iEU_j$$ (16.5) (17.98)

$$= E(U_iU_j) - p_ip_j$$ (3.78) (17.99)

$$= -p_ip_j$$ (17.100)

with that last step coming from the fact that U_i and U_j can never both be 1 (e.g. never on the same line of the our “notebook”). Thus the product U_iU_j is always 0, and thus so is its expected value. In the die example, for instance, if our roll resulted in the 2-dot face turned upward, then the 5-dot face definitely did NOT turn upward, so $U_2 = 1$ while $U_5 = 0$.

So, we’ve now found $Cov(T_1)$, and using this in (??), we see that

$$Cov \left[\left(\begin{array}{c} X_1 \\ \vdots \\ X_r \end{array} \right) \right] = n \left(\begin{array}{cccc} p_1(1 - p_1) & -p_1p_2 & \cdots & -p_1p_r \\ -p_1p_2 & p_2(1 - p_2) & \cdots & -p_2p_r \\ \vdots & \vdots & \ddots & \vdots \\ \cdots & \cdots & \cdots & p_r(1 - p_r) \end{array} \right)$$ (17.101)

Note too that if we define $R = X/n$, so that R is the vector of proportions in the various categories (e.g. X_1/n is the fraction of trials that resulted in category 1), then from (??) and (16.51), we have

$$Cov(R) = \frac{1}{n} \left(\begin{array}{cccc} p_1(1 - p_1) & -p_1p_2 & \cdots & -p_1p_r \\ -p_1p_2 & p_2(1 - p_2) & \cdots & -p_2p_r \\ \vdots & \vdots & \ddots & \vdots \\ \cdots & \cdots & \cdots & p_r(1 - p_r) \end{array} \right)$$ (17.102)

Whew! That was a workout, but these formulas will become very useful later on, both in this chapter and subsequent ones.
17.5.1.4 Application: Text Mining

One of the branches of computer science in which the multinomial family plays a prominent role is in text mining. One goal is automatic document classification. We want to write software that will make reasonably accurate guesses as to whether a document is about sports, the stock market, elections etc., based on the frequencies of various key words the program finds in the document.

Many of the simpler methods for this use the bag of words model. We have r key words we’ve decided are useful for the classification process, and the model assumes that statistically the frequencies of those words in a given document category, say sports, follow a multinomial distribution. Each category has its own set of probabilities \(p_1, ..., p_r \). For instance, if “Barry Bonds” is considered one word, its probability will be much higher in the sports category than in the elections category, say. So, the observed frequencies of the words in a particular document will hopefully enable our software to make a fairly good guess as to the category the document belongs to.

Once again, this is a very simple model here, designed to just introduce the topic to you. Clearly the multinomial assumption of independence between trials is grossly incorrect here, most models are much more complex than this.

17.5.2 The Multivariate Normal Family of Distributions

Note to the reader: This is a more difficult section, but worth putting extra effort into, as so many statistical applications in computer science make use of it. It will seem hard at times, but in the end won’t be too bad.

17.5.2.1 Densities

Intuitively, this family has densities which are shaped like multidimensional bells, just like the univariate normal has the famous one-dimensional bell shape.

Let’s look at the bivariate case first. The joint distribution of \(X_1 \) and \(X_2 \) is said to be bivariate normal if their density is

\[
 f_{X,Y}(s,t) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\frac{(s-\mu_1)^2}{\sigma_1^2} + \frac{(t-\mu_2)^2}{\sigma_2^2} - \frac{2\rho(s-\mu_1)(t-\mu_2)}{\sigma_1\sigma_2} \right]}, \quad -\infty < s, t < \infty \quad (17.103)
\]

This looks horrible, and it is. But don’t worry, as we won’t work with this directly. It’s important for conceptual reasons, as follows.
First, note the parameters here: \(\mu_1, \mu_2, \sigma_1 \) and \(\sigma_2 \) are the means and standard deviations of \(X \) and \(Y \), while \(\rho \) is the correlation between \(X \) and \(Y \). So, we have a five-parameter family of distributions.

The multivariate normal family of distributions is parameterized by one vector-valued quantity, the mean \(\mu \), and one matrix-valued quantity, the covariance matrix \(\Sigma \). Specifically, suppose the random vector \(X = (X_1, ..., X_k)' \) has a \(k \)-variate normal distribution.

The density has this form:

\[
f_X(t) = ce^{-0.5(t-\mu)'\Sigma^{-1}(t-\mu)}
\]

(17.104)

Here \(c \) is a constant, needed to make the density integrate to 1.0. It turns out that

\[
c = \frac{1}{(2\pi)^{k/2}\sqrt{\det(\Sigma)}}
\]

(17.105)

but we’ll never use this fact.

Here again ‘ denotes matrix transpose, -1 denotes matrix inversion and \(\det() \) means determinant. Again, note that \(t \) is a \(k \times 1 \) vector.

Since the matrix is symmetric, there are \(k(k+1)/2 \) distinct parameters there, and \(k \) parameters in the mean vector, for a total of \(k(k+3)/2 \) parameters for this family of distributions.

17.5.2.2 Geometric Interpretation

Now, let’s look at some pictures, generated by R code which I’ve adapted from one of the entries in the R Graph Gallery, http://addictedtor.free.fr/graphiques/graphcode.php?graph=42

Both are graphs of bivariate normal densities, with \(EX_1 = EX_2 = 0, Var(X_1) = 10, Var(X_2) = 15 \) and a varying value of the correlation \(\rho \) between \(X_1 \) and \(X_2 \). Figure ?? is for the case \(\rho = 0.2 \).

The surface is bell-shaped, though now in two dimensions instead of one. Again, the height of the surface at any \((s,t)\) point the relative likelihood of \(X_1 \) being near \(s \) and \(X_2 \) being near \(t \). Say for instance that \(X_1 \) is height and \(X_2 \) is weight. If the surface is high near, say, \((70,150)\) (for height of 70 inches and weight of 150 pounds), it mean that there are a lot of people whose height and weight are near those values. If the surface is rather low there, then there are rather few people whose height and weight are near those values.

Now compare that picture to Figure ??, with \(\rho = 0.8 \).

4There appears to be an error in their definition of the function \(f() \); the assignment to term5 should not have a negative sign at the beginning.
Figure 17.1: Bivariate Normal Density, $\rho = 0.2$
Figure 17.2: Bivariate Normal Density, $\rho = 0.8$
Again we see a bell shape, but in this case “narrower.” In fact, you can see that when $X_1 (s)$ is large, $X_2 (t)$ tends to be large too, and the same for “large” replaced by small. By contrast, the surface near (5,5) is much higher than near (5,-5), showing that the random vector (X_1, X_2) is near (5,5) much more often than (5,-5).

All of this reflects the high correlation (0.8) between the two variables. If we were to continue to increase ρ toward 1.0, we would see the bell become narrower and narrower, with X_1 and X_2 coming closer and closer to a linear relationship, one which can be shown to be

$$X_1 - \mu_1 = \frac{\sigma_1}{\sigma_2} (X_2 - \mu_2) \quad (17.106)$$

In this case, that would be

$$X_1 = \sqrt{\frac{10}{15}} X_2 = 0.82 X_2 \quad (17.107)$$

17.5.2.3 Properties of Multivariate Normal Distributions

Theorem 38 Suppose $X = (X_1, ..., X_k)$ has a multivariate normal distribution with mean vector μ and covariance matrix Σ. Then:

(a) The contours of f_X are k-dimensional ellipsoids. In the case $k = 2$ for instance, where we can visualize the density of X as a three-dimensional surface, the contours for points at which the bell has the same height (think of a topographical map) are elliptical in shape. The larger the correlation (in absolute value) between X_1 and X_2, the more elongated the ellipse. When the absolute correlation reaches 1, the ellipse degenerates into a straight line.

(b) Let A be a constant (i.e. nonrandom) matrix with k columns. Then the random vector $Y = AX$ also has a multivariate normal distribution.5

The parameters of this new normal distribution must be $EY = A\mu$ and $\text{Cov}(Y) = A\Sigma A'$, by (16.50) and (16.54).

(c) If $U_1, ..., U_m$ are each univariate normal and they are independent, then they jointly have a multivariate normal distribution. (In general, though, having a normal distribution for each U_i does not imply that they are jointly multivariate normal.)

(d) Suppose W has a multivariate normal distribution. The conditional distribution of some components of W, given other components, is again multivariate normal.

5Note that this is a generalization of the material on affine transformations on page 160.
Part [(b)] has some important implications:

(i) The lower-dimensional marginal distributions are also multivariate normal. For example, if $k = 3$, the pair $(X_1, X_3)'$ has a bivariate normal distribution, as can be seen by setting

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

in (b) above.

(ii) Scalar linear combinations of X are normal. In other words, for constant scalars $a_1, ..., a_k$, set $a = (a_1, ..., a_k)'$. Then the quantity $Y = a_1X_1 + ... + a_kX_k$ has a univariate normal distribution with mean $a'\mu$ and variance $a'\Sigma a$.

(iii) Vector linear combinations are multivariate normal. Again using the case $k = 3$ as our example, consider $(U, V)' = (X_1 - X_3, X_2 - X_3)$. Then set

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

(iv) The r-component random vector X has a multivariate normal distribution if and only if $c'X$ has a univariate normal distribution for all constant r-component vectors c.

In R the density, cdf and quantiles of the multivariate normal distribution are given by the functions `dmvnorm()` , `pmvnorm()` and `qmvnorm()` in the library `mvtnorm`. You can simulate a multivariate normal distribution by using `mvrnorm()` in the library `MASS`.

17.5.2.4 The Multivariate Central Limit Theorem

The multidimensional version of the Central Limit Theorem holds. A sum of independent identically distributed (iid) random vectors has an approximate multivariate normal distribution. Here is the theorem:

Theorem 39 Suppose $X_1, X_2, ...$ are independent random vectors, all having the same distribution which has mean vector μ and covariance matrix Σ. Form the new random vector $T = X_1 + ... + X_n$. Then for large n, the distribution of T is approximately normal with mean $n\mu$ and covariance matrix $n\Sigma$.
For example, since a person’s body consists of many different components, the CLT (a non-independent, non-identically version of it) explains intuitively why heights and weights are approximately bivariate normal. Histograms of heights will look approximately bell-shaped, and the same is true for weights. The multivariate CLT says that three-dimensional histograms—plotting frequency along the “Z” axis against height and weight along the “X” and “Y” axes—will be approximately three-dimensional bell-shaped.

The proof of the multivariate CLT is easy, from Property (iv) above. Say we have a sum of iid random vectors:

\[S = X_1 + \ldots + X_n \quad (17.110) \]

Then

\[c'S = c'X_1 + \ldots + c'X_n \quad (17.111) \]

Now on the right side we have a sum of iid *scalars*, not vectors, so the univariate CLT applies! We thus know the right-hand side is approximately normal for all \(c \), which means \(c'S \) is also approximately normal for all \(c \), which then by (iv) above means that \(S \) itself is approximately multivariate normal.

17.5.2.5 Example: Finishing the Loose Ends from the Dice Game

Recall the game example in Section 16.7:

Suppose we roll a die 50 times. Let \(X \) denote the number of rolls in which we get one dot, and let \(Y \) be the number of times we get either two or three dots. For convenience, let’s also define \(Z \) to be the number of times we get four or more dots, though our focus will be on \(X \) and \(Y \). Suppose also that we win $5 for each roll of a one, and $2 for each roll of a two or three.

Our analysis relied on the vector \((X,Y,Z)\)' having an approximate multivariate normal distribution. Where does that come from? Well, first note that the exact distribution of \((X,Y,Z)\)' is multinomial. Then recall (??). The latter makes \((X,Y,Z)\)' a sum of iid vectors, so that the multivariate CLT applies.

17.5.2.6 Application: Data Mining

The multivariate normal family plays a central role in multivariate statistical methods.
For instance, a major issue in data mining is **dimension reduction**, which means trying to reduce what may be hundreds or thousands of variables down to a manageable level. One of the tools for this, called **principle components analysis** (PCA), is based on multivariate normal distributions. Google uses this kind of thing quite heavily. We'll discuss PCA in Section ??.

To see a bit of how this works, note that in Figure ??, X_1 and X_2 had nearly a linear relationship with each other. That means that one of them is nearly redundant, which is good if we are trying to reduce the number of variables we must work with.

In general, the method of principle components takes r original variables, in the vector X and forms r new ones in a vector Y, each of which is some linear combination of the original ones. These new ones are independent. In other words, there is a square matrix A such that the components of $Y = AX$ are independent. (The matrix A consists of the eigenvectors of Cov(X); more on this in Section ?? of our unit on statistical relations.

We then discard the Y_i with small variance, as that means they are nearly constant and thus do not carry much information. That leaves us with a smaller set of variables that still captures most of the information of the original ones.

Many analyses in bioinformatics involve data that can be modeled well by multivariate normal distributions. For example, in automated cell analysis, two important variables are forward light scatter (FSC) and sideward light scatter (SSC). The joint distribution of the two is approximately bivariate normal.

Exercises

1. Suppose the random pair (X, Y) has the density $f_{X,Y}(s,t) = 8st$ on the triangle $\{(s,t) : 0 < t < s < 1\}$.

 (a) Find $f_X(s)$.

 (b) Find $P(X < Y/2)$.

2. Suppose packets on a network are of three types. In general, 40% of the packets are of type A, 40% have type B and 20% have type C. We observe six packets, and denote the numbers of packets of types A, B and C by X, Y and Z, respectively.

 (a) Find $P(X = Y = Z = 2)$.

 (b) Find $\text{Cov}(X, Y + Z)$.

(c) To what parametric family in this book does the distribution of \(Y+Z \) belong?

3. Suppose \(X \) and \(Y \) are independent, each having an exponential distribution with means 1.0 and 2.0, respectively. Find \(P(Y > X^2) \).

4. Suppose the pair \((X, Y)\)' has a bivariate normal distribution with mean vector \((0, 2)\) and covariance matrix

\[
\begin{pmatrix}
1 & 2 \\
2 & 6
\end{pmatrix}
\]

(a) Set up (but do not evaluate) the double integral for the exact value of \(P(X^2 + Y^2 \leq 2.8) \).

(b) Using the matrix methods of Section 16.4, find the covariance matrix of the pair \(U = (X+Y, X-2Y)' \). Does \(U \) have a bivariate normal distribution?

5. Suppose \(X \) and \(Y \) are independent, and each has a \(U(0,1) \) distribution. Let \(V = X + Y \).

(a) Find \(f_V \). (Advice: It will be a “two-part function,” i.e. the type we have to describe by saying something like, “The function has value 2z for \(z < 6 \) and \(1/z \) for \(z > 6 \).”)

(b) Verify your answer in (a) by finding \(EV \) from your answer in (a) and then using the fact that \(EX = EY = 0.5 \).

- In the general population of parents who have 10-year-old kids, the parent/kid weight pairs have an exact bivariate normal distribution.
- Parents’ weights have mean 152.6 and standard deviation 25.0.
- Weights of kids have mean 62 and standard deviation 6.4.
- The correlation between the parents’ and kids’ weights is 0.4.

Use R functions (not simulation) in the following:

(a) Find the fraction of parents who weigh more than 160.

(b) Find the fraction of kids who weigh less than 56.

(c) Find the fraction of parent/child pairs in which the parent weighs more than 160 and the child weighs less than 56.
(d) Suppose a ride at an amusement park charges by weight, one cent for each pound of weight in the parent and child. State the exact distribution of the fee, and find the fraction of parent/child pairs who are charged less than $2.00.

6. Newspapers at a certain vending machine cost 25 cents. Suppose 60% of the customers pay with quarters, 20% use two dimes and a nickel, 15% insert a dime and three nickels, and 5% deposit five nickels. When the vendor collects the money, five coins fall to the ground. Let \(X, Y\) and \(Z\) denote the numbers of quarters, dimes and nickels among these five coins.

(a) Is the joint distribution of \((X, Y, Z)\) a member of a parametric family presented in this chapter? If so, which one?

(b) Find \(P(X = 2, Y = 2, Z = 1)\).

(c) Find \(\rho(X, Y)\).

7. Jack and Jill play a dice game, in which one wins $1 per dot. There are three dice, die A, die B and die C. Jill always rolls dice A and B. Jack always rolls just die C, but he also gets credit for 90% of die B. For instance, say in a particular roll A, B and C are 3, 1 and 6, respectively. Then Jill would win $4 and Jack would get $6.90. Let \(X\) and \(Y\) be Jill’s and Jack’s total winnings after 100 rolls. Use the Central Limit Theorem to find the approximate values of \(P(X > 650, Y < 660)\) and \(P(Y > 1.06X)\).

Hints: This will follow a similar pattern to the dice game in Section 16.7, which we win $5 for one dot, and $2 for two or three dots. Remember, in that example, the key was that we noticed that the pair \((X, Y)\) was a sum of random pairs. That meant that \((X, Y)\) had an approximate bivariate normal distribution, so we could find probabilities if we had the mean vector and covariance matrix of \((X, Y)\). Thus we needed to find \(EX, Ey, Var(X), Var(Y)\) and \(Cov(X, Y)\). We used the various properties of \(E()\), \(Var()\) and \(Cov()\) to get those quantities.

You will do the same thing here. Write \(X = U_1 + \ldots + U_{100}\), where \(U_i\) is Jill’s winnings on the \(i^{th}\) roll. Write \(Y\) as a similar sum of \(V_i\). You probably will find it helpful to define \(A_i\), \(B_i\) and \(C_i\) as the numbers of dots appearing on dice A, B and C on the \(i^{th}\) roll. Then find \(EX\) etc. Again, make sure to utilize the various properties for \(E()\), \(Var()\) and \(Cov()\).

8. Consider the coin game in Section 4.8. Find \(F_{X_3, Y_3}(0, 0)\).

9. Suppose the random vector \(X = (X_1, X_2, X_3)'\) has mean \((2.0, 3.0, 8.2)'\) and covariance matrix

\[
\begin{pmatrix}
1 & 0.4 & -0.2 \\
0.4 & 1 & 0.25 \\
-0.2 & 0.25 & 3
\end{pmatrix}
\]

(17.112)
(a) Fill in the three missing entries.

(b) Find $\text{Cov}(X_1, X_3)$.

(c) Find $\rho(X_2, X_3)$.

(d) Find $\text{Var}(X_3)$.

(e) Find the covariance matrix of $(X_1 + X_2, X_2 + X_3)'$.

(f) If in addition we know that X_1 has a normal distribution, find $P(1 < X_1 < 2.5)$, in terms of $\Phi()$.

(g) Consider the random variable $W = X_1 + X_2$. Which of the following is true? (i) $\text{Var}(W) = \text{Var}(X_1 + X_2)$. (ii) $\text{Var}(W) > \text{Var}(X_1 + X_2)$. (iii) $\text{Var}(W) < \text{Var}(X_1 + X_2)$. (iv) In order to determine which of the two variances is the larger one, we would need to know whether the variables X_i have a multivariate normal distribution. (v) $\text{Var}(X_1 + X_2)$ doesn’t exist.

10. Find the (approximate) output of this R code, by using the analytical techniques of this chapter:

```r
count <- 0
for (i in 1:10000) {
  count1 <- 0
  count2 <- 0
  count3 <- 0
  for (j in 1:20) {
    x <- runif(1)
    if (x < 0.2) {
      count1 <- count1 + 1
    } else if (x < 0.6) count2 <- count2 + 1 else
      count3 <- count3 + 1
  }
  if (count1 == 9 && count2 == 2 && count3 == 9) count <- count + 1
}
cat(count/10000)
```

11. Use the convolution formula (??) to derive (7.46) for the case $r = 2$. Explain your steps carefully!

12. The book, Last Man Standing, author D. McDonald writes the following about the practice of combining many mortgage loans into a single package sold to investors:

Even if every single [loan] in the [package] had a 30 percent risk of default, the thinking went, the odds that most of them would default at once were arguably infinitesimal...What [this argument] missed was the auto-synchronous relationship of many loans...[If several of them] are all mortgage for houses sitting next to each other on a beach...one strong hurricane and the [loan package] would be decimated.
17.5. PARAMETRIC FAMILIES OF MULTIVARIATE DISTRIBUTIONS

Fill in the blank with a term from this book: The author is referring to an unwarranted assumption of ________________________.

13. Consider the computer worm example in Section 9.3.1. Let R denote the time it takes to go from state 1 to state 3. Find $f_R(v)$. (Leave your answer in integral form.)

14. Suppose (X,Y) has a bivariate normal distribution, with $EX = EY = 0$, $Var(X) = Var(Y) = 1$, and $\rho(X,Y) = 0.2$. Find the following, leaving your answers in integral form:

(a) $E(X^2 + XY^{0.5})$

(b) $P(Y > 0.5X)$

(c) $F_{X,Y}(0.6, 0.2)$
Chapter 18

Transform Methods

We often use the idea of transform functions. For example, you may have seen Laplace transforms in a math or engineering course. The functions we will see here differ from this by just a change of variable.

Though in the form used here they involve only univariate distributions, their applications are often multivariate, as will be the case here.

18.1 Generating Functions

Let’s start with the generating function. For any nonnegative-integer valued random variable \(V \), its generating function is defined by

\[
g_V(s) = E(s^V) = \sum_{i=0}^{\infty} s^i p_V(i), \quad 0 \leq s \leq 1 \quad (18.1)
\]

For instance, suppose \(N \) has a geometric distribution with parameter \(p \), so that \(p_N(i) = (1-p)p^{i-1}, \quad i = 1, 2, \ldots \) Then

\[
g_N(s) = \sum_{i=1}^{\infty} s^i \cdot (1-p)p^{i-1} = \frac{1-p}{p} \sum_{i=1}^{\infty} s^i \cdot p^i = \frac{1-p}{p} \cdot \frac{ps}{1-ps} = \frac{(1-p)s}{1-ps} \quad (18.2)
\]

Why restrict \(s \) to the interval \([0,1]\)? The answer is that for \(s > 1 \) the series in (??) may not converge. for \(0 \leq s \leq 1 \), the series does converge. To see this, note that if \(s = 1 \), we just get the sum of all
probabilities, which is 1.0. If a nonnegative s is less than 1, then s^i will also be less than 1, so we still have convergence.

One use of the generating function is, as its name implies, to generate the probabilities of values for the random variable in question. In other words, if you have the generating function but not the probabilities, you can obtain the probabilities from the function. Here’s why: For clarify, write (18.3) as

$$g_V(s) = P(V = 0) + sP(V = 1) + s^2P(V = 2) + ...$$

From this we see that

$$g_V(0) = P(V = 0)$$

So, we can obtain $P(V = 0)$ from the generating function. Now differentiating (18.3) with respect to s, we have

$$g'_V(s) = \frac{d}{ds}[P(V = 0) + sP(V = 1) + s^2P(V = 2) + ...]$$

$$= P(V = 1) + 2sP(V = 2) + ...$$

So, we can obtain $P(V = 2)$ from $g'_V(0)$, and in a similar manner can calculate the other probabilities from the higher derivatives.

18.2 Moment Generating Functions

The generating function is handy, but it is limited to discrete random variables. More generally, we can use the **moment generating function**, defined for any random variable X as

$$m_X(t) = E[e^{tX}]$$

for any t for which the expected value exists.

That last restriction is anathema to mathematicians, so they use the characteristic function,

$$\phi_X(t) = E[e^{itX}]$$
which exists for any t. However, it makes use of pesky complex numbers, so we’ll stay clear of it here.

Differentiating (18.7) with respect to t, we have

$$m'_X(t) = E[Xe^{tx}]$$ (18.8)

We see then that

$$m'_X(0) = EX$$ (18.9)

So, if we just know the moment-generating function of X, we can obtain EX from it. Also,

$$m''_X(t) = E(X^2e^{tx})$$ (18.10)

so

$$m''_X(0) = E(X^2)$$ (18.11)

In this manner, we can for various k obtain $E(X^k)$, the kth moment of X, hence the name.

18.3 Transforms of Sums of Independent Random Variables

Suppose X and Y are independent and their moment generating functions are defined. Let $Z = X+Y$. then

$$m_Z(t) = E[e^{t(X+Y)}] = E[e^{tx}e^{ty}] = E(e^{tx}) \cdot E(e^{ty}) = m_X(t)m_Y(t)$$ (18.12)

In other words, the mgf of the sum is the product of the mgfs! This is true for other transforms, by the same reasoning.

Similarly, it’s clear that the mgf of a sum of three independent variables is again the product of their mgfs, and so on.
18.4 Example: Network Packets

As an example, suppose say the number of packets \(N \) received on a network link in a given time period has a Poisson distribution with mean \(\mu \), i.e.

\[
P(N = k) = \frac{e^{-\mu} \mu^k}{k!}, \quad k = 0, 1, 2, 3, \ldots \quad (18.13)
\]

18.4.1 Poisson Generating Function

Let’s first find its generating function.

\[
g_N(t) = \sum_{k=0}^{\infty} t^k e^{-\mu} \frac{\mu^k}{k!} = e^{-\mu} \sum_{k=0}^{\infty} \frac{(\mu t)^k}{k!} = e^{-\mu + \mu t} \quad (18.14)
\]

where we made use of the Taylor series from calculus,

\[
e^u = \sum_{k=0}^{\infty} \frac{u^k}{k!} \quad (18.15)
\]

18.4.2 Sums of Independent Poisson Random Variables Are Poisson Distributed

Supposed packets come into a network node from two independent links, with counts \(N_1 \) and \(N_2 \), Poisson distributed with means \(\mu_1 \) and \(\mu_2 \). Let’s find the distribution of \(N = N_1 + N_2 \), using a transform approach.

From Section ??:

\[
g_N(t) = g_{N_1}(t)g_{N_2}(t) = e^{-\nu + \nu t} \quad (18.16)
\]

where \(\nu = \mu_1 + \mu_2 \).

But the last expression in (??) is the generating function for a Poisson distribution too! And since there is a one-to-one correspondence between distributions and transforms, we can conclude that \(N \) has a Poisson distribution with parameter \(\nu \). We of course knew that \(N \) would have mean \(\nu \) but did not know that \(N \) would have a Poisson distribution.

So: A sum of two independent Poisson variables itself has a Poisson distribution. By induction, this is also true for sums of \(k \) independent Poisson variables.
18.5 Other Uses of Transforms

Transform techniques are used heavily in queuing analysis, including for models of computer networks. The techniques are also used extensively in modeling of hardware and software reliability.

Transforms also play key roles in much of theoretical probability, the Central Limit Theorems1 being a good example. Here’s an outline of the proof of the basic CLT, assuming the notation of Section 8.19.

First rewrite Z as

$$Z = \sum_{i=1}^{n} \frac{X_i - m}{v \sqrt{n}} \quad (18.17)$$

Then work with the characteristic function of Z:

$$c_Z(t) = E(e^{itZ}) \quad (\text{def.}) \quad (18.18)$$

$$= \prod_{i=1}^{n} E[e^{it(X_i - m)/(v \sqrt{n})}] \quad (\text{indep.}) \quad (18.19)$$

$$= \prod_{i=1}^{n} E[e^{it(X_1 - m)/(v \sqrt{n})}] \quad (\text{ident. distr.}) \quad (18.20)$$

$$= \left[g\left(\frac{it}{\sqrt{n}}\right) \right]^n \quad (18.21)$$

where $g(s)$ is the characteristic function of $(X_1 - m)/v$, i.e.

$$g(s) = E[e^{is \frac{X_1 - m}{v}}] \quad (18.22)$$

Now expand (??) in a Taylor series around 0, and use the fact that $g'(0)$ is the expected value of $(X_1 - m)/v$, which is 0:

$$\left[g\left(\frac{t}{\sqrt{n}}\right) \right]^n = \left[1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right) \right]^n \quad (18.23)$$

$$\rightarrow e^{-t^2/2} \text{ as } n \rightarrow \infty \quad (18.24)$$

where we’ve also used the famous fact that $(1 - s/n)^n$ converges to e^{-s} as $n \rightarrow \infty$.

1The plural is used here because there are many different versions, which for instance relax the condition that the summands be independent and identically distributed.
But (??) is the density of $N(0,1)$, so we have proved the Central Limit Theorem.

Exercises

1. Use transform methods to derive some properties of the Poisson family:

(a) Show that for any Poisson random variable, its mean and variance are equal.

(b) Suppose X and Y are independent random variables, each having a Poisson distribution. Show that $Z = X + Y$ again has a Poisson distribution.

2. In our ordinary coins which we use every day, each one has a slightly different probability of heads, which we’ll call H. Say H has the distribution $N(0.5, 0.03^2)$. We choose a coin from a batch at random, then toss it 10 times. Let N be the number of heads we get. Find $\text{Var}(N)$.

3. Suppose the number N of bugs in a certain number of lines of code has a Poisson distribution, with parameter L, where L varies from one programmer to another. Show that $\text{Var}(N) = EL + \text{Var}(L)$.

4. Let X denote the number we obtain when we roll a single die once. Let $G_X(s)$ denote the generating function of X.

(a) Find $G_X(s)$.

(b) Suppose we roll the die 5 times, and let T denote the total number of dots we get from the 5 rolls. Find $G_T(s)$.
Chapter 19

Statistics: Prologue

There are three kinds of lies: lies, damned lies and statistics—variously attributed to Benjamin Disraeli, Mark Twain etc.

Consider the following problems:

- Suppose you buy a ticket for a raffle, and get ticket number 68. Two of your friends bought tickets too, getting numbers 46 and 79. Let c be the total number of tickets sold. You don’t know the value of c, but hope it’s small, so you have a better chance of winning. How can you estimate the value of c, from the data, 68, 46 and 79?

- It’s presidential election time. A poll says that 56% of the voters polled support candidate X, with a margin of error of 2%. The poll was based on a sample of 1200 people. How can a sample of 1200 people out of more than 100 million voters have a margin of error that small? And what does the term *margin of error* really mean, anyway?

- A satellite detects a bright spot in a forest. Is it a fire? How can we design the software on the satellite to estimate the probability that this is a fire?

If you think that statistics is nothing more than adding up columns of numbers and plugging into formulas, you are badly mistaken. Actually, statistics is an application of probability theory. We employ probabilistic models for the behavior of our sample data, and infer from the data accordingly—hence the name, statistical inference.

Arguably the most powerful use of statistics is prediction. This has applications from medicine to marketing to movie animation. We will study prediction in Chapter ??.
19.1 Sampling Distributions

We first will set up some infrastructure, which will be used heavily throughout the next few chapters.

19.1.1 Random Samples

Definition 40 Random variables \(X_1, X_2, X_3, \ldots \) are said to be **i.i.d.** if they are independent and identically distributed. The latter term means that \(p_{X_i} \) or \(f_{X_i} \) is the same for all \(i \).

Note the following carefully:

For i.i.d. \(X_1, X_2, X_3, \ldots \), we often use \(X \) to represent a generic random variable having the common distribution of the \(X_i \).

Definition 41 We say that \(X_1, X_2, X_3, \ldots, X_n \) is a **random sample** of size \(n \) from a population if the \(X_i \) are i.i.d. and their common distribution is that of the population.

(Please note: Those numbers \(X_1, X_2, X_3, \ldots, X_n \) collectively form one sample; you should not say anything like “We have \(n \) samples.”)

If the sampled population is finite\(^1\) then a random sample must be drawn in this manner. Say there are \(k \) entities in the population, e.g. \(k \) people, with values \(v_1, \ldots, v_k \). If we are interested in people’s heights, for instance, then \(v_1, \ldots, v_k \) would be the heights of all people in our population. Then a random sample is drawn this way:

(a) The sampling is done with replacement.

(b) Each \(X_i \) is drawn from \(v_1, \ldots, v_k \), with each \(v_j \) having probability \(\frac{1}{k} \) of being drawn.

Condition (a) makes the \(X_i \) independent, while (b) makes them identically distributed.

If sampling is done without replacement, we call the data a **simple random sample**. Note how this implies lack of independence of the \(X_i \). If for instance \(X_1 = v_3 \), then we know that no other \(X_i \) has that value, contradicting independence; if the \(X_i \) were independent, knowledge of one should not give us knowledge concerning others.

\(^1\)You might wonder how it could be infinite. Say for example we model the distribution of \(X \) as a continuous random variable, then there are infinitely many values \(X \) can take on, though it must be kept in mind that, as noted in Section 7.15, continuous random variables are only idealizations.
But we usually assume true random sampling, and will mean that unless explicitly stating otherwise.

Keep this very important point in mind:

Note most carefully that each X_i has the same distribution as the population. If for instance a third of the population, i.e. a third of the v_j, are less than 28, then $P(X_i < 28)$ will be 1/3.

If the mean value of X in the population is, say, 51.4, then EX will be 51.4, and so on. These points are easy to see, but keep them in mind at all times, as they will arise again and again.

19.2 The Sample Mean—a Random Variable

A large part of this chapter will concern the **sample mean**,

$$\overline{X} = \frac{X_1 + X_2 + X_3 + ... + X_n}{n} \quad (19.1)$$

A simple yet crucial concept is point that \overline{X} is a random variable. Since $X_1, X_2, X_3, ..., X_n$ are random variables, \overline{X} is a random variable too.

Make absolutely sure to distinguish between the sample mean and the population mean.

19.2.1 Toy Population Example

Let’s illustrate it with a tiny example. Suppose we have a population of three people, with heights 69, 72 and 70, and we draw a random sample of size 2. Here \overline{X} can take on six values:

$$\frac{69 + 69}{2} = 69, \quad \frac{69 + 72}{2} = 70.5, \quad \frac{69 + 70}{2} = 69.5, \quad \frac{70 + 70}{2} = 70, \quad \frac{70 + 72}{2} = 71, \quad \frac{72 + 72}{2} = 72 \quad (19.2)$$

The probabilities of these values are $1/9, 2/9, 2/9, 1/9, 2/9$ and $1/9$, respectively. So,

$$p_{\overline{X}}(69) = \frac{1}{9}, \quad p_{\overline{X}}(70.5) = \frac{2}{9}, \quad p_{\overline{X}}(69.5) = \frac{2}{9}, \quad p_{\overline{X}}(70) = \frac{1}{9}, \quad p_{\overline{X}}(71) = \frac{2}{9}, \quad p_{\overline{X}}(72) = \frac{1}{9} \quad (19.3)$$

Since \overline{X} is a random variable, it also has a cdf. For instance, the reader should verify that $F_{\overline{X}}(69.9) = 3/9$.

Viewing it in “notebook” terms, we might have, in the first three lines:

<table>
<thead>
<tr>
<th>notebook line</th>
<th>X_1</th>
<th>X_2</th>
<th>\bar{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>69</td>
<td>70</td>
<td>69.5</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>70</td>
<td>71</td>
</tr>
</tbody>
</table>

Again, the point is that all of X_1, X_2 and \bar{X} are random variables.

19.2.2 Expected and Variance of \bar{X}

Now, returning to the case of general n and our sample X_1, \ldots, X_n, since \bar{X} is a random variable, we can ask about its expected value and variance. Note that in notebook terms, these are the long-run mean and variance of the values in the X column above.

Let μ denote the population mean. Remember, each X_i is distributed as is the population, so $EX_i = \mu$. Again in notebook terms, this says that the long-run average in the X_1 column will be μ. (The same will be true for the X_2 column.)

This then implies that the expected value of \bar{X} is also μ. Here’s why:

\[
E(\bar{X}) = E\left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] \quad \text{(def. of \bar{X})} \tag{19.4}
\]

\[
= \frac{1}{n} E\left(\sum_{i=1}^{n} X_i \right) \quad \text{(for const. c, $E(cU) = cEU$)} \tag{19.5}
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} EX_i \quad (E[U + V] = EU + EV) \tag{19.6}
\]

\[
= \frac{1}{n} n\mu \quad (EX_i = \mu) \tag{19.7}
\]

\[
= \mu \tag{19.8}
\]

Moreover, the variance of \bar{X} is $1/n$ times the population variance:
19.2. THE SAMPLE MEAN—A RANDOM VARIABLE

\[\text{Var}(\bar{X}) = \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] \] (19.9)

\[= \frac{1}{n^2} \text{Var} \left(\sum_{i=1}^{n} X_i \right) \quad \text{(for const. } c, \text{ } \text{Var}[cU] = c^2 \text{Var}[U]) \] (19.10)

\[= \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(X_i) \quad \text{(for } U, V \text{ indep., } \text{Var}[U + V] = \text{Var}[U] + \text{Var}[V]) \] (19.11)

\[= \frac{1}{n^2} n\sigma^2 \] (19.12)

\[= \frac{1}{n} \sigma^2 \] (19.13)

19.2.3 Toy Population Example Again

Let’s verify (??) and (??) for toy population in Section ??.

The population mean is

\[\mu = \frac{69 + 70 + 72}{3} = 211/3 \] (19.14)

Using (3.13) and (??), we have

\[E\bar{X} = \sum_{c} c \ p_{\bar{X}}(c) = 69 \cdot \frac{1}{9} + 69.5 \cdot \frac{2}{9} + 70 \cdot \frac{1}{9} + 70.5 \cdot \frac{2}{9} + 71 \cdot \frac{2}{9} + 72 \cdot \frac{1}{9} = 211/3 \] (19.15)

So, (??) is confirmed. What about (??)?

First, the population variance is

\[\sigma^2 = \frac{1}{3} \cdot (69^2 + 70^2 + 72^2) - \left(\frac{211}{3} \right)^2 = \frac{14}{9} \] (19.16)

The variance of \(\bar{X} \) is

\[\text{Var}(\bar{X}) = E(\bar{X}^2) - (E\bar{X})^2 \] (19.17)

\[= E(\bar{X}^2) - \left(\frac{211}{3} \right)^2 \] (19.18)
Using (3.36) and (??), we have

$$E(X^2) = \sum_c c^2 p_X(c) = 69^2 \cdot \frac{1}{9} + 69.5^2 \cdot \frac{2}{9} + 70^2 \cdot \frac{1}{9} + 70.5^2 \cdot \frac{2}{9} + 71^2 \cdot \frac{2}{9} + 72^2 \cdot \frac{1}{9}$$

(19.19)

The reader should now wrap things up and confirm that (??) does work out to $(14/9) / 2 = 7/9$, as claimed by (??) and (??).

19.2.4 Interpretation

Now, let’s step back and consider the significance of the above findings (??) and (??):

(a) Equation (??) tells us that although some samples give us an X that is too high, i.e. that overestimates μ, while other samples give us an X that is too low, on average X is “just right.”

(b) Equation (??) tells us that for large samples, i.e. large n, X doesn’t vary much from sample to sample.

If you put (a) and (b) together, it says that for large n, X is probably pretty accurate, i.e. pretty close to the population mean μ. (You may wish to view this in terms of Section[3.63] So, the story of statistics often boils down to asking, “Is the variance of our estimator small enough?” You’ll see this in the coming chapters.

19.3 Sample Means Are Approximately Normal—No Matter What the Population Distribution Is

The Central Limit Theorem tells us that the numerator in (??) has an approximate normal distribution. That means that affine transformations of that numerator are also approximately normally distributed (page[160]). So:

Approximate distribution of (centered and scaled) X:

The quantity

$$Z = \frac{X - \mu}{\sigma/\sqrt{n}}$$

(19.20)

has an approximately $N(0,1)$ distribution, where σ^2 is the population variance.
19.3. SAMPLE MEANS ARE APPROXIMATELY NORMAL—NO MATTER WHAT THE POPULATION DIST

<table>
<thead>
<tr>
<th>pop. entity</th>
<th>samp. entity</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X_i</td>
</tr>
<tr>
<td>$E[\cdot]$</td>
<td>$\frac{1}{n} \sum_{i=1}^{n}$</td>
</tr>
</tbody>
</table>

Table 19.1: Population and Sample Analogs

Make sure you understand why it is the “N” that is approximate here, not the 0 or 1.

So even if the population distribution is very skewed, multimodal and so on, the sample mean will still have an approximate normal distribution. This will turn out to be the core of statistics; they don’t call the theorem the Central Limit Theorem for nothing.

19.3.1 The Sample Variance—Another Random Variable

Later we will be using the sample mean \bar{X}, a function of the X_i, to estimate the population mean μ. What other function of the X_i can we use to estimate the population variance σ^2?

Let X denote a generic random variable having the distribution of the X_i, which, note again, is the distribution of the population. Because of that property, we have

$$Var(X) = \sigma^2 \quad (\sigma^2 \text{ is the population variance}) \quad (19.21)$$

Recall that by definition

$$Var(X) = E[(X - EX)^2] \quad (19.22)$$

19.3.1.1 Intuitive Estimation of σ^2

Let’s estimate $Var(X) = \sigma^2$ by taking sample analogs in (??). The correspondences are shown in Table ??.

The sample analog of μ is \bar{X}. What about the sample analog of the “E()”? Well, since E() averaging over the whole population of Xs, the sample analog is to average over the sample. So, our sample
analog of (??) is

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

In other words, just as it is natural to estimate the population mean of X by its sample mean, the same holds for $\text{Var}(X)$:

The population variance of X is the mean squared distance from X to its population mean, as X ranges over all of the population. Therefore it is natural to estimate $\text{Var}(X)$ by the average squared distance of X from its sample mean, among our sample values X_i, shown in (??).

We use s^2 as our symbol for this estimate of population variance.

19.3.1.2 Easier Computation

By the way, it can be shown that (??) is equal to

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}^2$$

This is a handy way to calculate s^2, though it is subject to more roundoff error. Note that (??) is a sample analog of (3.41).

19.3.1.3 To Divide by n or n-1?

It should be noted that it is common to divide by $n-1$ instead of by n in (??). In fact, almost all textbooks divide by $n-1$ instead of n. Clearly, unless n is very small, the difference will be minuscule; such a small difference is not going to affect any analyst’s decisionmaking. But there are a couple of important conceptual questions here:

- Why do most people (and R, in its `var()` function) divide by $n-1$?
- Why do I choose to use n?

2Though I try to stick to the convention of using only capital letters to denote random variables, it is conventional to use lower case in this instance.
19.4. OBSERVATIONAL STUDIES

The answer to the first question is that (??) is what is called biased downwards, meaning that it can be shown (Section ??) that

$$E(s^2) = \frac{n-1}{n} \sigma^2$$ \hspace{1cm} (19.25)

In notebook terms, if we were to take many, many samples, one per line in the notebook, in the long run the average of all of our s^2 values would be slightly smaller than σ^2. This bothered the early pioneers of statistics, so they decided to divide by $n-1$ to make the sample variance an unbiased estimator of σ^2. Their definition of s^2 is

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$ \hspace{1cm} (19.26)

This is why W. Gossett defined his now-famous Student-t distribution using (??), with a factor of $n-1$ instead of n. But he could have just as easily defined it as (??).

Moreover, even though s^2 is unbiased under their definition, their s itself is still biased downward (Section ??). And since s itself is what we (this book and all others) use in forming confidence intervals, one can see that insisting on unbiasedness is a losing game.

I choose to use (??), dividing by n, because of Table ??; it’s very important that students understand this idea of sample analogs. Another virtue of this approach is that it is in a certain sense more consistent, as we’ll see in Section ??.

19.4 Observational Studies

The above formulation of sampling is rather idealized. It assumes a well-defined population, from which each unit is equally likely to be sampled. In real life, though, things are often not so clearcut.

In Section ??, for instance, we analyze data on major league baseball players, and apply statistical inference procedures based on the material in the current chapter. The player data is for a particular year, and our population is the set of all major league players, past, present and future. But here, no physical sampling occurred; we are implicitly assuming that our data act like a random sample from that population.

That in turn means that there was nothing special about our particular year. A player in our year, for instance, is just as likely to weigh more than 220 pounds than in previous years. This is probably a safe assumption, but at the same time it probably means we should restrict our (conceptual) population to recent years; back in the 1920s, players probably were not as big as those we see today.
The term usually used for settings like that of the baseball player data is *observational studies*. We passively observe our data rather than obtaining it by physically sampling from the population. The careful analyst must consider whether his/her data are representative of the conceptual population, versus subject to some bias.

19.5 A Good Time to Stop and Review!

The material we’ve discussed since page 362, is absolutely key, forming the very basis of statistics. It will be used constantly, throughout all our chapters here on statistics. It would be highly worthwhile for the reader to review this chapter before continuing.
Chapter 20

Introduction to Confidence Intervals

The idea of a confidence interval is central to statistical inference. But actually, you already know about it—from the term *margin of error* in news reports about opinion polls.

20.1 The “Margin of Error” and Confidence Intervals

To explain the idea of margin of error, let’s begin with a problem that has gone unanswered so far:

In our simulations in previous units, it was never quite clear how long the simulation should be run, i.e. what value to set for \texttt{nreps} in Section 2.14.6. Now we will finally address this issue.

As our example, consider the Bus Paradox, which presented in Section 9.4. Buses arrive at a certain bus stop at random times, with interarrival times being independent exponentially distributed random variables with mean 10 minutes. You arrive at the bus stop every day at a certain time, say four hours (240 minutes) after the buses start their morning run. What is your mean wait \(\mu \) for the next bus?

We found mathematically that, due to the memoryless property of the exponential distribution, our wait is again exponentially distributed with mean 10. But suppose we didn’t know that, and we wished to find the answer via simulation. (Note to reader: Keep in mind throughout this example that we will be pretending that we don’t know the mean wait is actually 10. Reminders of this will be brought up occasionally.)

We could write a program to do this:

```r
1 doexpt <- function(opt) {
  2 lastarrival <- 0.0
  3 while (lastarrival < opt)
```
Running the program yields

approx. mean wait = 9.653743

Note that \(\mu \) is a population mean, where our “population” here is the set of all possible bus wait times (some more frequent than others). Our simulation, then, drew a sample of size 1000 from that population. The expression \texttt{mean(waits)} was our sample mean.

Now, was 1000 iterations enough? How close is this value 9.653743 to the true expected value of waiting time?\(^1\)

What we would like to do is something like what the pollsters do during presidential elections, when they say “Ms. X is supported by 62\% of the voters, with a margin of error of 4\%.” In other words, we want to be able to attach a margin of error to that figure of 9.653743 above. We do this in the next section.

20.2 Confidence Intervals for Means

We are now set to make use of the infrastructure that we’ve built up in the preceding sections of this chapter. Everything will hinge on understanding that the sample mean is a random variable, with a known approximate distribution.

The goal of this section (and several that follow) is to develop a notion of margin of error, just as you see in the election campaign polls. This raises two questions:

(a) What do we mean by “margin of error”?

(b) How can we calculate it?

\(^1\)Of course, continue to ignore the fact that we know that this value is 10.0. What we’re trying to do here is figure out how to answer “how close is it” questions in general, when we don’t know the true mean.
20.2. CONFIDENCE INTERVALS FOR MEANS

20.2.1 Basic Formulation

So, suppose we have a random sample $W_1, ..., W_n$ from some population with mean μ and variance σ^2.

Recall that $(\%)$ has an approximate $N(0,1)$ distribution. We will be interested in the central 95% of the distribution $N(0,1)$. Due to symmetry, that distribution has 2.5% of its area in the left tail and 2.5% in the right one. Through the R call `qnorm(0.025)`, or by consulting a $N(0,1)$ cdf table in a book, we find that the cutoff points are at -1.96 and 1.96. In other words, if some random variable T has a $N(0,1)$ distribution, then $P(-1.96 < T < 1.96) = 0.95$.

Thus

$$0.95 \approx P \left(-1.96 < \frac{W - \mu}{\sigma / \sqrt{n}} < 1.96 \right) \quad (20.1)$$

(Note the approximation sign.) Doing a bit of algebra on the inequalities yields

$$0.95 \approx P \left(\frac{W - 1.96 \sigma}{\sqrt{n}} < \mu < \frac{W + 1.96 \sigma}{\sqrt{n}} \right) \quad (20.2)$$

Now remember, not only do we not know μ, we also don’t know σ. But we can estimate it, as we saw, via $(\%)$. One can show (the details will be given in Section ??) that $(\%)$ is still valid if we substitute s for σ, i.e.

$$0.95 \approx P \left(\frac{W - 1.96 s}{\sqrt{n}} < \mu < \frac{W + 1.96 s}{\sqrt{n}} \right) \quad (20.3)$$

In other words, we are about 95% sure that the interval

$$\left(\frac{W - 1.96 s}{\sqrt{n}}, \frac{W + 1.96 s}{\sqrt{n}} \right) \quad (20.4)$$

contains μ. This is called a 95% confidence interval for μ. The quantity $1.96 \frac{s}{\sqrt{n}}$ is the margin of error.

20.2.2 Example: Simulation Output

We could add this feature to our program in Section ??:
When I ran this, I got 10.02565 for the estimate of EW, and got an interval of (9.382715, 10.66859). Note that the margin of error is the radius of that interval, about 1.29/2. We would then say, “We are about 95% confident that the true mean wait time is between 9.38 and 10.67.”

What does this really mean? This question is of the utmost importance. We will devote an entire section to it, Section 20.3.

Note that our analysis here is approximate, based on the Central Limit Theorem, which was applicable because \(W \) involves a sum. We are making no assumption about the density of the population from which the \(W_i \) are drawn. However, if that population density itself is normal, then an exact confidence interval can be constructed. This will be discussed in Section 20.4.

20.3 Meaning of Confidence Intervals

20.3.1 A Weight Survey in Davis

Consider the question of estimating the mean weight, denoted by \(\mu \), of all adults in the city of Davis. Say we sample 1000 people at random, and record their weights, with \(W_i \) being the weight of the \(i^{th} \) person in our sample.

Now remember, we don’t know the true value of that population mean, \(\mu \)—again, that’s why we are collecting the sample data, to estimate \(\mu \)! Our estimate will be our sample mean, \(\bar{W} \). But we don’t know how accurate that estimate might be. That’s

2Do you like our statistical pun here? Typically an example like this would concern people’s heights, not weights. But it would be nice to use the same letter for random variables as in Section 20, i.e. the letter W, so we’ll have our example involve people’s weights instead of heights. It works out neatly, because the word weight has the same sound as wait.
20.3. MEANING OF CONFIDENCE INTERVALS

the reason we form the confidence interval, as a gauge of the accuracy of \overline{W} as an estimate of μ.

Say our interval $(142.6, 158.8)$ turns out to be. We say that we are about 95% confident that the mean weight μ of all adults in Davis is contained in this interval. What does this mean?

Say we were to perform this experiment many, many times, recording the results in a notebook: We’d sample 1000 people at random, then record our interval $(\overline{W} - 1.96 \frac{s}{\sqrt{n}}, \overline{W} + 1.96 \frac{s}{\sqrt{n}})$ on the first line of the notebook. Then we’d sample another 1000 people at random, and record what interval we got that time on the second line of the notebook. This would be a different set of 1000 people (though possibly with some overlap), so we would get a different value of \overline{W} and so, thus a different interval; it would have a different center and a different radius. Then we’d do this a third time, a fourth, a fifth and so on.

Again, each line of the notebook would contain the information for a different random sample of 1000 people. There would be two columns for the interval, one each for the lower and upper bounds. And though it’s not immediately important here, note that there would also be columns for W_1 through W_{1000}, the weights of our 1000 people, and columns for \overline{W} and s.

Now here is the point: Approximately 95% of all those intervals would contain μ, the mean weight in the entire adult population of Davis. The value of μ would be unknown to us—once again, that’s why we’d be sampling 1000 people in the first place—but it does exist, and it would be contained in approximately 95% of the intervals.

As a variation on the notebook idea, think of what would happen if you and 99 friends each do this experiment. Each of you would sample 1000 people and form a confidence interval. Since each of you would get a different sample of people, you would each get a different confidence interval. What we mean when we say the confidence level is 95% is that of the 100 intervals formed—by you and 99 friends—about 95 of them will contain the true population mean weight. Of course, you hope you yourself will be one of the 95 lucky ones! But remember, you’ll never know whose intervals are correct and whose aren’t.

Now remember, in practice we only take one sample of 1000 people. Our notebook idea here is merely for the purpose of understanding what we mean when we say that we are about 95% confident that one interval we form does contain the true value of μ.

20.3.2 More About Interpretation

Some statistics instructors give students the odd warning, “You can’t say that the probability is 95% that μ is IN the interval; you can only say that the probability is 95% confident that the interval CONTAINS μ.” This of course is nonsense. As any fool can see, the following two statements are
CHAPTER 20. INTRODUCTION TO CONFIDENCE INTERVALS

equivalent:

- “µ is in the interval”
- “the interval contains µ”

So it is ridiculous to say that the first is incorrect. Yet many instructors of statistics say so.

Where did this craziness come from? Well, way back in the early days of statistics, some instructor was afraid that a statement like “The probability is 95% that µ is in the interval” would make it sound like µ is a random variable. Granted, that was a legitimate fear, because µ is not a random variable, and without proper warning, some learners of statistics might think incorrectly. The random entity is the interval (both its center and radius), not µ; W and s in (?) vary from sample to sample, so the interval is indeed the random object here, not µ.

So, it was reasonable for teachers to warn students not to think µ is a random variable. But later on, some misguided instructor must have then decided that it is incorrect to say “µ is in the interval,” and others then followed suit. They continue to this day, sadly.

A variant on that silliness involves saying that one can’t say “The probability is 95% that µ is in the interval,” because µ is either in the interval or not, so that “probability” is either 1 or 0! That is equally mushy thinking.

Suppose, for example, that I go into the next room and toss a coin, letting it land on the floor. I return to you, and tell you the coin is lying on the floor in the next room. I know the outcome but you don’t. What is the probability that the coin came up heads? To me that is 1 or 0, yes, but to you it is 50%, in any practical sense.

It is also true in the “notebook” sense. If I do this experiment many times—go to the next room, toss the coin, come back to you, etc., one line of the notebook per toss—then in the long run 50% of the lines of the notebook have Heads in the Outcome column.

The same is true for confidence intervals. Say we conduct many, many samplings, one per line of the notebook, with a column labeled Interval Contains Mu. Unfortunately, we ourselves don’t get to see that column, but it exists, and in the long run 95% of the entries in the column will be Yes.

Finally, there are those who make a distinction between saying “There is a 95% probability that...” and “We are 95% confident that...” That’s silly too. What else could “95% confident” mean if not 95% probability?

Consider the experiment of tossing two fair dice. The probability is 34/36, or about 94%, that we get a total that is different from 2 or 12. As we toss the dice, what possible distinction could be made between saying, “The probability is 94% that we will get a total between 3 and 11”
and saying, “We are 94% confident that we will get a total between 3 and 11”? The notebook interpretation supports both phrasings, really. The words probability and confident should not be given much weight here; remember the quote at the beginning of our Chapter 1:

*I learned very early the difference between knowing the name of something and knowing something—*Richard Feynman, Nobel laureate in physics

20.4 Confidence Intervals for Proportions

So we know how to find confidence intervals for means. How about proportions?

20.4.1 Derivation

For example, in an election opinion poll, we might be interested in the proportion p of people in the entire population who plan to vote for candidate A.

We will estimate p by taking a random sample of n voters, and finding the sample proportion of voters who plan to vote for A. The latter is usually denoted \hat{p}, pronounced “p-hat.” (The symbol $\hat{\cdot}$ is often used in statistics to mean “estimate of.”)

Assign to each voter in the population a value of Y, 1 if he/she plans to vote for A, 0 otherwise. Let Y_i be the value of Y for the i^{th} person in our sample. Then

$$\hat{p} = \overline{Y}$$

(20.5)

where \overline{Y} is the sample mean among the Y_i, and p is the population mean of Y.

So we are really working with means after all, and thus in order to get a confidence interval for p from \hat{p}, we can use (20.3)! We have that an approximate 95% confidence interval for p is

$$\left(\hat{p} - 1.96s/\sqrt{n}, \hat{p} + 1.96s/\sqrt{n} \right)$$

(20.6)

where as before s^2 is the sample variance among the Y_i, defined in 20.3.

But there’s more, because we can exploit the fact that in this special case, each Y_i is either 1 or 0, in order to save ourselves a bit of computation, as follows:

Recalling the convenient form of s^2, (20.4), we have
\[s^2 = \frac{1}{n} \sum_{i=1}^{n} Y_i^2 - \bar{Y}^2 \] (20.7)
\[= \frac{1}{n} \sum_{i=1}^{n} Y_i - \bar{Y}^2 \] (20.8)
\[= \bar{Y} - \bar{Y}^2 \] (20.9)
\[= \hat{p} - \hat{p}^2 \] (20.10)

Then (20.1) simplifies to

\[\left(\hat{p} - 1.96\sqrt{\hat{p}(1-\hat{p})/n}, \hat{p} + 1.96\sqrt{\hat{p}(1-\hat{p})/n} \right) \] (20.11)

20.4.2 That n vs. n-1 Thing Again

Recall Section ??, in which it was noted that this book’s definition of the sample variance, (??), is a little at odds with the way most books define it, (??). The above derivation sheds a bit more light on this topic.

In the way I’ve defined things here, I was consistent: I divided by n both in (??) and in (??). Yet most books divide by n-1 in the former case but by n in the latter case! Their version of (??) is exactly the same as mine, yet they use a different \(s \) in (??)—even though they too observe that the proportions case is just a special case of estimating means (as in (??)). So, another reason to divide by n in (??) is to be consistent.

Again, the difference is usually minuscule anyway, but conceptually it’s important to understand. As noted earlier, the n-1 divisor is really just a historical accident.

20.4.3 Simulation Example Again

In our bus example above, suppose we also want our simulation to print out the (estimated) probability that one must wait longer than 6.4 minutes. As before, we’d also like a margin of error for the output.

We incorporate (??) into our program:

```r
1 doexpt <- function(opt) {
2   lastarrival <- 0.0
3   while (lastarrival < opt)
```
20.4. CONFIDENCE INTERVALS FOR PROPORTIONS

```r
lastarrival <- lastarrival + rexp(1,0.1)
return(lastarrival-opt)
```

```r
observationpt <- 240
nreps <- 1000
waits <- vector(length=nreps)
for (rep in 1:nreps) waits[rep] <- doexpt(observationpt)
wbar <- mean(waits)
cat("approx. mean wait =",wbar,"\n")
s2 <- (mean(waits^2) - mean(wbar)^2)
s <- sqrt(s2)
radius <- 1.96*s/sqrt(nreps)
cat("approx. CI for EW =",wbar-radius,"to",wbar+radius,"\n")
```

When I ran this, the value printed out for \(\hat{p} \) was 0.54, with a margin of error of 0.03, thus an interval of (0.51,0.57). We would say, “We don’t know the exact value of \(P(W > 6.4) \), so we ran a simulation. The latter estimates this probability to be 0.54, with a 95% margin of error of 0.03.”

20.4.4 Example: Davis Weights

Note again that this uses the same principles as our Davis weights example. Suppose we were interested in estimating the proportion of adults in Davis who weigh more than 150 pounds. Suppose that proportion is 0.45 in our sample of 1000 people. This would be our estimate \(\hat{p} \) for the population proportion \(p \), and an approximate 95% confidence interval (\(?? \)) for the population proportion would be (0.42,0.48). We would then say, “We are 95% confident that the true population proportion \(p \) of people who weigh over 150 pounds is between 0.42 and 0.48.”

Note also that although we’ve used the word *proportion* in the Davis weights example instead of *probability*, they are the same. If I choose an adult at random from the population, the probability that his/her weight is more than 150 is equal to the proportion of adults in the population who have weights of more than 150.

And the same principles are used in opinion polls during presidential elections. Here \(p \) is the population proportion of people who plan to vote for the given candidate. This is an unknown quantity, which is exactly the point of polling a sample of people—to estimate that unknown quantity \(p \). Our estimate is \(\hat{p} \), the proportion of people in our sample who plan to vote for the given candidate, and \(n \) is the number of people that we poll. We again use (\(?? \)).
20.4.5 Interpretation

The same interpretation holds as before. Consider the examples in the last section:

- If each of you and 99 friends were to run the R program at the beginning of Section ??, you 100 people would get 100 confidence intervals for $P(W > 6.4)$. About 95 of you would have intervals that do contain that number.

- If each of you and 99 friends were to sample 1000 people in Davis and come up with confidence intervals for the true population proportion of people who weight more than 150 pounds, about 95 of you would have intervals that do contain that true population proportion.

- If each of you and 99 friends were to sample 1200 people in an election campaign, to estimate the true population proportion of people who will vote for candidate X, about 95 of you will have intervals that do contain this population proportion.

Of course, this is just a “thought experiment,” whose goal is to understand what the term “95% confident” really means. In practice, we have just one sample and thus compute just one interval. But we say that the interval we compute has a 95% chance of containing the population value, since 95% of all intervals will contain it.

20.4.6 (Non-)Effect of the Population Size

Note that in both the Davis and election examples, it doesn’t matter what the size of the population is. The approximate distribution of \hat{p} is $N(p, p(1-p)/n)$, so the accuracy of \hat{p}, depends only on p and n. So when people ask, “How a presidential election poll can get by with sampling only 1200 people, when there are more than 100,000,000 voters in the U.S.?” now you know the answer. (We’ll discuss the question “Why 1200?” below.)

Another way to see this is to think of a situation in which we wish to estimate the probability p of heads for a certain coin. We toss the coin n times, and use \hat{p} as our estimate of p. Here our “population”—the population of all coin tosses—is infinite, yet it is still the case that 1200 tosses would be enough to get a good estimate of p.

20.4.7 Inferring the Number Polled

A news report tells us that in a poll, 54% of those polled supported Candidate A, with a 2.2% margin of error. Assuming that the methods here were used, with a 95% level of confidence, let’
find the approximate number polled.

\[0.022 = 1.96 \times \sqrt{0.54 \cdot 0.46 / n} \]
(20.12)

Solving, we find that \(n \) is approximately 1972.

20.4.8 Planning Ahead

Now, why do the pollsters often sample 1200 people?

First, note that the maximum possible value of \(\hat{p}(1 - \hat{p}) \) is 0.25. Then the pollsters know that their margin of error with \(n = 1200 \) will be at most \(1.96 \times 0.5 / \sqrt{1200} \), or about 3%, even before they poll anyone. They consider 3% to be sufficiently accurate for their purposes, so 1200 is the \(n \) they choose.

20.5 General Formation of Confidence Intervals from Approximately Normal Estimators

We would now like to move on to constructing confidence intervals for other settings than the case handled so far, estimation of a single population mean or proportion.

20.5.1 The Notion of a Standard Error

Suppose we are estimating some population quantity \(\theta \) based on sample data \(Y_1, ..., Y_n \). So far, our only examples have had \(\theta \) as a population mean \(\mu \), a population proportion \(p \). But we’ll see other examples as things unfold in this and subsequent chapters.

Consider an estimate for \(\theta \), \(\hat{\theta} \), and suppose that the estimator is composed of some sum for which the Central Limit Theorem applies, so that the approximate distribution of \(\hat{\theta} \) is normal with mean \(\theta \) and some variance.

Ponder this sequence of points:

- \(\hat{\theta} \) is a random variable.
- Thus \(\hat{\theta} \) has a variance.

3Use calculus to find the maximum value of \(f(x) = x(1-x) \).

4Using more advanced tools (Section ??), one can show approximate normality even in many nonlinear cases.
• Thus \(\hat{\theta} \) has a standard deviation \(\eta \).
• Unfortunately, \(\eta \) is an unknown population quantity.
• But we may be able to estimate \(\eta \) from our sample data. Call that estimate \(\hat{\eta} \).
• We refer to \(\hat{\eta} \) as the standard error of \(\hat{\theta} \), or s.e.\(\hat{\theta} \).

Back in Section ??, we found a standard error for \(\overline{W} \), the sample mean, using the following train of thought:

\[
\begin{align*}
\text{Var}(\overline{W}) &= \frac{\sigma^2}{n} \\
\overline{\text{Var}}(\overline{W}) &= \frac{s^2}{n} \\
\text{s.e.}(\overline{W}) &= \frac{s}{\sqrt{n}}
\end{align*}
\]

In many cases, deriving a standard error is more involved than the above, But the point is this:

Suppose \(\hat{\theta} \) is a sample-based estimator of a population quantity \(\theta \), and that, due to being composed of sums or some other reason, \(\hat{\theta} \) is approximately normally distributed with mean \(\theta \), and some (possibly unknown) variance. Then the quantity

\[
\frac{\hat{\theta} - \theta}{\text{s.e.}(\hat{\theta})}
\]

has an approximate N(0,1) distribution.

20.5.2 Forming General Confidence Intervals

That means we can mimic the derivation that led to (??). As with (??), write

\[
0.95 \approx P \left(-1.96 < \frac{\hat{\theta} - \theta}{\text{s.e.}(\hat{\theta})} < 1.96 \right)
\]

(20.14)

After going through steps analogous to those following (??), we find that an approximate 95% confidence interval for \(\theta \) is

\[
\hat{\theta} \pm 1.96 \cdot \text{s.e.}(\hat{\theta})
\]

(20.15)
20.5. GENERAL FORMATION OF CONFIDENCE INTERVALS FROM APPROXIMATELY NORMAL ESTIMATORS

In other words, the margin of error is 1.96 s.e.(\(\hat{\theta}\)).

The standard error of the estimate is one of the most commonly-used quantities in statistical applications. You will encounter it frequently in the output of R, for instance, and in the subsequent portions of this book. Make sure you understand what it means and how it is used.

And note again that \(\sqrt{\hat{p}(1 - \hat{p})/n}\) is the standard error of \(\hat{p}\).

20.5.3 Standard Errors of Combined Estimators

Here is further chance to exercise your skills in the mailing tubes regarding variance.

Suppose we have two population values to estimate, \(\omega\) and \(\gamma\), and that we are also interested in the quantity \(\omega + 2\gamma\). We'll estimate the latter with \(\hat{\omega} + 2\hat{\gamma}\). Suppose the standard errors of \(\hat{\omega}\) and \(\hat{\gamma}\) turn out to be 3.2 and 8.8, respectively, and that the two estimators are independent and approximately normal. Let’s find the standard error of \(\hat{\omega} + 2\hat{\gamma}\).

We know from the material surrounding (8.16) that \(\hat{\omega} + 2\hat{\gamma}\) has an approximately normal distribution with variance

\[
Var(\hat{\omega}) + 2^2 Var(\hat{\gamma})
\]

Thus the standard error of \(\hat{\omega} + 2\hat{\gamma}\) is

\[
\sqrt{3.2^2 + 2^2 \cdot 8.8^2}
\]

Now that we know the standard error of \(\hat{\omega} + 2\hat{\gamma}\), we can use it in (20.16). We add and subtract 1.96 times (20.16) to \(\hat{\omega} + 2\hat{\gamma}\), and that is our interval.

In general, for constants \(a\) and \(b\), an approximate 95% confidence interval for the population quantity \(a\omega + b\gamma\) is

\[
a\hat{\omega} + b\hat{\gamma} \pm 1.96 \sqrt{a^2 \text{s.e.}^2(\hat{\omega}) + b^2 \text{s.e.}^2(\hat{\gamma})}
\]

We can go even further. If \(\hat{\omega}\) and \(\hat{\gamma}\) are not independent but have known covariance, we can use the methods of Chapter 16 to obtain a standard error for any linear combination of these two estimators.

\(^{5}\)Technically, the term standard error is only used for approximately normal estimators anyway.
20.6 Confidence Intervals for Differences of Means or Proportions

20.6.1 Independent Samples

Suppose in our sampling of people in Davis we are mainly interested in the difference in weights between men and women. Let \bar{X} and n_1 denote the sample mean and sample size for men, and let \bar{Y} and n_2 for the women. Denote the population means and variances by μ_i and σ^2_i, $i = 1, 2$. We wish to find a confidence interval for $\mu_1 - \mu_2$. The natural estimator for that quantity is $X - Y$.

So, how can we form a confidence interval for $\mu_1 - \mu_2$ using $X - Y$? Since the latter quantity is composed of sums, we can use (??) and (??). Here:

- $a = 1$, $b = -1$
- $\omega = \mu_1$, $\gamma = \mu_2$
- $\hat{\omega} = \bar{X}$, $\hat{\gamma} = \bar{Y}$

But we know from before that $s.e. (\bar{X}) = s_1/\sqrt{n_1}$, where s_1^2 is the sample variance for the men,

$$s_1^2 = \frac{1}{n_1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2$$ \hspace{1cm} (20.19)

and similarly for \bar{Y} and the women. So, we have

$$s.e. (X - Y) = \sqrt{s_1^2/n_1 + s_2^2/n_2}$$ \hspace{1cm} (20.20)

Thus (??) tells us that an approximate 95% confidence interval for $\mu_1 - \mu_2$ is

$$\left(\bar{X} - \bar{Y} - 1.96 \sqrt{s_1^2/n_1 + s_2^2/n_2}, \bar{X} - \bar{Y} + 1.96 \sqrt{s_1^2/n_1 + s_2^2/n_2} \right)$$ \hspace{1cm} (20.21)

What about confidence intervals for the difference in two population proportions $p_1 - p_2$? Recalling that in Section ?? we noted that proportions are special cases of means, we see that finding a confidence interval for the difference in two proportions is covered by (??). Here

- \bar{X} reduces to \hat{p}_1
\overline{Y} reduces to \hat{p}_2

- s_1^2 reduces to $\hat{p}_1(1 - \hat{p}_1)$
- s_2^2 reduces to $\hat{p}_2(1 - \hat{p}_2)$

So, (??) reduces to

$$\hat{p}_1 - \hat{p}_2 \pm R$$

(20.22)

where the radius R is

$$1.96 \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

(20.23)

20.6.2 Example: Network Security Application

In a network security application, C. Mano et al.\(^6\) compare round-trip travel time for packets involved in the same application in certain wired and wireless networks. The data was as follows:

<table>
<thead>
<tr>
<th>sample</th>
<th>sample mean</th>
<th>sample s.d.</th>
<th>sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>wired</td>
<td>2.000</td>
<td>6.299</td>
<td>436</td>
</tr>
<tr>
<td>wireless</td>
<td>11.520</td>
<td>9.939</td>
<td>344</td>
</tr>
</tbody>
</table>

We had observed quite a difference, 11.52 versus 2.00, but could it be due to sampling variation? Maybe we have unusual samples? This calls for a confidence interval!

Then a 95% confidence interval for the difference between wireless and wired networks is

$$11.520 - 2.000 \pm 1.96 \sqrt{\frac{9.939^2}{344} + \frac{6.299^2}{436}} = 9.52 \pm 1.22$$

(20.24)

So you can see that there is a big difference between the two networks, even after allowing for sampling variation.

20.6.3 Dependent Samples

Note carefully, though, that a key point above was the independence of the two samples. By contrast, suppose we wish, for instance, to find a confidence interval for \(\nu_1 - \nu_2 \), the difference in mean heights in Davis of 15-year-old and 10-year-old children, and suppose our data consist of pairs of height measurements at the two ages on the same children. In other words, we have a sample of \(n \) children, and for the \(i^{th} \) child we have his/her height \(U_i \) at age 15 and \(V_i \) at age 10. Let \(\bar{U} \) and \(\bar{V} \) denote the sample means.

The problem is that the two sample means are not independent. If a child is taller than his/her peers at age 15, he/she was probably taller than them when they were all age 10. In other words, for each \(i \), \(V_i \) and \(U_i \) are positively correlated, and thus the same is true for \(\bar{V} \) and \(\bar{U} \). Thus we cannot use (20.23).

As always, it is instructive to consider this in “notebook” terms. Suppose on one particular sample at age 10—one line of the notebook—we just happen to have a lot of big kids. Then \(\bar{V} \) is large. Well, if we look at the same kids later at age 15, they’re liable to be bigger than the average 15-year-old too. In other words, among the notebook lines in which \(\bar{V} \) is large, many of them will have \(\bar{U} \) large too.

Since \(\bar{U} \) is approximately normally distributed with mean \(\nu_1 \), about half of the notebook lines will have \(\bar{U} > \nu_1 \). Similarly, about half of the notebook lines will have \(\bar{V} > \nu_2 \). But the nonindependence will be reflected in MORE than one-fourth of the lines having both \(\bar{U} > \nu_1 \) and \(\bar{V} > \nu_2 \). (If the two sample means were 100% correlated, that fraction would be 1.0.)

Contrast that with a sample scheme in which we sample some 10-year-olds and some 15-year-olds, say at the same time. Now there are different kids in each of the two samples. So, if by happenstance we get some big kids in the first sample, that has no impact on which kids we get in the second sample. In other words, \(\bar{V} \) and \(\bar{U} \) will be independent. In this case, one-fourth of the lines will have both \(\bar{U} > \nu_1 \) and \(\bar{V} > \nu_2 \).

So, we cannot get a confidence interval for \(\nu_1 - \nu_2 \) from (20.23), since the latter assumes that the two sample means are independent. What to do?

The key to the resolution of this problem is that the random variables \(T_i = V_i - U_i \), \(i = 1,2,\ldots, n \) are still independent. Thus we can use (20.23) on these values, so that our approximate 95% confidence interval is

\[
(T - 1.96 \frac{s}{\sqrt{n}}, T + 1.96 \frac{s}{\sqrt{n}})
\]

where \(T \) and \(s^2 \) are the sample mean and sample variance of the \(T_i \).

A common situation in which we have dependent samples is that in which we are comparing two
dependent proportions. Suppose for example that there are three candidates running for a political office, A, B and C. We poll 1,000 voters and ask whom they plan to vote for. Let p_A, p_B and p_C be the three population proportions of people planning to vote for the various candidates, and let \hat{p}_A, \hat{p}_B and \hat{p}_C be the corresponding sample proportions.

Suppose we wish to form a confidence interval for $p_A - p_B$. Clearly, the two sample proportions are not independent random variables, since for instance if $\hat{p}_A = 1$ then we know for sure that \hat{p}_B is 0.

Or to put it another way, define the indicator variables U_i and V_i as above, with for example U_i being 1 or 0, according to whether the i^{th} person in our sample plans to vote for A or not, with V_i being defined similarly for B. Since U_i and V_i are “measurements” on the same person, they are not independent, and thus \hat{p}_A and \hat{p}_B are not independent either.

Note by the way that while the two sample means in our kids’ height example above were positively correlated, in this voter poll example, the two sample proportions are negatively correlated.

So, we cannot form a confidence interval for $p_A - p_B$ by using (??). What can we do instead?

We’ll use the fact that the vector $(N_A, N_B, N_C)^T$ has a multinomial distribution, where N_A, N_B and N_C denote the numbers of people in our sample who state they will vote for the various candidates (so that for instance $\hat{p}_A = N_A/1000$).

Now to compute $\text{Var}(\hat{p}_A - \hat{p}_B)$, we make use of (16.10):

$$\text{Var}(\hat{p}_A - \hat{p}_B) = \text{Var}(\hat{p}_A) + \text{Var}(\hat{p}_B) - 2\text{Cov}(\hat{p}_A, \hat{p}_B)$$ \hspace{1cm} (20.26)

Or, we could have taken a matrix approach, using (16.54) with A equal to the row vector $(1,-1,0)$.

So, using (??), the standard error of $\hat{p}_A - \hat{p}_B$ is

$$\sqrt{0.001\hat{p}_A(1 - \hat{p}_A) + 0.001\hat{p}_B(1 - \hat{p}_B) + 0.002\hat{p}_A\hat{p}_B}$$ \hspace{1cm} (20.27)

20.6.4 Example: Machine Classification of Forest Covers

Remote sensing is machine classification of type from variables observed aerially, typically by satellite. The application we’ll consider here involves forest cover type for a given location; there are seven different types. (See Blackard, Jock A. and Denis J. Dean, 2000, “Comparative Accuracies of Artificial Neural Networks and Discriminant Analysis in Predicting Forest Cover Types from Cartographic Variables,” Computers and Electronics in Agriculture, 24(3):131-151.) Direct observation of the cover type is either too expensive or may suffer from land access permission issues. So, we wish to guess cover type from other variables that we can more easily obtain.
One of the variables was the amount of hillside shade at noon, which we’ll call HS12. Here’s our goal: Let \(\mu_1 \) and \(\mu_2 \) be the population mean HS12 among sites having cover types 1 and 2, respectively. If \(\mu_1 - \mu_2 \) is large, then HS12 would be a good predictor of whether the cover type is 1 or 2.

So, we wish to estimate \(\mu_1 - \mu_2 \) from our data, in which we do know cover type. There were over 50,000 observations, but for simplicity we’ll just use the first 1,000 here. Let’s find an approximate 95% confidence interval for \(\mu_1 - \mu_2 \). The two sample means were 223.8 and 226.3, with \(s \) values of 15.3 and 14.3, and the sample sizes were 226 and 585.

Using (??), we have that the interval is

\[
223.8 - 226.3 \pm 1.96 \sqrt{\frac{15.3^2}{226} + \frac{14.3^2}{585}} = -2.5 \pm 2.3 = (-4.8, -0.3) \quad (20.28)
\]

Given that HS12 values are in the 200 range (see the sample means), this difference between them actually is not very large. This is a great illustration of an important principle, it will turn out in Section ??.

As another illustration of confidence intervals, let’s find one for the difference in population proportions of sites that have cover types 1 and 2. Our sample estimate is

\[
\hat{p}_1 - \hat{p}_2 = 0.226 - 0.585 = -0.359 \quad (20.29)
\]

The standard error of this quantity, from (??), is

\[
\sqrt{0.001 \cdot 0.226 \cdot 0.7740 \cdot 0.001 \cdot 0.585 \cdot 0.415 + 002 \cdot 0.226 \cdot 0.585} = 0.019 \quad (20.30)
\]

That gives us a confidence interval of

\[
-0.359 \pm 1.96 \cdot 0.019 = (-0.397, -0.321) \quad (20.31)
\]

20.7 And What About the Student-t Distribution?

Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise—John Tukey, pioneering statistician at Bell Labs
20.7. AND WHAT ABOUT THE STUDENT-T DISTRIBUTION?

Another thing we are not doing here is to use the Student t-distribution. That is the name of the distribution of the quantity

\[T = \frac{\bar{W} - \mu}{\tilde{s}/\sqrt{n - 1}} \]

(20.32)

where \(\tilde{s}^2 \) is the version of the sample variance in which we divide by \(n-1 \) instead of by \(n \), i.e. (??).

Note carefully that we are assuming that the \(W_i \) themselves—not just \(\bar{W} \)—have a normal distribution. In other words, if we are studying human weight, say, then the assumption is that weight follows an exact bell-shaped curve. The exact distribution of \(T \) is called the Student t-distribution with \(n-1 \) degrees of freedom. These distributions thus form a one-parameter family, with the degrees of freedom being the parameter.

The general definition of the Student-t family is distribution of ratios \(U/\sqrt{V/k} \), where

- \(U \) has a \(\text{N}(0,1) \) distribution
- \(V \) has a chi-squared distribution with \(k \) degrees of freedom
- \(U \) and \(V \) are independent

It can be shown that in (??), if the sampled population has a normal distribution, then \((\bar{W} - \mu)/\sigma \) and \(\tilde{s}^2/\sigma^2 \) actually do satisfy the above conditions on \(U \) and \(V \), respectively, with \(k = n-1 \). (If we are forming a confidence interval for the difference of two means, the calculation of degrees of freedom becomes more complicated, but it is not important here.)

This distribution has been tabulated. In R, for instance, the functions \(\text{dt()} \), \(\text{pt()} \) and so on play the same roles as \(\text{dnorm()} \), \(\text{pnorm()} \) etc. do for the normal family. The call \(\text{qt}(0.975,9) \) returns 2.26. This enables us to get a confidence interval for \(\mu \) from a sample of size 10, at EXACTLY a 95% confidence level, rather than being at an APPROXIMATE 95% level as we have had here, as follows.

We start with (??), replacing 1.96 by 2.26, \((\bar{W} - \mu)/(\sigma/\sqrt{n}) \) by \(T \), and \(\approx \) by \(= \). Doing the same algebra, we find the following confidence interval for \(\mu \):

\[(\bar{W} - 2.26 \frac{\tilde{s}}{\sqrt{10}}, \bar{W} + 2.26 \frac{\tilde{s}}{\sqrt{10}}) \]

(20.33)

Of course, for general \(n \), replace 2.26 by \(t_{0.975,n-1} \), the 0.975 quantile of the t-distribution with \(n-1 \) degrees of freedom. The distribution is tabulated by the R functions \(\text{dt()} \), \(\text{pt()} \) and so on.

I do not use the t-distribution here because:
CHAPTER 20. INTRODUCTION TO CONFIDENCE INTERVALS

• It depends on the parent population having an exact normal distribution, which is never really true. In the Davis case, for instance, people’s weights are approximately normally distributed, but definitely not exactly so. For that to be exactly the case, some people would have to have weights of say, a billion pounds, or negative weights, since any normal distribution takes on all values from $-\infty$ to ∞.

• For large n, the difference between the t-distribution and N(0,1) is negligible anyway. That wasn’t true in the case n = 10 above, where our confidence interval multiplied the standard error by 2.26 instead of 1.96 as we’d seen earlier. But for n = 50, the 2.26 already shrinks to 2.01, and for n = 100, it is 1.98.

20.8 R Computation

The R function `t.test()` forms confidence intervals for a single mean or for the difference of two means. In the latter case, the two samples must be independent; otherwise, do the single-mean CI on differences, as in Section ??.

This function uses the Student-t distribution, rather than the normal, but as discussed in Section ??, the difference is negligible except in small samples.

Thus you can conveniently use `t.test()` to form a confidence interval for a single mean, instead of computing (??) yourself (or writing the R code yourself).

It’s slightly more complicated in the case of forming a confidence interval for the difference of two means. The `t.test()` function will do that for you too, but will make the assumption that we have $\sigma_1^2 = \sigma_2^2$ in Section ??, unless you believe there is a huge difference between the two population variances, this approximation is not bad.

20.9 Example: Pro Baseball Data

The SOCR data repository at the UCLA Statistics Department includes a data set on major league baseball players, at http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights. There are 1035 players in the sample, with the variables Name, Team, Position, Height, Weight and Age. I downloaded it and placed it into a file `Baseball.dat`.

20.9.1 R Code

First we read in the data:
> players <- read.table("Baseball.dat", header=T)
Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings, :
 line 641 did not have 6 elements

Oops! The entry for one player, Kirk Saarloos, did not have a weight figure. So I edited the file by hand, placing the string “NA” there for weight; this is R’s code for missing data. I then tried again:

> players <- read.table("Baseball.dat", header=T)
> head(players)

<table>
<thead>
<tr>
<th>Name</th>
<th>Team</th>
<th>Position</th>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam_Donachie</td>
<td>BAL</td>
<td>Catcher</td>
<td>74</td>
<td>180</td>
<td>22.99</td>
</tr>
<tr>
<td>Paul_Bako</td>
<td>BAL</td>
<td>Catcher</td>
<td>74</td>
<td>215</td>
<td>34.69</td>
</tr>
<tr>
<td>Ramon_Hernandez</td>
<td>BAL</td>
<td>Catcher</td>
<td>72</td>
<td>210</td>
<td>30.78</td>
</tr>
<tr>
<td>Kevin_Millar</td>
<td>BAL</td>
<td>First_Baseman</td>
<td>72</td>
<td>210</td>
<td>35.43</td>
</tr>
<tr>
<td>Chris_Gomez</td>
<td>BAL</td>
<td>First_Baseman</td>
<td>73</td>
<td>188</td>
<td>35.71</td>
</tr>
<tr>
<td>Brian_Roberts</td>
<td>BAL</td>
<td>Second_Baseman</td>
<td>69</td>
<td>176</td>
<td>29.39</td>
</tr>
</tbody>
</table>

I read in the file Baseball.dat, whose first line consisted of a header giving the names of the variables. I assigned the result to players, whose type will be that of an R data frame. I then called R’s head() function, to take a look at the results to make sure things are OK.

We could then query various items in the object players, say the mean weight (not conditioned on height), via players[,5] or players$Weight.

20.9.2 Analysis

Let’s find an approximate 95% confidence interval for the population mean weight of catchers.

> catch <- players[players$Position == "Catcher",]
> t.test(catch$Weight)

```
One Sample t-test

data:  catch$Weight
t = 113.1467, df = 75, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
```

Note that this is an observational study, as discussed in Section ??, with attendant care needed for the conclusions we derive from this data.
We might be interested in inference concerning the population proportion of catchers older than 32:

```r
> old <- (catch$Age > 32)
> head(old)
[1] FALSE TRUE FALSE FALSE FALSE FALSE
> old <- as.integer(old)
> head(old)
[1] 0 1 0 0 0 0
> t.test(old)
```

One Sample t-test

data: old
t = 5.705, df = 75, p-value = 2.189e-07
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval: 0.1969573 0.4083058
sample estimates:
mean of x
0.3026316

Note that the intervals, especially the last one, are rather wide. We just don’t have enough catchers to get much accuracy. How many are there?\footnote{In order to do any of this, we are tacitly assuming that our players are a sample of some general population of players, say, past, present and future., even if we have all the present ones. This is very common in applied statistical analysis.}

\begin{verbatim}
> nrow(catch)
[1] 76
\end{verbatim}

\section*{20.10 Example: UCI Bank Marketing Dataset}

This data set was obtained from the UC Irvine Machine Learning Data Repository, \url{http://archive.ics.uci.edu/ml/about.html}. A bank in Portugal had developed a new type of account, and they were interested in studying what types of customers would be more likely to switch to the new account.

\begin{verbatim}
> bank <- read.table("bank-full.csv",header=T,sep=";")
> head(bank)
age job marital education default balance housing loan day month duration campaign pdays previous poutcome y
1 58 management married tertiary no 2143 yes no 5 may 261 1 -1 0 unknown no
2 44 technician single secondary no 29 yes no 5 may 151 1 -1 0 unknown no
3 33 entrepreneur married secondary no 2 yes yes 5 may 76 1 -1 0 unknown no
4 47 blue-collar married unknown no 1506 yes no 5 may 92 1 -1 0 unknown no
5 33 unknown single unknown no 1 no no 5 may 198 1 -1 0 unknown no
6 35 management married tertiary no 231 yes no 5 may 139 1 -1 0 unknown no
\end{verbatim}

(The variable contact has been omitted here, to fit the display on the page.)

There are many variables here, explained in more detail at the UCI site. We’ll come back to this
example, but let’s do one quick confidence interval. Here we will compare the success rates of the marketing campaign for married and unmarried people:

```r
> marrd <- bank[bank$marral == "married",]
> unmarrd <- bank[bank$marral != "married",]
> t.test(marrd$succes, unmarrd$succes)
```

Welch Two Sample t-test

data: marrd$succes and unmarrd$succes
t = -12.471, df = 34676.26, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.04578514 -0.03334804
sample estimates:
mean of x mean of y
0.1012347 0.1408012

So, we are 95% confident that the population success rate is between 3.3% and 4.6% less for married people.

Note by the way that there are more than 46,000 people in this sample. So, the Student-t and N(0,1) distributions are now indistinguishable.

20.11 Example: Amazon Links

This example involves the Amazon product co-purchasing network, March 2 2003. The data set is large but simple. It stores a directed graph of what links to what: If a record show i then j, it means that i is often co-purchased with j (though not necessarily vice versa). Let’s find a confidence interval for the mean number of inlinks, i.e. links into a node.

Actually, even the R manipulations are not so trivial, so here is the complete code (http://snap.stanford.edu/data/amazon0302.html):

```r
1 mzn <- read.table("amazon0302.txt",header=F)
2 # cut down the data set for convenience
4 # make an R list, one element per value of j
5 degrees1000 <- split(mzn1000,mzn1000[,2])
6 # by finding the number of rows in each matrix, we get the numbers of
7 # inlinks
8 indegrees1000 <- sapply(degrees1000,nrow)
```
Now run `t.test()`:

```r
> t.test(indegrees1000)
```

```
One Sample t-test
data: indegrees1000
t = 35.0279, df = 1000, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
  3.728759  4.171340
sample estimates:
mean of x
  3.95005
```

So, in our sample data, the mean number of inlinks was 3.95, and we are 95% confident that the true population mean is between 3.73 and 4.17.

20.12 Example: Master’s Degrees in CS/EE

In an analysis of the National Survey of College Graduates, I looked at workers in CS or EE, who have CS or EE degrees. I had them in R data frames named `cs` and `ee`, each of which had an indicator variable `ms` signifying that the worker has a Master’s degree (but not a PhD). Let’s see the difference between CS and EE on this variable:

```r
> t.test(cs$ms, ee$ms)
```

```
Welch Two Sample t-test
data: cs$ms and ee$ms
t = 2.4895, df = 1878.108, p-value = 0.01288
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  0.01073580  0.09045689
sample estimates:
mean of x mean of y
 0.3560551  0.3054588
```

9There were various other restrictions, which I will not go into here.
So, in our sample, 35.6% and 30.5% of the two groups had Master’s degrees, and we are 95% confident that the true population difference in proportions of Master’s degrees in the two groups is between 0.01 and 0.09.

20.13 Other Confidence Levels

We have been using 95% as our confidence level. This is common, but of course not unique. We can for instance use 90%, which gives us a narrower interval (in (??), we multiply by 1.65 instead of by 1.96. (The reader should check this, using the \texttt{qnorm()} function.) Narrower is better, of course, but it comes at the expense of lower confidence.

A confidence interval’s error rate is usually denoted by $1 - \alpha$, so a 95% confidence level has $\alpha = 0.05$.

20.14 One More Time: Why Do We Use Confidence Intervals?

After all the variations on a theme in the very long Section ??, it is easy to lose sight of the goal, so let’s review:

Almost everyone is familiar with the term “margin of error,” given in every TV news report during elections. The report will say something like, “In our poll, 62% stated that they plan to vote for Ms. X. The margin of error is 3%.” Those two numbers, 62% and 3%, form the essence of confidence intervals:

- The 62% figure is our estimate of p, the true population fraction of people who plan to vote for Ms. X.
- Recognizing that that 62% figure is only a sample estimate of p, we wish to have a measure of how accurate the figure is—our margin of error. Though the poll reports don’t say this, what they are actually saying is that we are 95% sure that the true population value p is in the range 0.62 ± 0.03.

So, a confidence interval is nothing more than the concept of the $a \pm b$ range that we are so familiar with.

Exercises

1. Consider Equation (??). In each of the entries in the table below, fill in either R for random, or NR for nonrandom:
2. Consider \hat{p}, the estimator of a population proportion p, based on a sample of size n. Give the expression for the standard error of \hat{p}.

3. Suppose we take a simple random sample of size 2 from a population consisting of just three values, 66, 67 and 69. Let \bar{X} denote the resulting sample mean. Find $p_{\bar{X}}(67.5)$.

4. Suppose we have a random sample W_1, \ldots, W_n, and we wish to estimate the population mean μ, as usual. But we decide to place double weight on W_1, so our estimator for μ is

$$U = \frac{2W_1 + W_2 + \ldots + W_n}{n+1}$$

Find $E(U)$ and $\text{Var}(U)$ in terms of μ and the population variance σ^2.

5. Suppose a random sample of size n is drawn from a population in which, unknown to the analyst, X actually has an exponential distribution with mean 10. Suppose the analyst forms an approximate 95% confidence interval for the mean, using (??). Use R simulation to estimate the true confidence level, for $n = 10, 25, 100$ and 500.

6. Suppose we draw a sample of size 2 from a population in which X has the values 10, 15 and 12. Find $p_{\bar{X}}$, first assuming sampling with replacement, then assuming sampling without replacement.

7. We ask 100 randomly sampled programmers whether C++ is their favorite language, and 12 answer yes. Give a numerical expression for an approximate 95% confidence interval for the population fraction of programmers who have C++ as their favorite language.

8. In Equation (??), suppose 1.96 is replaced by 1.88 in both instances. Then of course the confidence level will be smaller than 95%. Give a call to an R function (not a simulation), that will find the new confidence level.

9. Candidates A, B and C are vying for election. Let p_1, p_2 and p_3 denote the fractions of people planning to vote for them. We poll n people at random, yielding estimates \hat{p}_1, \hat{p}_2 and \hat{p}_3. Y claims that she has more supporters than the other two candidates combined. Give a formula for an approximate 95% confidence interval for $p_2 - (p_1 + p_3)$.

10. Suppose Jack and Jill each collect random samples of size n from a population having unknown mean μ but KNOWN variance σ^2. They each form an approximate 95% confidence interval for μ, using (??) but with s replaced by σ. Find the approximate probability that their intervals do not overlap. Express your answer in terms of Φ, the cdf of the N(0,1) distribution.

11. In the example of the population of three people, page ??, find the following:
(a) $p_{X_1}(70)$
(b) $p_{X_1, X_2}(69, 70)$
(c) $F_{\overline{X}}(69.5)$
(d) probability that \overline{X} overestimates the population mean μ
(e) $p_{\overline{X}}(69)$ if our sample size is three rather than two (remember, we are sampling with replacement)

12. In the derivation (??), suppose instead we have a simple random sample. Which one of the following statements is correct?

(a) $E(\overline{X})$ will still be equal to μ.
(b) $E(\overline{X})$ will not exist.
(c) $E(\overline{X})$ will exist, but may be less than μ.
(d) $E(\overline{X})$ will exist, but may be greater than μ.
(e) None of the above is necessarily true.

13. Consider a toy example in which we take a random sample of size 2 (done with replacement) from a population of size 2. The two values in the population (say heights in some measure system) are 40 and 60. Find $p_{\overline{X}^2}(100)$.
Chapter 21

Introduction to Significance Tests

Suppose (just for fun, but with the same pattern as in more serious examples) you have a coin that will be flipped at the Super Bowl to see who gets the first kickoff. (We’ll assume slightly different rules here. The coin is not “called.” Instead, it is agreed beforehand that if the coin comes up heads, Team A will get the kickoff, and otherwise it will be Team B.) You want to assess for “fairness.” Let p be the probability of heads for the coin.

You could toss the coin, say, 100 times, and then form a confidence interval for p using (21.1). The width of the interval would tell you the margin of error, i.e. it tells you whether 100 tosses were enough for the accuracy you want, and the location of the interval would tell you whether the coin is “fair” enough.

For instance, if your interval were (0.49,0.54), you might feel satisfied that this coin is reasonably fair. In fact, note carefully that even if the interval were, say, (0.502,0.506), you would still consider the coin to be reasonably fair; the fact that the interval did not contain 0.5 is irrelevant, as the entire interval would be reasonably near 0.5.

However, this process would not be the way it’s traditionally done. Most users of statistics would use the toss data to test the null hypothesis

\[H_0 : p = 0.5 \]

against the alternate hypothesis

\[H_A : p \neq 0.5 \]

For reasons that will be explained below, this procedure is called significance testing. It forms
the very core of statistical inference as practiced today. This, however, is unfortunate, as there are some serious problems that have been recognized with this procedure. We will first discuss the mechanics of the procedure, and then look closely at the problems with it in Section ??.

21.1 The Basics

Here’s how significance testing works.

The approach is to consider H_0 “innocent until proven guilty,” meaning that we assume H_0 is true unless the data give strong evidence to the contrary. **KEEP THIS IN MIND!**—we are continually asking, “What if...?”

The basic plan of attack is this:

We will toss the coin n times. Then we will believe that the coin is fair unless the number of heads is “suspiciously” extreme, i.e. much less than $n/2$ or much more than $n/2$.

Let p denote the true probability of heads for our coin. As in Section ??, let \hat{p} denote the proportion of heads in our sample of n tosses. We observed in that section that \hat{p} is a special case of a sample mean (it’s a mean of 1s and 0s). We also found that the standard deviation of \hat{p} is $\sqrt{p(1-p)/n}$, so that the standard error (Section ??) is $\sqrt{\hat{p}(1-\hat{p})/n}$.

In other words, the material surrounding (??) tells us that

$$\frac{\hat{p} - p}{\sqrt{\frac{1}{n} \cdot \hat{p}(1 - \hat{p})}}$$

has an approximate $N(0,1)$ distribution.

But remember, we are going to assume H_0 for now, until and unless we find strong evidence to the contrary. So, in the numerator of (??), $p = 0.5$. And in the denominator, why use the standard error when we “know” (under our provisional assumption) that $p = 0.5$? The exact standard deviation of \hat{p} is $\sqrt{p(1-p)/n}$. So, replace (??) by

$$Z = \frac{\hat{p} - 0.5}{\sqrt{\frac{1}{n} \cdot 0.5(1 - 0.5)}}$$

then Z has an approximate $N(0,1)$ distribution under the assumption that H_0 is true.
Now recall from the derivation of (21.2) that -1.96 and 1.96 are the lower- and upper-2.5% points of the N(0,1) distribution. Thus,

\[P(Z < -1.96 \text{ or } Z > 1.96) \approx 0.05 \] \hspace{1cm} (21.5)

Now here is the point: After we collect our data, in this case by tossing the coin \(n \) times, we compute \(\hat{p} \) from that data, and then compute \(Z \) from (21.2). If \(Z \) is smaller than -1.96 or larger than 1.96, we reason as follows:

Hmmm, \(Z \) would stray that far from 0 only 5% of the time. So, either I have to believe that a rare event has occurred, or I must abandon my assumption that \(H_0 \) is true.

For instance, say \(n = 100 \) and we get 62 heads in our sample. That gives us \(Z = 2.4 \), in that “rare” range. We then reject \(H_0 \), and announce to the world that this is an unfair coin. We say, “The value of \(p \) is significantly different from 0.5.”

The 5% “suspicion criterion” used above is called the significance level, typically denoted \(\alpha \). One common statement is “We rejected \(H_0 \) at the 5% level.”

On the other hand, suppose we get 47 heads in our sample. Then \(Z = -0.60 \). Again, taking 5% as our significance level, this value of \(Z \) would not be deemed suspicious, as it occurs frequently. We would then say “We accept \(H_0 \) at the 5% level,” or “We find that \(p \) is not significantly different from 0.5.”

The word significant is misleading. It should NOT be confused with important. It simply is saying we don’t believe the observed value of \(Z \) is a rare event, which it would be under \(H_0 \); we have instead decided to abandon our believe that \(H_0 \) is true.

Note by the way that \(Z \) values of -1.96 and 1.96 correspond getting \(50 - 1.96 \cdot 0.5 \cdot \sqrt{100} \) or \(50 + 1.96 \cdot 0.5 \cdot \sqrt{100} \) heads, i.e. roughly 40 or 60. In other words, we can describe our rejection rule to be “Reject if we get fewer than 40 or more than 60 heads, out of our 100 tosses.”

21.2 General Testing Based on Normally Distributed Estimators

In Section ??, we developed a method of constructing confidence intervals for general approximately normally distributed estimators. Now we do the same for significance testing.

Suppose \(\hat{\theta} \) is an approximately normally distributed estimator of some population value \(\theta \). Then
to test $H_0: \theta = c$, form the test statistic

$$Z = \frac{\hat{\theta} - c}{\text{s.e.}(\hat{\theta})} \quad (21.6)$$

where $\text{s.e.}(\hat{\theta})$ is the standard error of $\hat{\theta}$ and proceed as before:

Reject $H_0: \theta = c$ at the significance level of $\alpha = 0.05$ if $|Z| \geq 1.96$.

21.3 Example: Network Security

Let’s look at the network security example in Section ?? again. Here $\hat{\theta} = X - Y$, and c is presumably 0 (depending on the goals of Mano et al). From ??, the standard error works out to 0.61. So, our test statistic (??) is

$$Z = \frac{X - Y - 0}{0.61} = \frac{11.52 - 2.00}{0.61} = 15.61 \quad (21.7)$$

This is definitely larger in absolute value than 1.96, so we reject H_0, and conclude that the population mean round-trip times are different in the wired and wireless cases.

21.4 The Notion of “p-Values”

Recall the coin example in Section ??, in which we got 62 heads, i.e. $Z = 2.4$. Since 2.4 is considerably larger than 1.96, our cutoff for rejection, we might say that in some sense we not only rejected H_0, we actually strongly rejected it.

To quantify that notion, we compute something called the **observed significance level**, more often called the **p-value**.

We ask,

We rejected H_0 at the 5% level. Clearly, we would have rejected it even at some small—thus more stringent—levels. What is the smallest such level? Call this the p-value of the test.

\footnote{See Section ??, or if we know the exact standard deviation of $\hat{\theta}$ under H_0, which was the case in our coin example above, we could use that, for a better normal approximation.}
By checking a table of the N(0,1) distribution, or by calling \texttt{pnorm(2.40)} in R, we would find that the N(0,1) distribution has area 0.008 to the right of 2.40, and of course by symmetry there is an equal area to the left of -2.40. That’s a total area of 0.016. In other words, we would have been able to reject \(H_0 \) even at the much more stringent significance level of 0.016 (the 1.6% level) instead of 0.05. So, \(Z = 2.40 \) would be considered even more significant than \(Z = 1.96 \). In the research community it is customary to say, “The p-value was 0.016.” The smaller the p-value, the more significant the results are considered.

In our network security example above in which \(Z \) was 15.61, the value is literally “off the chart”; \texttt{pnorm(15.61)} returns a value of 1. Of course, it’s a tiny bit less than 1, but it is so far out in the right tail of the N(0,1) distribution that the area to the right is essentially 0. So the p-value would be essentially 0, and the result would be treated as very, very highly significant.

In computer output or research reports, we often see small p-values being denoted by asterisks. There is generally one asterisk for p under 0.05, two for p less than 0.01, three for 0.001, etc. The more asterisks, the more significant the data is supposed to be. See for instance the R regression output on page ??.

\section{Example: Bank Data}

Consider again the bank marketing data in Section ??\footnote{The ‘p’ in “p-value” of course stands for “probability,” meaning the probably that a N(0,1) random variable would stray as far, or further, from 0 as our observed Z here. By the way, be careful not to confuse this with the quantity p in our coin example, the probability of heads.}. Our comparison was between marketing campaign success rates for married and unmarried customers. The p-value was quite tiny, \(2.2 \times 10^{-16} \), but be careful interpreting this.

First, don’t take that p-value as exact by any means. Though our sample sizes are certainly large enough for the Central Limit Theorem to work well, that is in the heart of the distribution, not the far tails. So, just take the p-value as “tiny,” and leave it at that.

Second, although the standard description for a test with such a small p-value is “very highly significant,” keep in mind that the difference between the two groups was not that large. The confidence interval we are 95\% confident that the population success rate is between 3.3\% and 4.6\% less for married people. That is an interesting difference and possibly of some use to the marketing people, but it is NOT large.
21.6 One-Sided H_A

Suppose that—somehow—we are sure that our coin in the example above is either fair or it is more heavily weighted towards heads. Then we would take our alternate hypothesis to be

$$H_A : p > 0.5$$

(21.8)

A “rare event” which could make us abandon our belief in H_0 would now be if Z in (??) is very large in the positive direction. So, with $\alpha = 0.05$, we call $\text{qnorm}(0.95)$, and find that our rule would now be to reject H_0 if $Z > 1.65$.

One-sided tests are not common, as their assumptions are often difficult to justify.

21.7 Exact Tests

Remember, the tests we’ve seen so far are all approximate. In (??), for instance, \hat{p} had an approximate normal distribution, so that the distribution of Z was approximately $N(0,1)$. Thus the significance level α was approximate, as were the p-values and so on.\footnote{Another class of probabilities which would be approximate would be the power values. These are the probabilities of rejecting H_0 if the latter is not true. We would speak, for instance, of the power of our test at $p = 0.55$, meaning the chances that we would reject the null hypothesis if the true population value of p were 0.55.}

But the only reason our tests were approximate is that we only had the approximate distribution of our test statistic Z, or equivalently, we only had the approximate distribution of our estimator, e.g. \hat{p}. If we have an exact distribution to work with, then we can perform an exact test.

21.7.1 Example: Test for Biased Coin

Let’s consider the coin example again, with the one-sided alternative (??). To keep things simple, let’s suppose we toss the coin 10 times. We will make our decision based on X, the number of heads out of 10 tosses. Suppose we set our threshhold for “strong evidence” again H_0 to be 8 heads, i.e. we will reject H_0 if $X \geq 8$. What will α be?

$$\alpha = \sum_{i=8}^{10} P(X = i) = \sum_{i=8}^{10} \binom{10}{i} \left(\frac{1}{2}\right)^{10} = 0.055$$

(21.9)

That’s not the usual 0.05. Clearly we cannot get an exact significance level of 0.05\footnote{Actually, it could be done by introducing some randomization to our test.} but our α is...
21.7. EXACT TESTS

exactly 0.055, so this is an exact test.

So, we will believe that this coin is perfectly balanced, unless we get eight or more heads in our 10 tosses. The latter event would be very unlikely (probability only 5.5%) if H_0 were true, so we decide not to believe that H_0 is true.

21.7.2 Example: Improved Light Bulbs

Suppose lifetimes of lightbulbs are exponentially distributed with mean μ. In the past, $\mu = 1000$, but there is a claim that the new light bulbs are improved and $\mu > 1000$. To test that claim, we will sample 10 lightbulbs, getting lifetimes X_1, \ldots, X_{10}, and compute the sample mean \bar{X}. We will then perform a significance test of

$$H_0 : \mu = 1000 \quad (21.10)$$

vs.

$$H_A : \mu > 1000 \quad (21.11)$$

It is natural to have our test take the form in which we reject H_0 if

$$\bar{X} > w \quad (21.12)$$

for some constant w chosen so that

$$P(\bar{X} > w) = 0.05 \quad (21.13)$$

under H_0. Suppose we want an exact test, not one based on a normal approximation.

Remember, we are making our calculations under the assumption that H_0 is true. Now recall (Section 7.6.4.1) that $10\bar{X}$, the sum of the X_i, has a gamma distribution, with $r = 10$ and $\lambda = 0.001$. So, we can find the w for which $P(\bar{X} > w) = 0.05$ by using R’s `qgamma()`:

```r
> qgamma(0.95, 10, 0.001)
[1] 1570.522
```

So, we reject H_0 if our sample mean is larger than 1570.5.
CHAPTER 21. INTRODUCTION TO SIGNIFICANCE TESTS

Now suppose it turns out that \(\bar{X} = 1624.2 \). Under \(H_0 \) there was only a 0.05 chance that \(\bar{X} \) would exceed 1570.5, so we would reject \(H_0 \) with \(\alpha = 0.05 \). But what if we had set \(w \) to 1624.2? We didn’t do so, of course, but what if? The computation

\[
> 1 - \text{pgamma}(1624.2, 10, 0.001)
\]

\[
[1] \quad 0.03840629
\]

shows that we would have rejected \(H_0 \) even if we had originally set \(\alpha \) to the more stringent criterion of 0.038 instead of 0.05. So we report that the p-value was 0.038.

The idea of a p-value is to indicate in our report “how strongly” we rejected \(H_0 \). Arguably there is a bit of game-playing in p-values, as there is with significance testing in general. This will be pursued in Section ??.

21.7.3 Example: Test Based on Range Data

Suppose lifetimes of some electronic component formerly had an exponential distribution with mean 100.0. However, it’s claimed that now the mean has increased. (Suppose we are somehow sure it has not decreased.) Someone has tested 50 of these new components, and has recorded their lifetimes, \(X_1, \ldots, X_{50} \). Unfortunately, they only reported to us the range of the data, \(R = \max_i X_i - \min_i X_i \), not the individual \(X_i \). We will need to do a significance test with this limited data, at the 0.05 level.

Recall that the variance of an exponential random variable is the square of its mean. Intuitively, then, the larger this population mean of \(X \), the larger the mean of the range \(R \). In other words, the form of the test should be to reject \(H_0 \) if \(R \) is greater than some cutoff value \(c \). So, we need to find the value of \(c \) to make \(\alpha \) equal to 0.05.

Unfortunately, we can’t do this analytically, i.e. mathematically, as the distribution of \(R \) is far too complex. This we’ll have to resort to simulation.\(^\text{5}\) Here is code to do that:

```
# code to determine the cutoff point for significance
# at 0.05 level

nreps <- 200000
n <- 50

rvec <- vector(length=nreps)
for (i in 1:nreps) {
  x <- rexp(n, 0.01)
}
```

\(^5\)I am still referring to the following as an exact test, as we are not using any statistical approximation, such as the Central Limit Theorem.
21.8. **DON’T SPEAK OF “THE PROBABILITY THAT H_0 IS TRUE”**

Here we generate `nreps` samples of size 50 from an exponential distribution having mean 100. Note that since we are setting α, a probability defined in the setting in which H_0 is true, we assume the mean is 100. For each of the `nreps` samples we find the value of R, recording it in `rvec`. We then take the 95th percentile of those values, which is the c for which $P(R > c) = 0.05$.

The value of c output by the code was 220.4991. A second run yielded, 220.9304, and a third 220.7099. The fact that these values varied little among themselves indicates that our value of `nreps`, 200000, was sufficiently large.

21.7.4 **Exact Tests under a Normal Distribution Assumption**

If you are willing to assume that you are sampling from a normally-distributed population, then the Student-t test is nominally exact. The R function `t.test()` performs this operation, with the argument `alternative` set to be either ”less” or ”greater”.

21.8 **Don’t Speak of “the Probability That H_0 Is True”**

It is very important to understand that throughout this chapter, we cannot speak of “the probability that H_0 is true,” because we have no probablistic structure on H_0.

Consider the fair-coin problem at the beginning of this chapter. Suppose we hope to make a statement like, say, “Given that we got 62 heads out of 100 tosses, we find that the probability that this is a fair coin is 0.04.” What kind of derivation would need to go into this? It would go along the following lines:

\[Of course, this is approximate. The greater the value of `nreps`, the better the approximation.\]
\[P(H_0 \text{ is true} \mid \text{our data}) = \frac{P(H_0 \text{ is true and our data})}{P(\text{our data})} \]

\[= \frac{P(H_0 \text{ is true and our data})}{P(H_0 \text{ true}) \cdot P(\text{our data} \mid H_0 \text{ true}) + P(H_0 \text{ false}) \cdot P(\text{our data} \mid H_0 \text{ false})} \]

Through our modeling process, e.g. the discussion surrounding (??), we can calculate \(P(\text{our data} \mid H_0 \text{ is true}) \).

(The false case would be more complicated, since there are many different kinds of false cases here, for different values of \(p \), but could be handled similarly.) But what we don’t have is \(P(H_0 \text{ is true}) \).

We could certainly try to model that latter quantity, say by taking a sample of all possible pennies (if our coin is a penny), doing very extensive testing of them\(^{7}\) the proportion found to be fair would then be \(P(H_0 \text{ is true}) \). But lacking that, we have no probabilistic structure for \(P(H_0 \text{ is true}) \), and thus cannot use language like “the probability that \(H_0 \text{ is true},”

21.9 R Computation

The R function \texttt{t.test()}, discussed in Section ??, does both confidence intervals and tests, including p-values in the latter case.

21.10 The Power of a Test

In addition to the significance level of a test, we may also be interested in its \textbf{power} (or its many power values, as will be seen).

21.10.1 Example: Coin Fairness

For example, consider our first example in this chapter, in which we were testing a coin for fairness (Section ??). Our rule for a test at a 0.05 significance level turned out to be that we reject \(H_0 \) if we get fewer than 40 or more than 60 heads out of our 100 tosses. We might ask the question, say:

Suppose the true heads probability is 0.65. We don’t know, of course, but what if that were the case. That’s a pretty substantial departure from \(H_0 \), so hopefully we would reject. Well, what is the probability that we would indeed reject?

\(^{7}\text{Say, 100,000 tosses per coin.}\)
21.11. WHAT’S WRONG WITH SIGNIFICANCE TESTING—AND WHAT TO DO INSTEAD

We could calculate this. Let N denote the number of heads. Then the desired probability is $P(N < 40 \text{ or } N > 60) = P(N < 40) + P(N > 60)$. Let’s find the latter.

Once again, since N has a binomial distribution, it is approximately normal, in this case with mean $np = 100 \times 0.65 = 65$ and variance $np(1 - p) = 100 \times 0.65 \times 0.35 = 22.75$. Then $P(N > 60)$ is about

$$1 - \text{pnorm}(60, 65, \text{sqrt}(22.75))$$

or about 0.85. So we would be quite likely to decide this is an unfair coin if (unknown to us) the true probability of heads is 0.65.

We say that the power of this test at $p = 0.65$ is 0.85. There is a different power for each p.

21.10.2 Example: Improved Light Bulbs

Let’s find the power of the test in Section ??, at $\mu = 1250$. Recall that we reject H_0 if $X > 1570.522$. Thus our power is

$$1 - \text{pgamma}(1570.522, 10, 1/1250)$$

This turns out to be about 0.197. So, if (remember, this is just a “what if?”) the true new mean were 1250, we’d only have about a 20% chance of discovering that the new bulbs are improved.

21.11 What’s Wrong with Significance Testing—and What to Do Instead

The first principle is that you must not fool yourself—and you are the easiest person to fool. So you have to be very careful about that. After you’ve not fooled yourself, it’s easy not to fool other scientists.—Richard Feynman, Nobel laureate in physics

“Sir Ronald [Fisher] has befuddled us, mesmerized us, and led us down the primrose path”—Paul Meehl, professor of psychology and the philosophy of science

Significance testing is a time-honored approach, used by tens of thousands of people every day. But it is “wrong.” I use the quotation marks here because, although significance testing is mathematically correct, it is at best noninformative and at worst seriously misleading.

8 The former would be found similarly, but would come out quite small.
CHAPTER 21. INTRODUCTION TO SIGNIFICANCE TESTS

21.11.1 History of Significance Testing, and Where We Are Today

We’ll see why significance testing has serious problems shortly, but first a bit of history.

When the concept of significance testing, especially the 5% value for α, was developed in the 1920s by Sir Ronald Fisher, many prominent statisticians opposed the idea—for good reason, as we’ll see below. But Fisher was so influential that he prevailed, and thus significance testing became the core operation of statistics.

So, significance testing became entrenched in the field, in spite of being widely recognized as faulty, to this day. Most modern statisticians understand this, even if many continue to engage in the practice. Here are a few places you can read criticism of testing:

- There is an entire book on the subject, *The Cult of Statistical Significance*, by S. Ziliak and D. McCloskey. Interestingly, on page 2, they note the prominent people who have criticized testing. Their list is a virtual “who’s who” of statistics, as well as physics Nobel laureate Richard Feynman and economics Nobelists Kenneth Arrow and Milton Friedman.

- See http://www.indiana.edu/~stigtsts/quotesagn.html for a nice collection of quotes from famous statisticians on this point.

- There is an entire chapter devoted to this issue in one of the best-selling elementary statistics textbooks in the nation.

There is quite a bit here on the problems of significance testing, and especially p.129.

21.11.2 The Basic Fallacy

To begin with, it’s absurd to test H_0 in the first place, because we know a priori that H_0 is false.

9Many are forced to do so, e.g. to comply with government standards in pharmaceutical testing. My own approach in such situations is to quote the test results but then point out the problems, and present confidence intervals as well.

Consider the coin example, for instance. No coin is absolutely perfectly balanced, and yet that is the question that significance testing is asking:

\[H_0 : p = 0.5000000000000000000000000000... \]

(21.15)

We know before even collecting any data that the hypothesis we are testing is false, and thus it’s nonsense to test it.

But much worse is this word “significant.” Say our coin actually has \(p = 0.502 \). From anyone’s point of view, that’s a fair coin! But look what happens in (?) as the sample size \(n \) grows. If we have a large enough sample, eventually the denominator in (?) will be small enough, and \(\hat{p} \) will be close enough to 0.502, that \(Z \) will be larger than 1.96 and we will declare that \(p \) is “significantly” different from 0.5. But it isn’t! Yes, 0.502 is different from 0.5, but NOT in any significant sense in terms of our deciding whether to use this coin in the Super Bowl.

The same is true for government testing of new pharmaceuticals. We might be comparing a new drug to an old drug. Suppose the new drug works only, say, 0.4% (i.e. 0.004) better than the old one. Do we want to say that the new one is “significantly” better? This wouldn’t be right, especially if the new drug has much worse side effects and costs a lot more (a given, for a new drug).

Note that in our analysis above, in which we considered what would happen in (?) as the sample size increases, we found that eventually everything becomes “significant”—even if there is no practical difference. This is especially a problem in computer science applications of statistics, because they often use very large data sets. A data mining application, for instance, may consist of hundreds of thousands of retail purchases. The same is true for data on visits to a Web site, network traffic data and so on. In all of these, the standard use of significance testing can result in our pouncing on very small differences that are quite insignificant to us, yet will be declared “significant” by the test.

Conversely, if our sample is too small, we can miss a difference that actually is significant—i.e. important to us—and we would declare that \(p \) is NOT significantly different from 0.5. In the example of the new drug, this would mean that it would be declared as “not significantly better” than the old drug, even if the new one is much better but our sample size wasn’t large enough to show it.

In summary, the basic problems with significance testing are

- \(H_0 \) is improperly specified. What we are really interested in here is whether \(p \) is near 0.5, not whether it is exactly 0.5 (which we know is not the case anyway).
- Use of the word *significant* is grossly improper (or, if you wish, grossly misinterpreted).

Significance testing forms the very core usage of statistics, yet you can now see that it is, as I said
above, “at best noninformative and at worst seriously misleading.” This is widely recognized by thinking statisticians and prominent scientists, as noted above. But the practice of significance testing is too deeply entrenched for things to have any prospect of changing.

21.11.3 You Be the Judge!

This book has been written from the point of view that every educated person should understand statistics. It impacts many vital aspects of our daily lives, and many people with technical degrees find a need for it at some point in their careers.

In other words, statistics is something to be used, not just learned for a course. You should think about it critically, especially this material here on the problems of significance testing. You yourself should decide whether the latter’s widespread usage is justified.

21.11.4 What to Do Instead

Note carefully that I am not saying that we should not make a decision. We do have to decide, e.g. decide whether a new hypertension drug is safe or in this case decide whether this coin is “fair” enough for practical purposes, say for determining which team gets the kickoff in the Super Bowl. But it should be an informed decision, and even testing the modified H_0 above would be much less informative than a confidence interval.

In fact, the real problem with significance tests is that they take the decision out of our hands. They make our decision mechanically for us, not allowing us to interject issues of importance to us, such possible side effects in the drug case.

So, what can we do instead?

In the coin example, we could set limits of fairness, say require that p be no more than 0.01 from 0.5 in order to consider it fair. We could then test the hypothesis

$$H_0 : 0.49 \leq p \leq 0.51 \quad (21.16)$$

Such an approach is almost never used in practice, as it is somewhat difficult to use and explain. But even more importantly, what if the true value of p were, say, 0.51001? Would we still really want to reject the coin in such a scenario?

Forming a confidence interval is the far superior approach. The width of the interval shows us whether n is large enough for \hat{p} to be reasonably accurate, and the location of the interval tells us whether the coin is fair enough for our purposes.
Note that in making such a decision, we do NOT simply check whether 0.5 is in the interval. That would make the confidence interval reduce to a significance test, which is what we are trying to avoid. If for example the interval is (0.502,0.505), we would probably be quite satisfied that the coin is fair enough for our purposes, even though 0.5 is not in the interval.

On the other hand, say the interval comparing the new drug to the old one is quite wide and more or less equal positive and negative territory. Then the interval is telling us that the sample size just isn’t large enough to say much at all.

Significance testing is also used for model building, such as for predictor variable selection in regression analysis (a method to be covered in Chapter ??). The problem is even worse there, because there is no reason to use $\alpha = 0.05$ as the cutoff point for selecting a variable. In fact, even if one uses significance testing for this purpose—again, very questionable—some studies have found that the best values of α for this kind of application are in the range 0.25 to 0.40, far outside the range people use in testing.

In model building, we still can and should use confidence intervals. However, it does take more work to do so. We will return to this point in our unit on modeling, Chapter ??.

21.11.5 Decide on the Basis of “the Preponderance of Evidence”

I was in search of a one-armed economist, so that the guy could never make a statement and then say: “on the other hand”—President Harry S Truman

If all economists were laid end to end, they would not reach a conclusion—Irish writer George Bernard Shaw

In the movies, you see stories of murder trials in which the accused must be “proven guilty beyond the shadow of a doubt.” But in most noncriminal trials, the standard of proof is considerably lighter, preponderance of evidence. This is the standard you must use when making decisions based on statistical data. Such data cannot “prove” anything in a mathematical sense. Instead, it should be taken merely as evidence. The width of the confidence interval tells us the likely accuracy of that evidence. We must then weigh that evidence against other information we have about the subject being studied, and then ultimately make a decision on the basis of the preponderance of all the evidence.

Yes, juries must make a decision. But they don’t base their verdict on some formula. Similarly, you the data analyst should not base your decision on the blind application of a method that is usually of little relevance to the problem at hand—significance testing.
21.11.6 Example: the Forest Cover Data

In Section ??, we found that an approximate 95% confidence interval for \(\mu_1 - \mu_2 \) was

\[
223.8 - 226.3 \pm 2.3 = (-4.8, -0.3)
\] \hspace{1cm} (21.17)

Clearly, the difference in HS12 between cover types 1 and 2 is tiny when compared to the general size of HS12, in the 200s. Thus HS12 is not going to help us guess which cover type exists at a given location. Yet with the same data, we would reject the hypothesis

\[H_0 : \mu_1 = \mu_2 \] \hspace{1cm} (21.18)

and say that the two means are “significantly” different, which sounds like there is an important difference—which there is not.

21.11.7 Example: Assessing Your Candidate’s Chances for Election

Imagine an election between Ms. Smith and Mr. Jones, with you serving as campaign manager for Smith. You’ve just gotten the results of a very small voter poll, and the confidence interval for \(p \), the fraction of voters who say they’ll vote for Smith, is (0.45, 0.85). Most of the points in this interval are greater than 0.5, so you would be highly encouraged! You are certainly not sure of the final election result, as a small part of the interval is below 0.5, and anyway voters might change their minds between now and the election. But the results would be highly encouraging.

Yet a significance test would say “There is no significant difference between the two candidates. It’s a dead heat.” Clearly that is not telling the whole story. The point, once again, is that the confidence interval is giving you much more information than is the significance test.

Exercises

1. In the light bulb example on page ??, suppose the actual observed value of \(\bar{X} \) turns out to be 15.88. Find the p-value.
Chapter 22

General Statistical Estimation and Inference

Earlier, we often referred to certain estimators as being “natural.” For example, if we are estimating a population mean, an obvious choice of estimator would be the sample mean. But in many applications, it is less clear what a “natural” estimate for a population quantity of interest would be. We will present general methods for estimation in this section.

We will also discuss advanced methods of inference.

22.1 General Methods of Parametric Estimation

Let’s begin with a simple motivating example.

22.1.1 Example: Guessing the Number of Raffle Tickets Sold

You’ve just bought a raffle ticket, and find that you have ticket number 68. You check with a couple of friends, and find that their numbers are 46 and 79. Let c be the total number of tickets. How should we estimate c, using our data 68, 46 and 79?

Let X_1, X_2, \ldots, X_n denote the ticket numbers we are aware of. In the above case, $n = 3$, with $X_1 = 68$ etc. We will treat the X_i as a random sample from 1,2,\ldots,c. This assumption should be carefully considered. Recall that this means that X_1, X_2, \ldots, X_n are i.i.d. with a (discrete) uniform distribution on 1,2,\ldots,c.

If we know, say, that the three friends bought their tickets right after they became available.
This might mean the X_i are nearer to 1 than to c, in which case the assumption of the uniform distribution may not be very good. Or, suppose we know that the three friends were standing close to each other in line. Then the independence assumption might be dubious.

And even if not, and even if the X_i are considered a sample with the uniformity assumption satisfied, it would technically be what is called a simple random sample (Section ??), since the “sampling” is done without replacement; no two people get the same ticket.

So, in practice one would need to consider how good our assumption is that we have a random sample. If $n << c$, the various probabilities are virtually identical for sampling with and without replacement, so that may not be an issue, so we would just worry about the uniformity.

But let’s suppose that has been resolved, and then look at how we can estimate c.

22.1.2 Method of Moments

One approach, a very intuitive one, is the Method of Moments (MM). It is less commonly used than the other method we’ll cover, Maximum Likelihood, but is much easier to explain. Also, in recent years, MM has become more popular in certain fields, such as random graph models (Section 2.13).

22.1.2.1 Example: Lottery Model

Let X be distributed the same as the X_i, i.e. it is uniformly distributed on 1,2,...,c.

Note first that

$$E(X) = \frac{c + 1}{2}$$ \hspace{1cm} (22.1)

Let’s solve for c:

$$c = 2EX - 1$$ \hspace{1cm} (22.2)

We know that we can use

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$ \hspace{1cm} (22.3)
22.1. GENERAL METHODS OF PARAMETRIC ESTIMATION

to estimate EX, so by (??), $2\bar{X} - 1$ is an intuitive estimate of c. Thus we take our estimator for c to be

$$\hat{c} = 2\bar{X} - 1$$

(22.4)

This estimator is called the Method of Moments estimator of c.

22.1.2.2 General Method

Say our sample is $X_1, ..., X_n; a$, and we have k parameters to estimate, $\theta_1, ..., \theta_k$. Our goal is to come up with estimators $\hat{\theta}_1, ..., \hat{\theta}_k$.

Here is the procedure:

- For each $i = 1, ..., k$, write $E(X^k)$ as a function of the θ_j,

$$E(X^k) = g_i(\theta_1, ..., \theta_k)$$

(22.5)

- On the left side of (??), replace $E(X^i)$ by the corresponding sample moment

$$\frac{1}{n} \sum_{r=1}^{n} X_i^r$$

(22.6)

- On the right side of (??), replace each θ_s by $\hat{\theta}_s$.

- Solve for the $\hat{\theta}_s$

In the raffle example, we had $k = 1$, $\theta_1 = c$, $g_1(c) = (c + 1)/2$ and so on.

22.1.3 Method of Maximum Likelihood

Another method, much more commonly used, is called the Method of Maximum Likelihood.

22.1.3.1 Example: Raffle Model

In our example above, it means asking the question, “What value of c would have made our data—68, 46, 79—most likely to happen?” Well, let’s find what is called the likelihood, i.e. the
probability of our particular data values occurring:

\[L = P(X_1 = 68, X_2 = 46, X_3 = 79) = \begin{cases} \left(\frac{1}{e}\right)^3, & \text{if } c \geq 79 \\ 0, & \text{otherwise} \end{cases} \]

(22.7)

Now keep in mind that c is a fixed, though unknown constant. It is not a random variable. What we are doing here is just asking “What if” questions, e.g. “If c were 85, how likely would our data be? What about c = 91?”

Well then, what value of c maximizes (22.7)? Clearly, it is c = 79. Any smaller value of c gives us a likelihood of 0. And for c larger than 79, the larger c is, the smaller (22.7) is. So, our maximum likelihood estimator (MLE) is 79. In general, if our sample size in this problem were n, our MLE for c would be

\[\hat{c} = \max_i X_i \]

(22.8)

Note that in our earlier discussion of whether our data can be treated as a random sample, we raised the issue of the independence assumption. Note that this assumption in fact was used for \(\hat{c} \), while it was not for \(\hat{c} \).

22.1.3.2 General Procedure

Say again our random sample is \(X_1, \ldots, X_n \) and we have k parameters to estimate, \(\theta_1, \ldots, \theta_k \). Our goal is to come up with estimators \(\hat{\theta}_1, \ldots, \hat{\theta}_k \).

Denote the pmf or density of our \(X_i \) as \(f(t; \theta_1, \ldots, \theta_k) \). Then our estimators \(\hat{\theta}_i \) are the values that maximize the likelihood

\[\Pi_{i=1}^n f(X_i; \theta_1, \ldots, \theta_k) \]

(22.9)

with respect to the \(\theta_j \).

For “smooth” problems, i.e. ones in which the likelihood is a differentiable function of the parameters, maximization involves taking the derivatives with respect to the \(\theta_j \), setting them to 0, then solving for the \(\theta_j \); the solutions are the \(\hat{\theta}_j \).

Since it is easier to take derivatives of sums than products, typically one maximizes the log likelihood

\[\sum_{i=1}^n \ln[f(X_i; \theta_1, \ldots, \theta_k)] \]

(22.10)
22.1.4 Example: Estimation of the Parameters of a Gamma Distribution

As another example, suppose we have a random sample $X_1, ..., X_n$ from a gamma distribution.

$$f_X(t) = \frac{1}{\Gamma(c)} \lambda^c t^{c-1} e^{-\lambda t}, \; t > 0 \quad (22.11)$$

for some unknown c and λ. How do we estimate c and λ from the X_i?

22.1.4.1 Method of Moments

Let’s try the Method of Moments, as follows. We have two population parameters to estimate, c and λ, so we need to involve two moments of X. That could be EX and $E(X^2)$, but here it would more conveniently be EX and $\text{Var}(X)$. We know from our previous unit on continuous random variables, Chapter 7, that

$$EX = \frac{c}{\lambda} \quad (22.12)$$

$$\text{Var}(X) = \frac{c}{\lambda^2} \quad (22.13)$$

In our earlier notation, this would be $r = 2$, $\theta_1 = c$, $\theta_2 = \lambda$ and $g_1(c, \lambda) = c/\lambda$ and $g_2(c, \lambda) = c/\lambda^2$. Switching to sample analogs and estimates, we have

$$\hat{c} = \frac{\bar{X}}{\lambda} \quad (22.14)$$

$$\frac{\hat{c}}{\lambda^2} = s^2 \quad (22.15)$$

Dividing the two quantities yields

$$\hat{\lambda} = \frac{\bar{X}}{s^2} \quad (22.16)$$

which then gives

$$\hat{c} = \frac{\bar{X}^2}{s^2} \quad (22.17)$$
22.1.4.2 MLEs

What about the MLEs of \(c \) and \(\lambda \)? Remember, the \(X_i \) are continuous random variables, so the likelihood function, i.e. the analog of (22.11), is the product of the density values:

\[
L = \prod_{i=1}^{n} \left[\frac{1}{\Gamma(c)} \lambda^c X_i^{c-1} e^{-\lambda X_i} \right] \tag{22.18}
\]

\[
= \left[\frac{\lambda^c}{\Gamma(c)} \right]^n (\prod_{i=1}^{n} X_i)^{c-1} e^{-\lambda \sum_{i=1}^{n} X_i} \tag{22.19}
\]

In general, it is usually easier to maximize the log likelihood (and maximizing this is the same as maximizing the original likelihood):

\[
l = (c - 1) \sum_{i=1}^{n} \ln(X_i) - \lambda \sum_{i=1}^{n} X_i + n c \ln(\lambda) - n \ln(\Gamma(c)) \tag{22.20}
\]

One then takes the partial derivatives of (22.20) with respect to \(c \) and \(\lambda \), and sets the derivatives to zero. The solution values, \(\hat{c} \) and \(\hat{\lambda} \), are then the MLEs of \(c \) and \(\lambda \). Unfortunately, in this case, these equations do not have closed-form solutions. So the equations must be solved numerically. (In fact, numerical methods are needed even more in this case, because finding the derivative of \(\Gamma(c) \) is not easy.)

22.1.5 R’s mle() Function

R provides a function, \texttt{mle()}, for finding MLEs in mathematically intractable situations such as the one in the last section.

Note: The function is in the \texttt{stats4} library, so run

\[
> \text{library}\left(\text{stats4}\right)
\]

first.

Here’s an example in that context. We’ll simulate some data from a gamma distribution with given parameter values, then pretend we don’t know those, and find the MLEs from the data:

\[
> n \leftarrow 1000
\]
\[
> x \leftarrow \text{rgamma}(n, \text{shape}=2, \text{rate}=1) \quad \# \text{Erlang, } r = 2, \text{ lambda is } 1
\]

\[
\# \text{function to compute negative log likelihood}
ll \leftarrow \text{function}(c, \lambda) \{ \}
\]

\[
> l1 \leftarrow ll(c, \lambda)
\]

\[
> \text{mle}(ll, x)
\]

\[
\text{MLEs: } c \approx 2.04, \lambda \approx 1.00
\]

\[
\text{Likelihood: } L \approx 0.001
\]
22.1. GENERAL METHODS OF PARAMETRIC ESTIMATION

loglik <- (c-1) * sum(log(x)) - sum(x)*lambda + n*c*log(lambda) -
n*log(gamma(c))

-loglik

}summary(mle(minuslogl=ll,start=list(c=1.5,lambda=2)))

Maximum likelihood estimation

Call:
 mle(minuslogl = ll, start = list(c = 1.5, lambda = 2))

Coefficients:

Estimate Std. Error
 c 2.147605 0.08958823
 lambda 1.095344 0.05144393

-2 log L: 3072.181

How did this work? The main task we have is to write a function that calculates the negative log likelihood, with that function’s arguments will be the parameters to be estimated. We defined our function and named it ll().

Fortunately for us, mle() calculates the derivatives numerically too, so we didn’t need to specify them in the log likelihood function. (Needless to say, this function thus cannot be used in a problem in which derivatives cannot be used, such as the lottery example above.)

We also need to supply mle() with initial guesses for the parameters. That’s done in the start argument. I more or less arbitrarily chose these values. You may have to experiment, though, as some sets of initial values may not result in convergence.

The standard errors of the estimated parameters are also printed out, enabling the formation of confidence intervals and significance tests. (See Section ?? for the case of confidence intervals.) In fact, you can get the estimated covariance matrix for the vector of estimated parameters. In our case here:

> mleout <- mle(minuslogl=ll,start=list(c=1.5,lambda=2))
> solve(mleout$details$hessian)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.008026052 0.0004093526</td>
</tr>
<tr>
<td>lambda</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.004093526 0.002646478</td>
</tr>
</tbody>
</table>

By the way, there were also some warning messages, due to the fact that during the iterative maximization process, some iterations generated guesses for \(\lambda \) were 0 or near it, causing problems with log().

Maximizing the likelihood meant minimizing the negative log likelihood. Why did the authors of R

1Note that in R, log() calculates the natural logarithm by default.
write it this way, and in fact report -2 times the log likelihood? The answer is that this is related to a significance testing procedure, the likelihood ratio test, a matter beyond the scope of this book.

Note that if you are using `mle()` with a parametric family for which R supplies a density function, it’s quite convenient to simply use that in our likelihood function code:

```r
> ll <- function(c, lambda) -sum(dgamma(x, shape=c, rate=lambda, log=TRUE))
> summary(mle(minuslogl=ll, start=list(c=1.5, lambda=2)))
```

Maximum likelihood estimation

```
Call:
mle(minuslogl = ll, start = list(c = 1.5, lambda = 2))

Coefficients:
            Estimate Std. Error
     c  2.147605  0.08958823
lambda 1.095344  0.05144393

-2 log L: 3072.181
```

R made things so convenient that we didn’t even need to take the logs ourselves.

22.1.6 R’s `gmm()` Function

A function to do Method of Moments estimation is also available, in R’s `gmm` package on CRAN. The package actually does more, something called Generalized Method of Moments, but we’ll see how to use it in elementary form here.

The work is done by the eponymous function `gmm()`. In our usage here, the call form is

```
gmm(data, momentftn{, start})
```

where `data` is our data in matrix or vector form, `momentftn` specifies the moments, and `start` is our initial guess for the iterative solution process.

The function `momentftn()` specifies how to compute the differences between the estimated values of the population moments (in terms of the parameter estimates) and the corresponding sample powers. During the computation, `gmm()` will set the means of these differences to 0, iterating until convergence.
22.1.6.1 Example: Bodyfat Data

Our data set will be `bodyfat`, which is included in the `mfp` package, with measurements on 252 men. The first column of this data frame, `brozek`, is the percentage of body fat, which when converted to a proportion is in (0,1). That makes it a candidate for fitting a beta distribution (Section 7.6.5).

Here is our `momentfnt()`:

```r
f <- function (th, x) {
  t1 <- th[1]
  t2 <- th[2]
  t12 <- t1 + t2
  meanb <- t1 / t12
  m1 <- meanb - x
  m2 <- t1*t2 / (t12^2 * (t12+1)) - (x - meanb)^2
  f <- cbind(m1,m2)
  return(f)
}
```

Here the argument `th` ("theta") will be the MM estimates (at any given iteration) of the population parameters, in this case of α and β.

Now look at the line

```r
m1 <- meanb - x
```

The value `meanb` is our estimate in the currently iteration of the mean of the beta distribution, while `x` is our data. The `gmm()` function, in calling our `g()`, will calculate the average of `m1` over all our data, and then in setting that average to 0, we are equating our parametric estimate of the population mean to our sample mean — exactly what MM is supposed to do.

Let’s try it:

```r
> library(mfp)
> data(bodyfat)
> gmm(g, x, c(alpha=0.1, beta=0.1))
```

Objective function value: 2.559645e-10

<table>
<thead>
<tr>
<th>alpha</th>
<th>beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6714</td>
<td>19.9969</td>
</tr>
</tbody>
</table>
Convergence code = 0
> hist(bodyfat$brozek/100, xlim=c(0,1), probability=TRUE)
> curve(dbeta(x, 4.67, 20.00), add=TRUE)

The result is seen in Figure ??.
At least visually, the fit seems pretty good.
22.1. **GENERAL METHODS OF PARAMETRIC ESTIMATION**

22.1.7 **More Examples**

Suppose \(f_W(t) = ct^{c-1} \) for \(t \) in \((0,1)\), with the density being 0 elsewhere, for some unknown \(c > 0 \). We have a random sample \(W_1, ..., W_n \) from this density.

Let’s find the Method of Moments estimator.

\[
EW = \int_0^1 tct^{c-1} \, dt = \frac{c}{c + 1} \quad (22.21)
\]

So, set

\[
\hat{c} = \frac{\bar{W}}{\bar{c} + 1} \quad (22.22)
\]

yielding

\[
\hat{c} = \frac{1}{1 - \bar{W}} \quad (22.23)
\]

What about the MLE?

\[
L = \prod_{i=1}^n cW_i^{c-1} \quad (22.24)
\]

so

\[
l = n \ln c + (c - 1) \sum_{i=1}^n \ln W_i \quad (22.25)
\]

Then set

\[
0 = \frac{n}{c} + \sum_{i=1}^n \ln W_i \quad (22.26)
\]

and thus

\[
\hat{c} = \frac{1}{n} \sum_{i=1}^n \ln W_i \quad (22.27)
\]
As in Section ??, not every MLE can be determined by taking derivatives. Consider a continuous analog of the example in that section, with \(f_W(t) = \frac{1}{c} \) on \((0,c)\), 0 elsewhere, for some \(c > 0 \).

The likelihood is

\[
\left(\frac{1}{c} \right)^n
\]

as long as

\[
c \geq \max_i W_i
\]

and is 0 otherwise. So,

\[
\hat{c} = \max_i W_i
\]

as before.

Now consider a different problem. Suppose the random variable \(X \) is equal to 1, 2 and 3, with probabilities \(c, c \) and \(1-2c \). The value \(c \) is thus a population parameter. We have a random sample \(X_1, ..., X_n \) from this population. Let’s find the Method of Moments Estimator of \(c \), and its bias.

First,

\[
EX = c \cdot 1 + c \cdot 2 + (1-2c) \cdot 3 = 3 - 3c
\]

Thus

\[
c = (3 - EX)/3
\]

and so set

\[
\hat{c} = (3 - \bar{X})/3
\]
22.1. General Methods of Parametric Estimation

\[E \hat{c} = E[(3 - \bar{X})/3] \] \hspace{1cm} (22.34)

\[= \frac{1}{3} \cdot (3 - E\bar{X}) \] \hspace{1cm} (22.35)

\[= \frac{1}{3}[3 - EX] \] \hspace{1cm} (22.36)

\[= \frac{1}{3}[3 - (3 - 3c)] \] \hspace{1cm} (22.37)

\[= c \] \hspace{1cm} (22.38)

On average, not too high and not too low; we say the bias is 0.

22.1.8 Asymptotic Properties

Most of the inference methods in this book use large-sample, i.e. asymptotic techniques, based on the Central Limit Theorem. Let’s look at the asymptotic properties of Method of Moments and Maximum Likelihood estimators.

22.1.8.1 Consistency

We say that an estimator \(\hat{\nu} \) of some parameter \(\nu \) is consistent if, with probability 1,

\[\lim_{n \to \infty} \hat{\nu} = \nu \] \hspace{1cm} (22.39)

where \(n \) is the sample size. In other words, as the sample size grows, the estimator eventually converges to the true population value. Clearly, in most situations consistency is a minimal property we want our estimators to have.

Of course here \(\bar{X} \) is a consistent estimator of \(E(X) \), and (??) is a consistent estimator of \(E(X^i) \). So, as long as the \(g_i() \) in (??) are continous etc., we see that the Method of Moments gives us consistent estimators.

Showing consistency for MLEs is a little more involved. To start, recall (??). Its derivative with respect to \(\theta_j \) is

\[\sum_{i=1}^{n} \frac{f'(X_i; \theta_1, ..., \theta_k)}{f(X_i; \theta_1, ..., \theta_k)} \] \hspace{1cm} (22.40)
For each value of \(\theta = (\theta_1, ..., \theta_k)' \), this will converge to

\[
E \left(\frac{f'(X; \theta)}{f(X; \theta)} \right)
\]

(22.41)

Let \(\eta \) denote the true population value of \(\theta \), with \(\hat{\theta} \) being the MLE. The latter is the root of (?),

\[
0 = \sum_{i=1}^{n} \frac{f'(X_i; \hat{\theta})}{f(X_i; \hat{\theta})}
\]

(22.42)

Moreover, in for instance the continuous case (we’ll be implicitly assuming some mathematical conditions here, e.g. that roots are unique),

\[
E \left(\frac{f'(X; \eta)}{f(X; \eta)} \right) = \int_{-\infty}^{\infty} f'(t; \eta) \, dt
\]

(22.43)

\[
= \frac{d}{dt} \int_{-\infty}^{\infty} f(t; \eta) \, dt
\]

(22.44)

\[
= \frac{d}{dt} 1
\]

(22.45)

\[
= 0
\]

(22.46)

Due to the uniqueness of the roots, we see that \(\hat{\theta} \), the root of (??) must converge to \(\eta \), the root of (??).

22.1.8.2 Approximate Confidence Intervals

Usually we are not satisfied with simply forming estimates (called point estimates). We also want some indication of how accurate these estimates are, in the form of confidence intervals (interval estimates).

In many special cases, finding confidence intervals can be done easily on an ad hoc basis. Look, for instance, at the Method of Moments Estimator in Section ???. Our estimator (??) is a linear function of \(X \), so we easily obtain a confidence interval for \(c \) from one for \(EX \).

Another example is (??). Taking the limit as \(n \to \infty \) the equation shows us (and we could verify) that

\[
c = \frac{1}{E[\ln W]}
\]

(22.47)
22.2. BIAS AND VARIANCE

Defining $X_i = \ln W_i$ and $\bar{X} = (X_1 + \ldots + X_n) / n$, we can obtain a confidence interval for EX in the usual way. We then see from (??) that we can form a confidence interval for c by simply taking the reciprocal of each endpoint of the interval, and swapping the left and right endpoints.

What about in general? For the Method of Moments case, our estimators are functions of the sample moments, and since the latter are formed from sums and thus are asymptotically normal, the delta method (Section ??) can be used to show that our estimators are asymptotically normal and to obtain asymptotic variances for them.

There is a well-developed asymptotic theory for MLEs, which under certain conditions shows asymptotic normality with a certain asymptotic variance, thus enabling confidence intervals. The theory also establishes that MLEs are in a certain sense optimal among all estimators. We will not pursue this here, but will note that mle() does give standard errors for the estimates, thus enabling the formation of confidence intervals.

22.2 Bias and Variance

The notions of bias and variance play central roles in the evaluation of goodness of estimators.

22.2.1 Bias

This bowl of porridge is not too big, not too small, but just right—from the children’s story, Goldilocks (paraphrased)

Definition 42 Suppose $\hat{\theta}$ is an estimator of θ. Then the bias of $\hat{\theta}$ is

$$bias = E(\hat{\theta}) - \theta$$

(22.48)

If the bias is 0, we say that the estimator is unbiased.

So, if $\hat{\theta}$ is an unbiased estimator of θ, then its average value over all possible samples is not too high, not too low, but just right.

At first that would seem to be a “must have” property for any estimator. But it’s very important to note that, in spite of the pejorative-sounding name, bias is not an inherently bad property for an estimator to have. Indeed, most good estimators are at least slightly biased.\(^2\) We’ll explore this

\(^2\)Typically, though, the amount of bias will go to 0 as the sample size goes to infinity. That is the case for most consistent estimators (Sec. ??, though technically it is not implied by consistency; if a sequence of random variables converges to a limit, their expected values do not necessarily converge to that limit, or converge at all).
in the next section.

22.2.2 Why Divide by n-1 in s^2?

It should be noted that it is customary in (??) to divide by n-1 instead of n, for reasons that are largely historical. Here’s the issue:

If we divide by n, as we have been doing, then it turns out that s^2 is biased.

$$E(s^2) = \frac{n-1}{n} \cdot \sigma^2$$ \hspace{1cm} (22.49)

Think about this in the Davis people example, once again in the notebook context. Remember, here n is 1000, and each line of the notebook represents our taking a different random sample of 1000 people. Within each line, there will be entries for W_1 through W_{1000}, the weights of our 1000 people, and for \overline{W} and s. For convenience, let’s suppose we record that last column as s^2 instead of s.

Now, say we want to estimate the population variance σ^2. As discussed earlier, the natural estimator for it would be the sample variance, s^2. What (??) says is that after looking at an infinite number of lines in the notebook, the average value of s^2 would be just...a...little...bit...too...small. All the s^2 values would average out to 0.999σ^2, rather than to σ^2. We might say that s^2 has a little bit more tendency to underestimate σ^2 than to overestimate it.

So, (??) implies that s^2 is a biased estimator of the population variance σ^2, with the amount of bias being

$$\frac{n-1}{n} \cdot \sigma^2 - \sigma^2 = -\frac{1}{n} \cdot \sigma^2$$ \hspace{1cm} (22.50)

Let’s prove (??). As before, let W_1, \ldots, W_n be a random sample from some population. So, $EW_i = \mu$ and $Var(W_i) = \sigma^2$, where again μ and σ^2 are the population mean and variance.

It will be more convenient to work with ns^2 than s^2, since it will avoid a lot of dividing by n. So, write
22.2. BIAS AND VARIANCE

\[ns^2 = \sum_{i=1}^{n} (W_i - \bar{W})^2 \] (def.) \hspace{1cm} (22.51)

\[= \sum_{i=1}^{n} [(W_i - \mu) + (\mu - \bar{W})]^2 \] (alg.) \hspace{1cm} (22.52)

\[= \sum_{i=1}^{n} (W_i - \mu)^2 + 2(\mu - \bar{W}) \sum_{i=1}^{n} (W_i - \mu) + n(\mu - \bar{W})^2 \] (alg.) \hspace{1cm} (22.53)

But that middle sum is

\[\sum_{i=1}^{n} (W_i - \mu) = \sum_{i=1}^{n} W_i - n\mu = n\bar{W} - n\mu \] \hspace{1cm} (22.54)

So,

\[ns^2 = \sum_{i=1}^{n} (W_i - \mu)^2 - n(\bar{W} - \mu)^2 \] \hspace{1cm} (22.55)

Now let’s take the expected value of \(?? \). First,

\[E \left(\sum_{i=1}^{n} (W_i - \mu)^2 \right) = \sum_{i=1}^{n} E[(W_i - \mu)^2] \] (E is lin.) \hspace{1cm} (22.56)

\[= \sum_{i=1}^{n} E[(W_i - EW_i)^2] \] (W_i distr. as pop.) \hspace{1cm} (22.57)

\[= \sum_{i=1}^{n} Var(W_i) \] (def. of Var()) \hspace{1cm} (22.58)

\[= \sum_{i=1}^{n} \sigma^2 \] (W_i distr. as pop.) \hspace{1cm} (22.59)

\[= n\sigma^2 \] \hspace{1cm} (22.60)

Also,
\[E[(\bar{W} - \mu)^2] = E[(\bar{W} - E\bar{W})^2] \]

(22.61)

\[= \text{Var}(\bar{W}) \quad \text{(def. of Var())} \]

(22.62)

\[= \frac{\sigma^2}{n} \quad \text{(??)} \]

(22.63)

Applying these last two findings to (??), we get (??).

\[E(s^2) = \frac{n - 1}{n} \sigma^2 \]

(22.64)

The earlier developers of statistics were bothered by this bias, so they introduced a “fudge factor” by dividing by n-1 instead of n in (??). We will call that \(\tilde{s}^2 \):

\[\tilde{s}^2 = \frac{1}{n - 1} \sum_{i=1}^{n} (W_i - \bar{W})^2 \]

(22.65)

This is the “classical” definition of sample variance, in which we divide by n-1 instead of n.

The R functions \texttt{var()} and \texttt{sd()} calculate the versions of \(s^2 \) and \(s \), respectively, that have a divisor of n-1. In other words, \texttt{var()} calculates (??), and \texttt{sd()} computes its square root.

22.2.2.1 But in This Book, We Divide by n, not n-1 Anyway

But we will use n. After all, when n is large—which is what we are assuming by using the Central Limit Theorem in most of the inference machinery here—it doesn’t make any appreciable difference. Clearly it is not important in our Davis example, or our bus simulation example.

Moreover, speaking generally now rather than necessarily for the case of \(s^2 \) there is no particular reason to insist that an estimator be unbiased anyway. An alternative estimator may have a little bias but much smaller variance, and thus might be preferable.

And anyway, even though the classical version of \(s^2 \), i.e. \(s^2 \), is an unbiased estimator for \(\sigma^2 \), \(\tilde{s} \) is not an unbiased estimator for \(\sigma \), the population standard deviation (see below). Since we typically have use for \(\tilde{s} \) rather than for \(s^2 \)—in (??), for example—you can see that unbiasedness is not such an important property after all.

Let’s show that \(\tilde{s} \) is biased. Recalling the shortcut formula \(\text{Var}(U) = E(U^2) - (EU)^2 \), we have
22.2. BIAS AND VARIANCE

\[0 < Var(\tilde{s}) = E[\tilde{s}^2] - [E\tilde{s}]^2 = \sigma^2 - [E\tilde{s}]^2 \]

since \(\tilde{s}^2 \) is an unbiased estimator of \(\sigma^2 \). So,

\[E\tilde{s} < \sigma \]

and \(\tilde{s} \) is biased downward\(^3\).

So, \(\tilde{s} \), the standard estimator of \(\sigma \), is indeed biased, as are many other standard estimators of various quantities. It would be futile to insist on unbiasedness as a criterion of the goodness of an estimator.

22.2.3 Example of Bias Calculation: Max from \(U(0,c) \)

Let’s find the bias of the estimator \(\hat{c} \). To get \(E\hat{c} \) we need the density of that estimator, which we get as follows:

\[P(\hat{c} \leq t) = P(\text{all } W_i \leq t) \text{ (definition)} \]

\[= \left(\frac{t}{c} \right)^n \text{ (density of } W_i) \]

So,

\[f_{\hat{c}}(t) = \frac{n}{c^n} t^{n-1} \]

Integrating against \(t \), we find that

\[E\hat{c} = \frac{n}{n + 1} c \]

\(^3\)The reader may wonder why we have strict inequality in (22.66). But although it is true that \(\text{Var}(U) \) can be 0, you’ll recall that that occurs only when \(U \) is constant. Here it would mean that \(\tilde{s} \) is constant. This in turn would mean that all the \(W_i \) in (22.66) are identical, with probability 1.0—which would mean the population random variable \(W \) is constant, e.g. everyone in Davis has the same weight. So, other that in that absurd situation, the inequality in (22.66) will indeed be strict.
So the bias is $c/(n+1)$, not bad at all.

22.2.4 Example of Bias Calculation: Gamma Family

Let us find via simulation, the bias of the Method of Moments Estimator of the parameter λ for the family of gamma distributions. (The estimator was derived in Section ??.)

```r
lambbias <- function(r, lamb, n, nreps) {
  lambhat <- vector(length=nreps)
  unfudge <- (n-1) / n
  for (i in 1:nreps) {
    x <- rgamma(n, shape=r, rate=lamb)
    xbar <- mean(x)
    s2 <- var(x) * unfudge
    lambhat[i] <- xbar / s2
  }
  mean(lambhat) - lamb
}
```

22.2.5 Tradeoff Between Variance and Bias

Consider a general estimator Q of some population value b. Then a common measure of the quality (of course there are many others) of the estimator Q is the mean squared error (MSE),

$$E[(Q - b)^2]$$ \hfill (22.74)

Of course, the smaller the MSE, the better.

One can break (??) down into variance and (squared) bias components, as follows:

\[
MSE(Q) = E[(Q - b)^2] \quad \text{(definition)}
\]
\[
= E[((Q - EQ) + (EQ - b))^2] \quad \text{(algebra)}
\]
\[
= E[(Q - EQ)^2] + 2E[(Q - EQ)(EQ - b)] + E[(EQ - b)^2] \quad \text{(E props.)}
\]
\[
= E[(Q - EQ)^2] + E[(EQ - b)^2] \quad \text{(factor out constant EQ-b)}
\]
\[
= var(Q) + (EQ - b)^2 \quad \text{(def. of Var(), fact that EQ-b is const.)}
\]
\[
= \text{variance + squared bias} \quad \text{(22.80)}
\]

4In reading the following derivation, keep in mind that EQ and b are constants.
In other words, in discussing the accuracy of an estimator—especially in comparing two or more candidates to use for our estimator—the average squared error has two main components, one for variance and one for bias. In building a model, these two components are often at odds with each other; we may be able to find an estimator with smaller bias but more variance, or vice versa.

We also see from (??) that a little bias in an estimator may be quite tolerable, as long as the variance is low. This is good, because as mentioned earlier, most estimators are in fact biased.

These point will become central in Chapters ?? and ??.

22.3 Simultaneous Inference Methods

Events of small probability happen all the time, because there are so many of them—Jim Sutton, old Cal Poly economics professor

Suppose in our study of heights, weights and so on of people in Davis, we are interested in estimating a number of different quantities, with our forming a confidence interval for each one. Though our confidence level for each one of them will be 95%, our overall confidence level will be less than that. In other words, we cannot say we are 95% confident that all the intervals contain their respective population values.

In some cases we may wish to construct confidence intervals in such a way that we can say we are 95% confident that all the intervals are correct. This branch of statistics is known as simultaneous inference or multiple inference.

(The same issues apply to significance testing, but we will focus on confidence intervals here.)

In this age of Big Data, simultaneous inference is a major issue. We may have hundreds of variables, so the chances of getting spurious results are quite high.

Usually this kind of methodology is used in the comparison of several treatments. This term originated in the life sciences, e.g. comparing the effectiveness of several different medications for controlling hypertension, it can be applied in any context. For instance, we might be interested in comparing how well programmers do in several different programming languages, say Python, Ruby and Perl. We’d form three groups of programmers, one for each language, with say 20 programmers per group. Then we would have them write code for a given application. Our measurement could be the length of time T that it takes for them to develop the program to the point at which it runs correctly on a suite of test cases.

Let T_{ij} be the value of T for the j^{th} programmer in the i^{th} group, $i = 1,2,3$, $j = 1,2,...,20$. We would then wish to compare the three “treatments,” i.e. programming languages, by estimating $\mu_i = ET_{i1}$, $i = 1,2,3$. Our estimators would be $U_i = \sum_{j=1}^{20} T_{ij}/20$, $i = 1,2,3$. Since we are comparing the three population means, we may not be satisfied with simply forming ordinary 95% confidence
intervals for each mean. We may wish to form confidence intervals which *jointly* have confidence level 95%.

Note very, very carefully what this means. As usual, think of our notebook idea. Each line of the notebook would contain the 60 observations; different lines would involve different sets of 60 people. So, there would be 60 columns for the raw data, three columns for the U_i. We would also have six more columns for the confidence intervals (lower and upper bounds) for the μ_i. Finally, imagine three more columns, one for each confidence interval, with the entry for each being either Right or Wrong. A confidence interval is labeled Right if it really does contain its target population value, and otherwise is labeled Wrong.

Now, if we construct individual 95% confidence intervals, that means that in a given Right/Wrong column, in the long run 95% of the entries will say Right. But for simultaneous intervals, we hope that within a line we see three Rights, and 95% of all lines will have that property.

In our context here, if we set up our three intervals to have individual confidence levels of 95%, their simultaneous level will be $0.95^3 = 0.86$, since the three confidence intervals are independent. Conversely, if we want a simultaneous level of 0.95, we could take each one at a 98.3% level, since $0.95^\frac{1}{3} \approx 0.983$.

However, in general the intervals we wish to form will not be independent, so the above “cube root method” would not work. Here we will give a short introduction to more general procedures.

Note that “nothing in life is free.” If we want simultaneous confidence intervals, they will be wider.

Another reason to form simultaneous confidence intervals is that it gives you “license to browse,” i.e. to rummage through the data looking for interesting nuggets.

22.3.1 The Bonferonni Method

One simple approach is **Bonferonni’s Inequality**:

Lemma 43 Suppose A_1, \ldots, A_g are events. Then

$$P(A_1 \text{ or } \ldots \text{ or } A_g) \leq \sum_{i=1}^g P(A_i)$$ \hspace{1cm} (22.81)

The word *may* is important here. It really is a matter of philosophy as to whether one uses simultaneous inference procedures.
22.3. SIMULTANEOUS INFECTION METHODS

You can easily see this for \(g = 2 \):

\[
P(A_1 \text{ or } A_2) = P(A_1) + P(A_2) - P(A_1 \text{ and } A_2) \leq P(A_1) + P(A_2) \tag{22.82}
\]

One can then prove the general case by mathematical induction.

Now to apply this to forming simultaneous confidence intervals, take \(A_i \) to be the event that the \(i^{th} \) confidence interval is incorrect, i.e. fails to include the population quantity being estimated. Then (??) says that if, say, we form two confidence intervals, each having individual confidence level (100-5/2)\%, i.e. 97.5\%, then the overall collective confidence level for those two intervals is at least 95\%. Here’s why: Let \(A_1 \) be the event that the first interval is wrong, and \(A_2 \) is the corresponding event for the second interval. Then

\[
\begin{align*}
\text{overall conf. level} &= P(\text{not } A_1 \text{ and not } A_2) \\
&= 1 - P(A_1 \text{ or } A_2) \\
&\geq 1 - P(A_1) - P(A_2) \\
&= 1 - 0.025 - 0.025 \\
&= 0.95
\end{align*}
\tag{22.83}
\]

22.3.2 Scheffe’s Method

The Bonferonni method is unsuitable for more than a few intervals; each one would have to have such a high individual confidence level that the intervals would be very wide. Many alternatives exist, a famous one being Scheffe’s method. The large-sample version we’ll use here is:

Theorem 44 Suppose \(R = (R_1, ..., R_k)' \) has an approximately multivariate normal distribution, with mean vector \(\mu = (\mu_i) \) and covariance matrix \(\Sigma = (\sigma_{ij}) \). Let \(\hat{\Sigma} \) be a consistent estimator of \(\Sigma \), meaning that it converges in probability to \(\Sigma \) as the sample size goes to infinity.

For any constants \(c_1, ..., c_k \), consider linear combinations of the \(R_i \),

\[
\sum_{i=1}^{k} c_i R_i \tag{22.88}
\]

\(^6\)The name is pronounced “sheh-FAY.”
which estimate

\[\sum_{i=1}^{k} c_i \mu_i \]

(22.89)

Form the confidence intervals

\[\sum_{i=1}^{k} c_i R_i \pm \sqrt{\chi^2_{\alpha,k}} s(c_1, \ldots, c_k) \]

(22.90)

where

\[[s(c_1, \ldots, c_k)]^2 = (c_1, \ldots, c_k)^T \Sigma(c_1, \ldots, c_k) \]

(22.91)

and where \(\chi^2_{\alpha,k} \) is the upper-\(\alpha \) percentile of a chi-square distribution with \(k \) degrees of freedom\(^7\).

Then all of these intervals (for infinitely many values of the \(c_i \)!) have simultaneous confidence level \(1 - \alpha \).

By the way, if we are interested in only constructing confidence intervals for contrasts, i.e. \(c_i \) having the property that \(\Sigma c_i = 0 \), we the number of degrees of freedom reduces to \(k-1 \), thus producing narrower intervals.

Just as in Section ?? we avoided the t-distribution, here we have avoided the F distribution, which is used instead of ch-square in the “exact” form of Scheffe’s method.

22.3.3 Example

For example, again consider the Davis heights example in Section ???. Suppose we want to find approximate 95% confidence intervals for two population quantities, \(\mu_1 \) and \(\mu_2 \). These correspond to values of \(c_1, c_2 \) of (1,0) and (0,1). Since the two samples are independent, \(\sigma_{12} = 0 \). The chi-square value is 5.99\(^8\), so the square root in (??) is 3.46. So, we would compute (??) for \(X \) and then for \(Y \), but would use 3.46 instead of 1.96.

This actually is not as good as Bonferonni in this case. For Bonferonni, we would find two 97.5% confidence intervals, which would use 2.24 instead of 1.96.

\(^7\)Recall that the distribution of the sum of squares of \(g \) independent N(0,1) random variables is called chi-square with \(g \) degrees of freedom. It is tabulated in the R statistical package's function \texttt{qchisq()}.

\(^8\)Obtained from R via \texttt{qchisq}(0.95,2).
Scheffe’s method is too conservative if we just are forming a small number of intervals, but it is
great if we form a lot of them. Moreover, it is very general, usable whenever we have a set of
approximately normal estimators.

22.3.4 Other Methods for Simultaneous Inference

There are many other methods for simultaneous inference. It should be noted, though, that many
of them are limited in scope, and quite a few of them are oriented only toward significance testing,
rather than confidence intervals. In any event, they are beyond the scope of this book.

22.4 Bayesian Methods

Everyone is entitled to his own opinion, but not his own facts—Daniel Patrick Moynihan, senator
from New York, 1976-2000

Black cat, white cat, it doesn’t matter as long as it catches mice—Deng Xiaoping, when asked about
his plans to give private industry a greater role in China’s economy

Whiskey’s for drinkin’ and water’s for fightin’ over—Mark Twain, on California water jurisdiction
battles

The most controversial topic in statistics by far is that of Bayesian methods, the “California
water” of the statistics world. In fact, it is so controversial that a strident Bayesian colleague of
mine even took issue with my calling it “controversial”!

The name stems from Bayes’ Rule (Section 2.6),

\[
P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(\text{not } A)P(B|\text{not } A)}
\] (22.92)

No one questions the validity of Bayes’ Rule, and thus there is no controversy regarding statistical
procedures that make use of probability calculations based on that rule. But the key word is
probability. As long as the various terms in (??) are real probabilities—that is, based on actual
data—there is no controversy.

But instead, the debate stems from the cases in which Bayesians replace some of the probabilities
in the theorem with “feelings,” i.e. non-probabilities, arising from what they call subjective prior
distributions. The key word is then *subjective*. Our section here will concern the controversy over
the use of subjective priors.

Say we wish to estimate a population mean. Here the Bayesian analyst, before even collecting data, says, “Well, I think the population mean could be 1.2, with probability, oh, let’s say 0.28, but on the other hand, it might also be 0.88, with probability, well, I’ll put it at 0.49...” etc. This is the analyst’s subjective prior distribution for the population mean. The analyst does this before even collecting any data. Note carefully that he is NOT claiming these are real probabilities; he’s just trying to quantify his hunches. The analyst then collects the data, and uses some mathematical procedure that combines these “feelings” with the actual data, and which then outputs an estimate of the population mean or other quantity of interest.

The Bayesians justify this by saying one should use all available information, even if it is just a hunch. “The analyst is typically an expert in the field under study. You wouldn’t want to throw away his/her expertise, would you?” Moreover, they cite theoretical analyses that show that Bayes estimator doing very well in terms of criteria such as mean squared error, even if the priors are not “valid.”

The non-Bayesians, known as frequentists, on the other hand dismiss this as unscientific and lacking in impartiality. “In research on a controversial health issue, say, you wouldn’t want the researcher to incorporate his/her personal political biases into the number crunching, would you?” So, the frequentists’ view is reminiscent of the Moynihan quoted above.

On the other hand, in the computer science world Bayesian estimation seems to be much less of a controversy. Computer scientists, being engineers, tend to be interested in whether a method seems to work, with the reasons being less important. This is the “black cat, white cat” approach.

By the way, the frequentists also point out that in the real world one must typically perform inference (confidence intervals or significance tests), not just compute point estimates; Bayesian methods are not really suited for inference.

Note carefully the key role of data. One might ask, for instance, “Why this sharp distinction between the Bayesians and the frequentists over the subjectivity issue? Don’t the frequentists make subjective decisions too?” Consider an analysis of disk drive lifetime data, for instance. Some frequentist statistician might use a normal model, instead of, say, a gamma model. Isn’t that subjectivity? The answer is no, because the statistician can use the data to assess the validity of her model, employing the methods of Section ??.

9By contrast, there is no controversy if the prior makes use of real data. I will explain this in Section ?? below, but in the mean time, note that my use of the term Bayesian refers only to subjective priors.
22.4.1 How It Works

To introduce the idea, consider again the example of estimating \(p \), the probability of heads for a certain penny. Suppose we were to say—before tossing the penny even once—“I think \(p \) could be any number, but more likely near 0.5, something like a normal distribution with mean 0.5 and standard deviation, oh, let’s say 0.1.”

Of course, the true value of \(p \) is between 0 and 1, while the normal distribution extends from \(-\infty\) to \(\infty\). As noted in Section 8.16, the use of normal distributions is common for modeling bounded quantities like this one. Actually, many Bayesians prefer to use a beta distribution for the prior in this kind of setting, as the math works out more cleanly (derivations not shown here). But let’s stick with the normal prior here for illustration.

The prior distribution is then \(N(0.5, 0.1^2) \). But again, note that the Bayesians do not consider it to be a distribution in the sense of probability. It just quantifies our “gut feeling” here, our “hunch.” Nevertheless, in terms of the mathematics involved, it’s as if the Bayesians are treating \(p \) as random, with \(p \)’s distribution being whatever the analyst specifies as the prior. Under this “random \(p \)” assumption, the Maximum Likelihood Estimate (MLE), for instance, would change. Just as in the frequentist approach, the data here is \(X \), the number of heads we get from \(n \) tosses of the penny. But in contrast to the frequentist approach, in which the likelihood would be

\[
L = \binom{n}{X} p^X (1-p)^{n-X}
\]

it now becomes

\[
L = \frac{1}{\sqrt{2\pi} 0.1} \exp -0.5[(p - 0.5)/0.1]^2 \binom{n}{X} p^X (1-p)^{n-X}
\]

This is basically \(P(A \text{ and } B) = P(A) \ P(B|A) \), though using a density rather than a probability mass function. We would then find the value of \(p \) which maximizes \(L \), and take that as our estimate.

A Bayesian would use Bayes’ Rule to compute the “distribution” of \(p \) given \(X \), called the posterior distribution. The analog of \((22.93) \) would be \((22.94) \) divided by the integral of \((22.94) \) as \(p \) ranges from 0 to 1, with the resulting quotient then being treated as a density. The (conditional) MLE would then be the mode, i.e. the point of maximal density of the posterior distribution.

But we could use any measure of central tendency, and in fact typically the mean is used, rather than the mode. In other words:

To estimate a population value \(\theta \), the Bayesian constructs a prior “distribution” for \(\theta \) (again, the quotation marks indicate that it is just a quantified gut feeling, rather
than a real probability distribution). Then she uses the prior together with the actual observed data to construct the posterior distribution. Finally, she takes her estimate \(\hat{\theta} \) to be the mean of the posterior distribution.

Note how this procedure achieves a kind of balance between what our hunch says and what our data say. In (??), suppose the mean of \(p \) is 0.5 but \(n = 20 \) and \(X = 12 \). Then the frequentist estimator would be \(X/n = 0.6 \), while the Bayes estimator would be about 0.56. (Computation not shown here.) So our Bayesian approach “pulled” our estimate away from the frequentist estimate, toward our hunch that \(p \) is at or very near 0.5. This pulling effect would be stronger for smaller \(n \) or for a smaller standard deviation of the prior “distribution.”

22.4.1.1 Empirical Bayes Methods

Note carefully that if the prior distribution in our model is not subjective, but is a real distribution verifiable from data, the above analysis on \(p \) would not be controversial at all. Say \(p \) does vary a substantial amount from one penny to another, so that there is a physical distribution involved. Suppose we have a sample of many pennies, tossing each one \(n \) times. If \(n \) is very large, we’ll get a pretty accurate estimate of the value of \(p \) for each coin, and we can then plot these values in a histogram and compare it to the \(N(0.5, 0.1^2) \) density, to check whether our prior is reasonable. This is called an empirical Bayes model, because we can empirically estimate our prior distribution, and check its validity. In spite of the name, frequentists would not consider this to be “Bayesian” analysis. Note that we could also assume that \(p \) has a general \(N(\mu, \sigma^2) \) distribution, and estimate \(\mu \) and \(\sigma \) from the data.

22.4.2 Extent of Usage of Subjective Priors

Though many statisticians, especially academics, are staunch, often militantly proselytizing, Bayesians, only a small minority of statisticians use the Bayesian approach in practice.

One way to see that Bayesian methodology is not mainstream is through the R programming language. For example, as of December 2010, only about 65 of the more than 3000 packages on CRAN, the R repository, involve Bayesian techniques. (See \url{http://cran.r-project.org/web/packages/tgp/index.html}.) There is actually a book on the topic, *Bayesian Computation with R*, by Jim Albert, Springer, 2007, and among those who use Bayesian techniques, many use R for that purpose. However, almost all general-purpose books on R do not cover Bayesian methodology at all.

Significantly, even among Bayesian academics, many use frequentist methods when they work on real, practical problems. Choose a Bayesian academic statistician at random, and you’ll likely find on the Web that he/she does not use Bayesian methods when working on real applications.
On the other hand, use of subjective priors has become very common in the computer science research community. Papers using Bayesian methods appear frequently (no pun intended) in the CS research literature, and “seldom is heard a discouraging word.”

22.4.3 Arguments Against Use of Subjective Priors

As noted, most professional statisticians are frequentists. In this section we will look at the arguments they have against the subjective Bayesian approach.

First, it’s vital to reiterate a point made earlier:

> Frequentists have no objection at all to use of prior distributions based on actual data. They only object to use of subjective priors.

So, what is it about subjective priors that frequentists don’t like?

The first point is that ultimately, the use of any statistical analysis is to make a decision about something. This could be a very formal decision, such as occurs when the Food and Drug Administration (FDA) decides whether to approve a new drug, or it could be informal, for instance when an ordinary citizen reads a newspaper article reporting on a study analyzing data on traffic accidents, and she decides what to conclude from the study.

There is nothing wrong using one’s gut feelings to make a final decision, but it should not be part of the mathematical analysis of the data. One’s hunches can play a role in deciding the “preponderance of evidence,” as discussed in Section ??, but that should be kept separate from our data analysis.

If for example the FDA’s data shows the new drug to be effective, but at the same time the FDA scientists still have their doubts, they may decide to delay approval of the drug pending further study. So they can certainly act on their hunch, or on non-data information they have, concerning approval of the drug. But the FDA, as a public agency, has a responsibility to the citizenry to state what the data say, i.e. to report the frequentist estimate, rather than merely reporting a number—the Bayesian estimate—that mixes fact and hunch.

In many if not most applications of statistics, there is a need for impartial estimates. As noted above, even if the FDA acts on a hunch to delay approval of a drug in spite of favorable data, the FDA owes the public (and the pharmaceutical firm) an impartial report of what the data say. Bayesian estimation is by definition not impartial. One Bayesian statistician friend put it very well, saying “I believe my own subjective priors, but I don’t believe those of other people.”

Furthermore, in practice we are typically interested in inference, i.e. confidence intervals and significance tests, rather than just point estimation. We are sampling from populations, and want
to be able to legitimately make inferences about those populations. For instance, though one can
derive a Bayesian 95% confidence interval for \(p \) for our coin, it really has very little meaning, and
again is certainly not impartial.

Some Bayesians justify their approach by pointing to the problems of p-values. Yet most frequentists
also dislike p-values, and certainly use confidence intervals instead. The Bayesians who say one
should uses subjective priors instead of p-values are simply setting up a straw man, the critics say.

A common Bayesian approach concerns lower and upper bounds. The analyst feels sure that the
true population value \(\theta \) is, say, between \(r \) and \(s \). He then chooses a prior distribution on \((r,s) \), say
uniform. Putting aside the question of the meaning of the results that ensure from the particular
choice of prior, critics may ask, “What if the frequentist estimate turns out to be less than \(r \)? It
could be a sampling artifact, but wouldn’t you want to know about it, rather than automatically
preventing such a situation?” This leads to the next section.

22.4.4 What Would You Do? A Possible Resolution

Consider the following scenario. Steven is running for president. Leo, his campaign manager, has
commissioned Lynn to conduct a poll to assess Steven’s current support among the voters. Lynn
takes her poll, and finds that 57% of those polled support Steven. But her own gut feeling as an
expert in politics, is that Steven’s support is only 48%. She then combines these two numbers in
some Bayesian fashion, and comes up with 50.2% as her estimate of Steven’s support.

So, here the frequentist estimate is 57%, while Lynn’s Bayesian estimate is 50.2%.

Lynn then gives Steven only the 50.2% figure, not reporting the value 57% number to him. Leo asks
Lynn how she arrived at that number, and she explains that she combined her prior distribution
with the data.

If you were Leo, what would you do? Consider two choices as to instructions you might give Lynn:

(a) You could say, “Lynn, I trust your judgment, so as the election campaign progresses, always
give me only your Bayesian estimate.”

(b) You might say, “Lynn, I trust your judgment, but as the election campaign progresses, always
give me both your Bayesian estimate and what the impartial data actually say.”

I believe that choice (b) is something that both the Bayesian and frequentist camps would generally
agree upon.
22.4.5 The Markov Chain Monte Carlo Method

The computation of posterior distributions can involve complex multiple integrals. One could use numerical integration techniques, but again this can get complicated.

The Markov Chain Monte Carlo method approaches this problem by defining a certain Markov chain through the integration space, and then simulating that chain. The details are beyond the scope of this book, but here is yet another application of Markov chains.

22.4.6 Further Reading

Two UCD professors, the first current and the second former, have written interesting books about the Bayesian approach:

Exercises

1. Consider raffle ticket example in Section ???. Suppose 500 tickets are sold, and you have data on 8 of them. Continue to assume sampling with replacement. Consider the Maximum Likelihood and Methods of Moments estimators.

 (a) Find the probability that the MLE is exactly equal to the true value of c.

 (b) Find the exact probability that the MLE is within 50 of the true value.

 (c) Find the approximate probability that the Method of Moments estimator is within 50 of the true value.

2. Suppose $I = 1$ or 0, with probability p and $1-p$, respectively. Given I, X has a Poisson distribution with mean λ_I. Suppose we have $X_1, ..., X_n$, a random sample of size n from the (unconditional) distribution of X. (We do not know the associated values of I, i.e. $I_1, ..., I_n$.) This kind of situation occurs in various applications. The key point is the effect of the unseen variable. In terms of estimation, note that there are three parameters to be estimated.
(a) Set up the likelihood function, which if maximized with respect to the three parameters would yield the MLEs for them.

(b) The words *if* and *would* in that last sentence allude to the fact that MLEs cannot be derived in closed form. However, R’s *mle()* function can be used to find their values numerically. Write R code to do this. In other words, write a function with a single argument x, representing the X_i, and returning the MLEs for the three parameters.

3. Find the Method of Moments and Maximum Likelihood estimators of the following parameters in famous distribution families:

- p in the binomial family (n known)
- p in the geometric family
- μ in the normal family (σ known)
- λ in the Poisson family

4. For each of the following quantities, state whether the given estimator is unbiased in the given context:

- \(\hat{p} \), as an estimator of p, (??)
- \(\hat{p}(1 - \hat{p}) \), as an estimator of p(1-p), (??)
- \(\bar{X} - \bar{Y} \), as an estimator of \(\mu_1 - \mu_2 \), (??)
- \(\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_1)^2 \) (assuming \(\mu_1 \) is known), as an estimator of \(\sigma_1^2 \), page ??
- \(\bar{X} \), as an estimator of \(\mu_1 \), page ?? *but sampling (from the population of Davis) without replacement*

5. Consider the Method of Moments Estimator \(\hat{c} \) in the raffle example, Section ??, Find the exact value of Var(\(\hat{c} \)). Use the facts that 1+2+...+r = r(r+1)/2 and 1^2+2^2+...+r^2 = r(r+1)(2r+1)/6.

6. Suppose W has a uniform distribution on (-c,c), and we draw a random sample of size n, \(W_1, ..., W_n \). Find the Method of Moments and Maximum Likelihood estimators. (Note that in the Method of Moments case, the first moment won’t work.)

7. An urn contains \(\omega \) marbles, one of which is black and the rest being white. We draw marbles from the urn one at a time, without replacement, until we draw the black one; let N denote the number of draws needed. Find the Method of Moments estimator of \(\omega \) based on X.
22.4. Bayesian Methods

8. Suppose X_1, \ldots, X_n are uniformly distributed on $(0,c)$. Find the Method of Moments and Maximum Likelihood estimators of c, and compare their mean squared error.

Hint: You will need the density of $M = \max_i X_i$. Derive this by noting that $M \leq t$ if and only if $X_i \leq t$ for all $i = 1,2,\ldots,n$.

9. Add a single line to the code on page ?? that will print out the estimated value of $\text{Var}(W)$.

10. In the raffle example, Section ??, find a $(1 - \alpha)\%$ confidence interval for c based on \hat{c}, the Maximum Likelihood Estimate of c.

11. In many applications, observations come in correlated clusters. For instance, we may sample r trees at random, then s leaves within each tree. Clearly, leaves from the same tree will be more similar to each other than leaves on different trees.

In this context, suppose we have a random sample X_1, \ldots, X_n, n even, such that there is correlation within pairs. Specifically, suppose the pair (X_{2i+1},X_{2i+2}) has a bivariate normal distribution with mean (μ, μ) and covariance matrix

$$
\begin{pmatrix}
1 & \rho \\
\rho & 1
\end{pmatrix}
$$

(22.95)

$i = 0,\ldots,n/2-1$, with the $n/2$ pairs being independent. Find the Method of Moments estimators of μ and ρ.

12. Suppose we have a random sample X_1, \ldots, X_n from some population in which $EX = \mu$ and $Var(X) = \sigma^2$. Let $\bar{X} = (X_1 + \ldots + X_n)/n$ be the sample mean. Suppose the data points X_i are collected by a machine, and that due to a defect, the machine always records the last number as 0, i.e. $X_n = 0$. Each of the other X_i is distributed as the population, i.e. each has mean μ and variance σ^2. Find the mean squared error of \bar{X} as an estimator of μ, separating the MSE into variance and squared bias components as in Section ??.

13. Suppose we have a random sample X_1, \ldots, X_n from a population in which X is uniformly distributed on the region $(0,1) \cup (2,c)$ for some unknown $c > 2$. Find closed-form expressions for the Method of Moments and Maximum Likelihood Estimators, to be denoted by T_1 and T_2, respectively.
Chapter 23

Simultaneous Inference Methods

Events of small probability happen all the time, because there are so many of them—Jim Sutton, old Cal Poly economics professor

Suppose in our study of heights, weights and so on of people in Davis, we are interested in estimating a number of different quantities, with our forming a confidence interval for each one. Though our confidence level for each one of them will be 95%, our *overall* confidence level will be less than that. In other words, we cannot say we are 95% confident that all the intervals contain their respective population values.

In some cases we may wish to construct confidence intervals in such a way that we can say we are 95% confident that all the intervals are correct. This branch of statistics is known as **simultaneous inference** or **multiple inference**.

(The same issues apply to significance testing, but we will focus on confidence intervals here.)

In this age of Big Data, simultaneous inference is a major issue. We may have hundreds of variables, so the chances of getting spurious results are quite high.

Usually this kind of methodology is used in the comparison of several **treatments**. This term originated in the life sciences, e.g. comparing the effectiveness of several different medications for controlling hypertension, it can be applied in any context. For instance, we might be interested in comparing how well programmers do in several different programming languages, say Python, Ruby and Perl. We’d form three groups of programmers, one for each language, with say 20 programmers per group. Then we would have them write code for a given application. Our measurement could be the length of time \(T \) that it takes for them to develop the program to the point at which it runs correctly on a suite of test cases.

Let \(T_{ij} \) be the value of \(T \) for the \(j \)th programmer in the \(i \)th group, \(i = 1,2,3, \) \(j = 1,2,...,20 \). We
would then wish to compare the three “treatments,” i.e. programming languages, by estimating
\(\mu_i = ET_{i1}, i = 1,2,3 \). Our estimators would be
\(U_i = \frac{\sum_{j=1}^{20} T_{ij}}{20}, i = 1,2,3 \). Since we are comparing
the three population means, we may not be satisfied with simply forming ordinary 95% confidence
intervals for each mean. We may wish to form confidence intervals which \textit{jointly} have confidence
level 95%\(^1\).

Note very, very carefully what this means. As usual, think of our notebook idea. Each line of the
notebook would contain the 60 observations; different lines would involve different sets of 60 people.
So, there would be 60 columns for the raw data, three columns for the \(U_i \). We would also have six
more columns for the confidence intervals (lower and upper bounds) for the \(\mu_i \). Finally, imagine
three more columns, one for each confidence interval, with the entry for each being either Right or
Wrong. A confidence interval is labeled Right if it really does contain its target population value,
and otherwise is labeled Wrong.

Now, if we construct individual 95% confidence intervals, that means that in a given Right/Wrong
column, in the long run 95% of the entries will say Right. But for simultaneous intervals, we hope
that within a line we see three Rights, and 95% of all lines will have that property.

In our context here, if we set up our three intervals to have individual confidence levels of 95%,
their simultaneous level will be \(0.95^3 = 0.86 \), since the three confidence intervals are independent.
Conversely, if we want a simultaneous level of 0.95, we could take each one at a 98.3% level, since
\(0.95^{\frac{3}{3}} \approx 0.983 \).

However, in general the intervals we wish to form will not be independent, so the above “cube root
method” would not work. Here we will give a short introduction to more general procedures.

Note that “nothing in life is free.” If we want simultaneous confidence intervals, they will be wider.

Another reason to form simultaneous confidence intervals is that it gives you “license to browse,”
i.e. to rummage through the data looking for interesting nuggets.

\section{The Bonferonni Method}

One simple approach is \textbf{Bonferonni’s Inequality}:

\textbf{Lemma 45} \textit{Suppose} \(A_1, ..., A_g \) \textit{are events. Then}

\[
P(A_1 \text{ or } ... \text{ or } A_g) \leq \sum_{i=1}^{g} P(A_i) \tag{23.1}
\]

\(^1\)The word \textit{may} is important here. It really is a matter of philosophy as to whether one uses simultaneous inference
procedures.
You can easily see this for $g = 2$:

$$ P(A_1 \text{ or } A_2) = P(A_1) + P(A_2) - P(A_1 \text{ and } A_2) \leq P(A_1) + P(A_2) \quad (23.2) $$

One can then prove the general case by mathematical induction.

Now to apply this to forming simultaneous confidence intervals, take A_i to be the event that the i^{th} confidence interval is incorrect, i.e. fails to include the population quantity being estimated. Then (??) says that if, say, we form two confidence intervals, each having individual confidence level $(100-5/2)^\%$, i.e. 97.5%, then the overall collective confidence level for those two intervals is at least 95%. Here’s why: Let A_1 be the event that the first interval is wrong, and A_2 is the corresponding event for the second interval. Then

$$ \text{overall conf. level} = P(\text{not } A_1 \text{ and not } A_2) \quad (23.3) $$

$$ = 1 - P(A_1 \text{ or } A_2) \quad (23.4) $$

$$ \geq 1 - P(A_1) - P(A_2) \quad (23.5) $$

$$ = 1 - 0.025 - 0.025 \quad (23.6) $$

$$ = 0.95 \quad (23.7) $$

23.2 Scheffe’s Method

The Bonferonni method is unsuitable for more than a few intervals; each one would have to have such a high individual confidence level that the intervals would be very wide. Many alternatives exist, a famous one being Scheffe’s method.

Theorem 46 Suppose $R_1, ..., R_k$ have an approximately multivariate normal distribution, with mean vector $\mu = (\mu_i)$ and covariance matrix $\Sigma = (\sigma_{ij})$. Let $\hat{\Sigma}$ be a **consistent** estimator of Σ, meaning that it converges in probability to Σ as the sample size goes to infinity.

For any constants $c_1, ..., c_k$, consider linear combinations of the R_i,

$$ \sum_{i=1}^{k} c_i R_i \quad (23.8) $$

2 The name is pronounced “sheh-FAY.”
which estimate

\[\sum_{i=1}^{k} c_i \mu_i \]

(23.9)

Form the confidence intervals

\[\sum_{i=1}^{k} c_i R_i \pm \sqrt{k \chi^2_{\alpha,k} s(c_1, \ldots, c_k)} \]

(23.10)

where

\[[s(c_1, \ldots, c_k)]^2 = (c_1, \ldots, c_k)^T \Sigma(c_1, \ldots, c_k) \]

(23.11)

and where \(\chi^2_{\alpha,k} \) is the upper-\(\alpha \) percentile of a chi-square distribution with \(k \) degrees of freedom.

Then all of these intervals (for infinitely many values of the \(c_i \)) have simultaneous confidence level \(1 - \alpha \).

By the way, if we are interested in only constructing confidence intervals for contrasts, i.e. \(c_i \) having the property that \(\Sigma c_i = 0 \), we the number of degrees of freedom reduces to \(k-1 \), thus producing narrower intervals.

Just as in Section ?? we avoided the t-distribution, here we have avoided the F distribution, which is used instead of chi-square in the “exact” form of Scheffe’s method.

23.3 Example

For example, again consider the Davis heights example in Section ???. Suppose we want to find approximate 95% confidence intervals for two population quantities, \(\mu_1 \) and \(\mu_2 \). These correspond to values of \(c_1, c_2 \) of (1,0) and (0,1). Since the two samples are independent, \(\sigma_{12} = 0 \). The chi-square value is 5.99\(^3\), so the square root in (??) is 3.46. So, we would compute (??) for \(\bar{X} \) and then for \(\bar{Y} \), but would use 3.46 instead of 1.96.

This actually is not as good as Bonferroni in this case. For Bonferroni, we would find two 97.5% confidence intervals, which would use 2.24 instead of 1.96.

\(^3\)Recall that the distribution of the sum of squares of \(g \) independent \(N(0,1) \) random variables is called chi-square with \(g \) degrees of freedom. It is tabulated in the R statistical package’s function \(qchisq() \).

\(^4\)Obtained from R via \(qchisq(0.95,2) \).
Scheffe’s method is too conservative if we just are forming a small number of intervals, but it is great if we form a lot of them. Moreover, it is very general, usable whenever we have a set of approximately normal estimators.

23.4 Other Methods for Simultaneous Inference

There are many other methods for simultaneous inference. It should be noted, though, that many of them are limited in scope, and quite a few of them are oriented only toward significance testing, rather than confidence intervals. In any event, they are beyond the scope of this book.
Chapter 24

Mixture Distributions and Hidden Markov Models

Mixture distributions pop up in lots of places in probabilistic modeling, so we devote a chapter to them here. They also set the stage for Hidden Markov Models, the other topic in this chapter.

24.1 Two Motivating Examples

24.1.1 The Old Trick Coin Example, Updated

Recall the trick coin example in Section 5.1. Let’s look at a somewhat different version.

Suppose we have a large box of coins of two types. One type has probability p_1 of heads, the other probability p_2 of heads. A proportion r of the coins is of the first type. We reach into the box, choose a coin at random, and toss that coin 10 times, resulting in N heads. What is the distribution of N?

Since N is discrete, the distribution is described by its pmf, which is

$$p_N(k) = r \binom{10}{k} p_1^k (1 - p_1)^{10-k} + (1 - r) \binom{10}{k} p_2^k (1 - p_2)^{10-k}$$

You can see why this is called a mixture model. The above pmf is a mixture of two binomial pmfs, with mixing proportions r and $1-r$.

Let C denote the type of coin we choose, 1 or 2, with heads probabilities p_1 and p_2, respectively.
CHAPTER 24. MIXTURE DISTRIBUTIONS AND HIDDEN MARKOV MODELS

Figure 24.1: Old Faithful waiting times

\[P(C = 1) = r \quad \text{and} \quad P(C = 2) = 1 - r. \]
Conditioned on \(C \), the random variable \(N \) is binomial with success probabilities \(p_1 \) or \(p_2 \), depending on \(C \); more succinctly, the conditional distribution of \(N \), given \(C \), is binomial with success probability \(p_C \). (The number of trials is 10.)

24.1.2 Old Faithful Geyser

The dataset here is included in R, under the name \texttt{faithful}. It is collected from the famous geyser in Yellowstone National Park in the US, named Old Faithful. The call

\[
\text{hist(faithful$waiting)}
\]
requesting a histogram of the intereruption times, yields Figure ??.

It looks like two normal distributions may be at work down there underground, resulting in different kinds of eruptions. Let \(T \) denote the type of eruption, 1 or 2, with probabilities \(s \) and \(1 - s \). We may wish to model the waiting time between eruptions that we see above ground, \(W \), as normally distributed with mean \(\mu_1 \) or \(\mu_2 \), depending on \(T \) The \(\mu_i \) would be parameters, along with the corresponding variances, and the mixing proportion \(s \).

We will see later that Hidden Markov Models also consist of latent—hidden—variables and observed ones. The latent variables are states of a Markov chain.

Note that the latent variable could be unobserved but physical, e.g. the choice of the coin, or
merely postulated, as with the two-process model we surmise for the geyser.

24.2 The Notion of “Latent” Variables

The word *latent* in general usage means “unseen,” which is essentially its statistical meaning. In the coin example, C is latent, as we cannot visually tell what type of coin it is. In the geyser example, T is truly unseen, underground. By contrast, N in the coin example and W for the geyser are definitely observed.

24.3 General Mixture Distributions

The general definition is rather abstract. Let’s first restrict it to discrete outputs:

Definition 47 Let \(\{g_t\}_{t \in A} \) be a collection of pmfs, and let M be a random variable taking values in A. Consider discrete and continuous cases for M, as follows. The mixture distribution of the g_t with weights given by the distribution of M is defined as follows:

- **M is discrete:** The mixture distribution is the pmf
 \[
 h = \sum_{i \in A} p_M(i) \ g_i
 \]
 (24.2)

- **M is continuous:** The mixture distribution has the pmf
 \[
 h(u) = \int_{t \in A} f_M(t) \ g_t(u) \ dt
 \]
 (24.3)

For continuous outcomes, replace “pmf” by “density” everywhere above.

Actually, the definition isn’t so abstract after all. A random variable Y having pmf arises first with the random variable M, and then if $M = i$, Y arises randomly from the distribution g_i. A “notebook” analysis would have columns for both M and Y.

\(^1\)The reader should verify that H does qualify as a pmf, i.e. it consists of numbers in $[0,1]$ that sum to 1.
In other words, the pmf of Y is a weighted average of the g_i, with weights being the pmf of M. Note that this implies that the weights most be nonnegative and sum to 1\(^2\).

As noted, the above definition is pretty abstract, but it can be readily grasped by considering the above trick coin example. Here,

- $Y = N$
- $A = \{0,1\}$
 - $p_M(0) = p_M(1) = 0.5$
 - g_0 = the pmf for $B(i,0.1)$
 - g_1 = the pmf for $B(i,0.9)$

Mixture distributions occur in a surprisingly wide variety of applications, and thus this material should be mastered. It is somewhat difficult at first, but if you always keep concrete examples such as the trick coin problem in mind, it is not bad at all.

By the way, there is nothing in the above definition that limits the G_i and H to be for scalar random variables. They could all be bivariate, for instance (though of course they all have to be of the same dimension.)

24.4 Generating Random Variates from a Mixture Distribution

One way to get additional insight on mixture distributions is to think about how to simulate them. For instance, consider the trick coin problem. The following R code simulates X_i:

```r
rxi <- function (i) {
  m <- sample(0:1, 1)
  p <- if (M == 0) 0.1 else 0.9
  rbinom(1, i, p)
}
```

In general:

- We first generate M.
- Then we generate a random variable from the pmf G_M.

\(^2\)Some readers may recognize this as a **convex combination**.
Various examples of mixture distributions will be presented in this chapter. But first, we need to
develop some machinery.

24.5 Review: the Laws of Total Expectation and Variance

Since mixture models involve conditional distributions, it should be no surprise that the famous
equations come into play. First, the Law of Total Expectation

\[E(Y) = E[E(Y|W)] \] (24.4)

for any random variables Y and W (for which the expectations are defined).

The RHS of (24.4) looks odd at first, but it’s merely \(E[g(W)] \); since \(Q = E(Y|W) \) is a random variable,
we can certainly ask what its expected value is.

And the Law of Total Variance,

\[Var(Y) = E[Var(Y|W)] + Var(E(Y|W)] \] (24.5)

24.6 Estimation by Method of Maximum Likelihood and the Method
of Moments

We will need to be able to estimate parameters from data. Here we briefly cover the two most
famous methods for this.

To see how MLE works, consider the following game. I toss a coin until I accumulate \(r \) heads. I
don’t tell you what value I’ve chosen for \(r \), but I do tell you \(K \), the number of tosses I needed. You
then must guess the value of \(r \). Well, \(K \) has a negative binomial distribution (Section 4.4), so

\[P(K = u) = \binom{u - 1}{r - 1} 0.5^u, \quad u = r, r + 1, ... \] (24.6)

Say I tell you \(K = 7 \). Then what you might do is find the value of \(r \) that maximizes

\[\binom{6}{r - 1} 0.5^7 \] (24.7)
You are asking, “What value of r would have made our data ($K = 7$) most likely?” Trying $r = 1, 2, ..., 7$, one finds that $r = 4$ maximizes $??$, so we would take that as our guess.

For a random variable X, the number $E(X^k)$ is called the k^{th} moment of X. The Method of Moments approach works by matching estimated moments of our data to the sample moments.

For the negative binomial distribution it is known that $E(K) = r/p$, where p is the probability of “success,” in this setting meaning heads. So $E(K) = 2r$. Under MM, we would set $\overline{K} = 2\hat{r}$, where the left-hand side is the average of all values of K in our data. We only did the “experiment” once, say in this case with $K = 6$, so $\overline{K} = 6$ and we guess r to be 3.

24.7 The EM Algorithm

Now returning to our main topic of mixture models, let’s discuss a very common tool for fitting such models, the EM (Expectation-Maximization) Algorithm.

24.7.1 Overall Idea

EM works in an iterative manner, in alternating cycles. Consider again the trick coin example. We want to both estimate the parameters p, q and r, and also want to guess the value(s) of our latent variable, C. Why the plural in referring to C? It could be that we perform the above experiment, say, 50 times, resulting in our data $N_1, ..., N_{50}$, and our latent values $C_1, ..., C_{50}$. Say we know r, to make this explanation simpler.

EM then works as follows: We first make initial guesses for p_1 and p_2 and r, and the alternate the following two actions:

(a) Guess the values of the C_i, based on our current guesses for the parameters and the N_i.

(b) Generate new guesses for the values of the parameters, based on our current guesses for the latent variables and the N_i.

- Then back to step (a) etc.

Hopefully the process converges!

The guesses are typically MLEs. Let’s look at this in a bit more detail. Say we perform the coin experiment just once, for simplicity. Then our observed datum N has, as noted, a binomial
distribution with 10 trials and success probability \(p_C, C = 1, 2 \). The likelihood is

\[
\binom{10}{N} p_C^N (1 - p_C)^{10 - N}
\]

(24.8)

Remember, \(N \) is known, and \(p_1 \) and \(p_2 \) are considered known (in all step (a)s). So, our MLE of \(C \) is whichever value of \(C, 1 \) or \(2 \), makes (??) larger. If we have collected 50 sample observations, we estimate the \(C_i \) is the same way.

Then in step (b), the likelihood is

\[
\prod_{i=1}^{n} \left[\binom{10}{N_i} p_{C_i}^{N_i} (1 - p_{C_i})^{10 - N_i} \right]
\]

(24.9)

Now the tables have turned. The \(C_i \) are assumed known (for the time being), but \(p_1 \) and \(p_2 \) are unknown. We estimate them using MLE, maximizing (??).

After taking derivatives, etc., one would end up with a messy, nonlinear set of equations to solve. One could try R’s \texttt{mle()} function, but even that may be rather complex. Fortunately, R libraries exist, such as \texttt{mixtools}, so you can avoid knowing all the details, as long as you understand the basic notion of a mixture model and the overall plan for EM.

24.7.2 The mixtools Package

R’s CRAN repository of contributed software includes the \texttt{mixtools} library. Let’s see how to use one of the functions in that library, \texttt{normalmixEM()}, which assumes that the densities in (??) are from the normal distribution family.

Let’s suppose we are modeling the data as a mixture of 2 normals. So, with our observed data set, our goal is to estimate 5 parameters from our data:

- \(\mu_1 \), the mean of the first normal distribution
- \(\mu_2 \), the mean of the second normal distribution
- \(\sigma_1 \), the mean of the second normal distribution
- \(\sigma_2 \), the mean of the second normal distribution
- \(q = P(M = 1) = 1 - P(M = 2) \)

The basic form of the call is
normalmixEM(x, lambda= NULL, mu= NULL, sigma= NULL, k= 2)

where

- \(\hat{x} \) is the data, a vector
- \(\hat{\lambda} \) is a vector of our initial guesses for the quantities \(P(M = i) \), of length \(k \) (recycling will be used if it is shorter); note that these must be probabilities summing to 1
- \(\hat{\mu} \) is a vector of our initial guesses for the \(\mu_i \)
- \(\hat{\sigma} \) is a vector of our initial guesses for the \(\sigma_i \)
- \(k \) is the number of values \(M \) can take on, e.g. 2 for a mixture of 2 normals

One can leave the initial guesses as the default NULL values, but reasonable guesses may help convergence.

The return value will be an R list, whose components include \(\lambda \), \(\mu \) and \(\sigma \), the final estimates of those values.

24.7.3 Example: Old Faithful Geyser

This example is taken from the online documentation in \texttt{mixtools}. The data concern the Old Faithful Geyser, a built-in data set in R.

The data here consist of waiting times between eruptions. A histogram, obtained via

\[
> \text{hist(\texttt{faithful$waiting})}
\]

and shown in Figure ??, seems to suggest that the waiting time distribution is a mixture of 2 normals.

I tried initial guesses of means and standard deviations from the appearance of the histogram, and used equal weights for my initial guesses in that aspect:

\[
> \text{mixout} \leftarrow \text{normalmixEM(\texttt{faithful$waiting}, lambda=0.5, mu=\texttt{c(55,80)}, sigma=10, k=2)}
\]

\[
\text{number of iterations} = 9
\]

\[
> \text{str(mixout)}
\]

\[
\begin{aligned}
\text{List of 9} \\
\$ x & : \text{num [1:272]} \quad 79 \quad 54 \quad 74 \quad 62 \quad 85 \quad 55 \quad 88 \quad 85 \quad 51 \quad 85 \ldots \\
\$ \lambda & : \text{num [1:2]} \quad 0.361 \quad 0.639 \\
\$ \mu & : \text{num [1:2]} \quad 54.6 \quad 80.1
\end{aligned}
\]
24.8. MEAN AND VARIANCE OF RANDOM VARIABLES HAVING MIXTURE DISTRIBUTIONS

$\sigma: \text{num}\ [1:2]\ 5.87\ 5.87$

$\loglik: \text{num}\ -1034$

$posterior: \text{num}\ [1:272,1:2]\ 1.02\times10^{-04}\ 1.00\ 4.12\times10^{-03}\ 9.67\times10^{-01}\ 1.21\times10^{-06}$

... attr(*, "dimnames")= List of 2
 ..$: NULL
 ..$: chr [1:2] "comp.1" "comp.2"

$\text{all.loglik}: \text{num}\ [1:10]\ -1085\ -1051\ -1037\ -1034\ -1034\ ...$

$\text{restarts}: \text{num}\ 0$

$\text{ft}: \text{chr}\ "\text{normalmixEM}"$

$\text{attr}(*, "\text{class}")= \text{chr} "\text{mixEM}"$

So, the estimate from EM is that about 36% of the eruptions are of Type 1, etc. Interesting, when I tried it without my own initial guesses,

mixout <- normalmixEM(faithful$waiting, k=2)

the results were the same, so it seems to be a fairly stable model here.

By the way, since we are working with a hidden variable M here—in fact, we are merely postulating that it exists—how do we check this assumption? We’ll return to this general idea of model fitting in Chapter ??.

24.8 Mean and Variance of Random Variables Having Mixture Distributions

Think of the random variables M and Y in the discussion following (??). Then EY is easy to find using the Law of Total Expectation:

$$EY = E[E(Y|M)] \quad (24.10)$$

Of course, evaluating this would require being able to compute $E(Y \mid M)$, which is easy in some cases, not so easy in others.

Also, using the Law of Total Variance, we have that

$$Var(Y) = E[Var(Y|M)] + Var[E(Y|M)] \quad (24.11)$$
24.9 Example: Two Kinds of Batteries

Say a factory produces two kinds of batteries. One kind has lifetime that is exponentially distributed with mean 200 and the other’s distribution is exponential with mean 500. Suppose 60% of the factory’s production is of the former type, with 40% being of the latter type. Let’s find the mean and variance of the lifetime Y of a randomly chosen battery.

Note that the distribution of Y is a mixture, in the sense of Section ??, in particular (??). Y here is a continuous random variable, referred to in that section as the “continuous outcome” case. In the notation there, let M be the battery type, with M being 0 or 1, for the 200-hour and 500-hour batteries, respectively. The conditional density of Y given $M = 0$ is exponential with mean 200, while given $M = 1$ it is exponential with mean 500. The unconditional density of Y is the mixture of these two exponential densities, as (??).

We want to find the unconditional mean and variance of Y.

Then

\[
E(Y|M) = \begin{cases}
200, & \text{w.p. 0.60} \\
500, & \text{w.p. 0.40}
\end{cases}
\]

(24.12)

and

\[
Var(Y|M) = \begin{cases}
200^2, & \text{w.p. 0.60} \\
500^2, & \text{w.p. 0.40}
\end{cases}
\]

(24.13)

(recalling that in the exponential family, variance is the square of the mean).

We can now use the formulas in Section ??: Let $Q_1 = E(Y|M)$ and $Q_2 = Var(Y|M)$. Then

\[
EY = EQ_1 = 0.60 \times 200 + 0.40 \times 500
\]

(24.14)

and
24.10. Example: Overdispersion Models

A common model used in practice is that of overdispersion, in connection with Poisson models. Recall the following about the Poisson distribution family:

(a) This family is often used to model counts.

(b) For any Poisson distribution, the variance equals the mean.

In some cases in which we are modeling count data, condition (b) is too constraining. We want a “Poisson-ish” distribution in which the variance is greater than the mean, called overdispersion. One may then try to fit a mixture of several Poisson distributions, instead of a single one. This does induce overdispersion, as we will now see.

Suppose M can equal 1, 2, ..., k, with probabilities \(p_1, ..., p_k \) that sum to 1. Say the distribution of \(Y \) given \(M = i \) is Poisson with parameter \(\lambda_i \). Then \(Y \) has a mixture distribution. Our goal here will be to show that \(Y \) is overdispersed, i.e. has a large variance than mean.

By the Law of Total Expectation,

\[
EY = E[E(Y|M)] = E(\lambda_M) = \sum_{i=1}^{k} p_i \lambda_i
\]

Note that in the above, the expression \(\lambda_M \) is a random variable, since its subscript M is random. Indeed, it is a function of M, so Equation (3.36) then applies, yielding the final equation. The random variable \(\lambda_M \) takes on the values \(\lambda_1, ..., \lambda_k \) with probabilities \(p_1, ..., p_k \), hence that final sum.
CHAPTER 24. MIXTURE DISTRIBUTIONS AND HIDDEN MARKOV MODELS

The corresponding formula for variance, (??), can be used to derive \(\text{Var}(Y) \).

\[
\text{Var}(Y) = E[\text{Var}(Y|M)] + \text{Var}[E(Y|M)]
\]

\[
= E(\lambda_M) + \text{Var}(\lambda_M)
\]

\[
= EY + \text{Var}(\lambda_M)
\]

(24.24)

(24.25)

(24.26)

(24.27)

Did you notice that this last equation achieves our goal of showing overdispersed? Since

\[\text{Var}(\lambda_M) > 0 \]

(24.28)

we have that

\[\text{Var}(Y) > E(\lambda_M) = EY \]

(24.29)

by (??).

But let’s see just how much greater the variance is than the mean. The second term in (??) is evaluated the same way as in (??): This is the variance of a random variable that takes on the values \(\lambda_1, \ldots, \lambda_k \) with probabilities \(p_1, \ldots, p_k \), which is

\[
\sum_{i=1}^{k} p_i (\lambda_i - \bar{\lambda})^2
\]

(24.30)

where

\[\bar{\lambda} = E\lambda_M = \sum_{i=1}^{k} p_i \lambda_i \]

(24.31)

Thus

\[EY = \bar{\lambda} \]

(24.32)

and

\[\text{Var}(Y) = \bar{\lambda} + \sum_{i=1}^{k} p_i (\lambda_i - \bar{\lambda})^2 \]

(24.33)
So, as long as the λ_i are not equal, we have

$$\text{Var}(Y) > EY \quad (24.34)$$

in this Poisson mixture model, in contrast to the single-Poisson case in which $\text{Var}(Y) = EY$. You can now see why the Poisson mixture model is called an overdispersion model.

So, if one has count data in which the variance is greater than the mean, one might try using this model.

In mixing the Poissons, there is no need to restrict to discrete M. In fact, it is not hard to derive the fact that if X has a gamma distribution with parameters r and $p/(1-p)$ for some $0 < p < 1$, and Y given X has a Poisson distribution with mean X, then the resulting Y neatly turns out to have a negative binomial distribution.

24.11 Example: Hidden Markov Models

The Hidden Markov Model to be introduced in Section 12.5 fits our definition of a mixture distribution, with M being the mixing variable.

According, the machinery of mixing models applies. For instance, we can use the EM algorithm to calculate various quantities.

24.12 Vector Space Interpretations (for the mathematically adventurous only)

The abstract vector space notion in linear algebra has many applications to statistics. We develop some of that material in this section.

Let \mathcal{V} be the set of all such random variables having finite variance and mean 0. We can set up \mathcal{V} as a vector space. For that, we need to define a sum and a scalar product. Define the sum of any two vectors X and Y to be the random variable $X+Y$. For any constant c, the vector cX is the random variable cX. Note that \mathcal{V} is closed under these operations, as it must be: If X and Y both have mean 0, then $X+Y$ does too, and so on.

Define an inner product on this space:

$$(X, Y) = \text{Cov}(X, Y) = E(XY) \quad (24.35)$$
(Recall that \(\text{Cov}(X,Y) = \text{E}(XY) - \text{E}X \text{E}Y \), and that we are working with random variables that have mean 0.) Thus the norm of a vector \(X \) is

\[
||X|| = (X, X)^{0.5} = \sqrt{\text{E}(X^2)} = \sqrt{\text{Var}(X)}
\]

(24.36)

again since \(\text{E}(X) = 0 \).

24.12.1 Properties of Correlation

The famous Cauchy-Schwarz Inequality for inner products says,

\[
|(X,Y)| \leq ||X|| \, ||Y||
\]

(24.37)

Applying that here, we have

\[
|\rho(X,Y)| \leq 1
\]

(24.38)

So, vector space theory tells us that correlations are bounded between -1 and 1.

Also, the Cauchy-Schwarz Inequality yields equality if and only if one vector is a scalar multiple of the other, i.e. \(Y = cX \) for some \(c \). When we then translate this to random variables of nonzero means, we get \(Y = cX + d \).

In other words, the correlation between two random variables is between -1 and 1, with equality if and only if one is an exact linear function of the other.

24.12.2 Conditional Expectation As a Projection

For a random variable \(X \) in \(\mathcal{V} \), let \(\mathcal{W} \) denote the subspace of \(\mathcal{V} \) consisting of all functions \(h(X) \) with mean 0 and finite variance. (Again, note that this subspace is indeed closed under vector addition and scalar multiplication.)

Now consider any \(Y \) in \(\mathcal{V} \). Recall that the projection of \(Y \) onto \(\mathcal{W} \) is the closest vector \(T \) in \(\mathcal{W} \) to \(Y \), i.e. \(T \) minimizes \(||Y - T|| \). That latter quantity is

\[
\left(\text{E}[(Y - T)^2] \right)^{0.5}
\]

(24.39)
24.12. VECTOR SPACE INTERPRETATIONS (FOR THE MATHEMATICALLY ADVENTUROUS ONLY)

To find the minimizing \(T \), consider first the minimization of
\[
E[(S - c)^2]
\]
with respect to constant \(c \) for some random variable \(S \). We already solved this problem back in Section 3.66. The minimizing value is \(c = ES \).

Getting back to (??), use the Law of Total Expectation to write
\[
E[(Y - T)^2] = E\left(E[(Y - T)^2|X]\right)
\]
(24.41)

From what we learned with (??), applied to the conditional (i.e. inner) expectation in (??), we see that the \(T \) which minimizes (??) is \(T = E(Y|X) \).

In other words, the conditional mean is a projection! Nice, but is this useful in any way? The answer is yes, in the sense that it guides the intuition. All this is related to issues of statistical prediction—here we would be predicting \(Y \) from \(X \)—and the geometry here can really guide our insight. This is not very evident without getting deeply into the prediction issue, but let’s explore some of the implications of the geometry.

For example, a projection is perpendicular to the line connecting the projection to the original vector. So
\[
0 = (E(Y|X), Y - E(Y|X)) = Cov[E(Y|X), Y - E(Y|X)]
\]
(24.42)

This says that the prediction \(E(Y|X) \) is uncorrelated with the prediction error, \(Y-E(Y|X) \). This in turn has statistical importance. Of course, (??) could have been derived directly, but the geometry of the vector space interpretation is what suggested we look at the quantity in the first place. Again, the point is that the vector space view can guide our intuition.

Similarly, the Pythagorean Theorem holds, so
\[
||Y||^2 = ||E(Y|X)||^2 + ||Y - E(Y|X)||^2
\]
(24.43)

which means that
\[
Var(Y) = Var[E(Y|X)] + Var[Y - E(Y|X)]
\]
(24.44)

Equation (??) is a common theme in linear models in statistics, the decomposition of variance.
There is an equivalent form that is useful as well, derived as follows from the second term in (24.4).

Since
\[\mathbb{E}[Y - \mathbb{E}(Y|X)] = \mathbb{E}Y - \mathbb{E}[\mathbb{E}(Y|X)] = \mathbb{E}Y - \mathbb{E}Y = 0 \] (24.45)
we have

\[\text{Var}[Y - \mathbb{E}(Y|X)] = \mathbb{E}[(Y - \mathbb{E}(Y|X))^2] \] (24.46)
\[\quad = \mathbb{E}[Y^2 - 2Y\mathbb{E}(Y|X) + (\mathbb{E}(Y|X))^2] \] (24.47)

Now consider the middle term, \(\mathbb{E}[-2Y\mathbb{E}(Y|X)] \). Conditioning on \(X \) and using the Law of Total Expectation, we have

\[\mathbb{E}[-2Y\mathbb{E}(Y|X)] = -2\mathbb{E}[(\mathbb{E}(Y|X))^2] \] (24.48)

Then (24.49) becomes

\[\text{Var}[Y - \mathbb{E}(Y|X)] = \mathbb{E}(Y^2) - \mathbb{E}[(\mathbb{E}(Y|X))^2] \] (24.49)
\[\quad = \mathbb{E}[\mathbb{E}(Y^2|X)] - \mathbb{E}[(\mathbb{E}(Y|X))^2] \] (24.50)
\[\quad = \mathbb{E}(\mathbb{E}(Y^2|X) - (\mathbb{E}(Y|X))^2) \] (24.51)
\[\quad = \mathbb{E}[\text{Var}(Y|X)] \] (24.52)
the latter coming from our old friend, \(\text{Var}(U) = \mathbb{E}(U^2) - (\mathbb{E}U)^2 \), with \(U \) being \(Y \) here, under conditioning by \(X \).

In other words, we have just derived another famous formula:

\[\text{Var}(Y) = \mathbb{E}[\text{Var}(Y|X)] + \text{Var}[\mathbb{E}(Y|X)] \] (24.53)

24.13 Proof of the Law of Total Expectation

Let’s prove (24.13) for the case in which \(W \) and \(Y \) take values only in the set \{1,2,3,…\}. Recall that if \(T \) is an integer-value random variable and we have some function \(h() \), then \(L = h(T) \) is another
random variable, and its expected value can be calculated as

$$E(L) = \sum_k h(k)P(T = k)$$ \hspace{1cm} (24.54)$$

In our case here, Q is a function of W, so we find its expectation from the distribution of W:

$$E(Q) = \sum_{i=1}^{\infty} g(i)P(W = i)$$
$$= \sum_{i=1}^{\infty} E(Y|W = i)P(W = i)$$
$$= \sum_{i=1}^{\infty} \left[\sum_{j=1}^{\infty} jP(Y = j|W = i) \right] P(W = i)$$
$$= \sum_{j=1}^{\infty} j \sum_{i=1}^{\infty} P(Y = j|W = i)P(W = i)$$
$$= \sum_{j=1}^{\infty} jP(Y = j)$$
$$= E(Y)$$

In other words,

$$E(Y) = E[E(Y|W)]$$ \hspace{1cm} (24.55)$$

Exercises

1. In the catchup game in Section 16.2.1 let V and W denote the winnings of the two players after only one turn. Find P(V > 0.4).

2. Suppose one keeps rolling a die. Let S_n denote the total number of dots after n rolls, mod 8, and let T be the number of rolls needed for the event S_n = 0 to occur. Find E(T), using an approach like that in the “trapped miner” example in Section ??.

This is sometimes called The Law of the Unconscious Statistician, by nasty probability theorists who look down on statisticians. Their point is that technically $EL = \sum_k kP(L = k)$, and that (??) must be proven, whereas the statisticians supposedly think it’s a definition.
3. In our ordinary coins which we use every day, each one has a slightly different probability of heads, which we’ll call H. Say H has the distribution $N(0.5, 0.03^2)$. We choose a coin from a batch at random, then toss it 10 times. Let N be the number of heads we get. Find $\text{Var}(N)$.

4. Suppose the number N of bugs in a certain number of lines of code has a Poisson distribution, with parameter L, where L varies from one programmer to another. Show that $\text{Var}(N) = EL + \text{Var}(L)$.

5. This problem arises from the analysis of random graphs, which for concreteness we will treat here as social networks such as Facebook.

In the model here, each vertex in the graph has N friends, N being a random variable with the same distribution at every vertex. One thinks of each vertex as generating its links, unterminated, i.e. not tied yet to a second vertex. Then the unterminated links of a vertex pair off at random with those of other vertices. (Those that fail will just pair in self loops, but we’ll ignore that.)

Let M denote the number of friends a friend of mine has. That is, start at a vertex A, and follow a link from A to another vertex, say B. M is the number of friends B has (we’ll include A in this number).

(a) Since an unterminated link from A is more likely to pair up with a vertex that has a lot of links, a key assumption is that $P(M = k) = c_k P(N = k)$ for some constant c. Fill in the blank: This is an example of the setting we studied called ________.

(b) Show the following relation of generating functions: $g_M(s) = g'_N(s)/EN$.

6. Suppose Type 1 batteries have exponentially distributed lifetimes with mean 2.0 hours, while Type 2 battery lifetimes are exponentially distributed with mean 1.5. We have a large box containing a mixture of the two types of batteries, in proportions q and $1-q$. We reach into the box, choose a battery at random, then use it. Let Y be the lifetime of the battery we choose. Use the Law of Total Variance, (??), to find $\text{Var}(Y)$.

7. In the backup battery example in Section ??, find $\text{Var}(W)$, using the Law of Total Expectation.

8. Let X denote the number we obtain when we roll a single die once. Let $G_X(s)$ denote the generating function of X.

(a) Find $G_X(s)$.

(b) Suppose we roll the die 5 times, and let T denote the total number of dots we get from the 5 rolls. Find $G_T(s)$.

9. Consider this model of disk seeks. For simplicity, we’ll assume a very tiny number of tracks, 3. Let X_1 and X_2 denote the track numbers of two successive disk requests. Each has a uniform
distribution on \{1,2,3\}. But given \(X_1 = i\), then \(X_2 = i\) with probability 0.4, with \(X_2\) being \(j\) with probability 0.3, \(j \neq i\). (Convince yourself that these last two sentences are consistent with each other.) Find the following:

(a) \(P(\{|X_1 - X_2| \leq 1\})\)
(b) \(E(\{|X_1 - X_2|\})\)
(c) \(F_{X_1,X_2}(2,2)\)

10. Consider the computer worm example in Section 9.3.1. Let \(R\) denote the time it takes to go from state 1 to state 3. Find \(f_R(v)\). (Leave your answer in integral form.)

11. Suppose \((X,Y)\) has a bivariate normal distribution, with \(EX = EY = 0\), \(\text{Var}(X) = \text{Var}(Y) = 1\), and \(\rho(X,Y) = 0.2\). Find the following, in integral forms:

(a) \(E(X^2 + XY^{0.5})\)
(b) \(P(Y > 0.5X)\)
(c) \(F_{X,Y}(0.6,0.2)\)

12. Suppose \(X_i, i = 1,2,3,4,5\) are independent and each have mean 0 and variance 1. Let \(Y_i = X_{i+1} - X_i, i = 1,2,3,4\). Using the material in Section 16.4, find the covariance matrix of \(Y = (Y_1, Y_2, Y_3, Y_4)\).
Chapter 25

Histograms and Beyond: Nonparametric Density Estimation

Here we will be concerned with estimating density functions in settings in which we do not assume our distribution belongs to some parametric model.

Why is this important? Actually, you’ve been seeing density estimates for years—except that they’ve been called histograms—and hopefully you are convinced that histograms are indeed useful tools for data visualization. Simply reporting the (estimated) mean and variance of a distribution may not capture the nuances.

Moreover, density estimates can be used in classification problems, in which we are trying to get the class of something, based on other variables. In a medical context, for instance, we may be trying predict whether a patient will develop a certain disease, knowing her current test results, family history and so on. We’ll cover such problems in Chapter ??, but for now what is important to know is that the classification problem can be expressed in terms of ratios of densities.

But guess what! Histograms are actually density estimates, as we will see. And we can do better than histograms, with more sophisticated density estimates.

25.1 Example: Baseball Player Data

In the data in Section ??, suppose we are looking at player’s weights W, and we are interested in $f_W(182)$, the population density for weights, evaluated at 182. Our data is considered to be a sample from the population of all major league players, past, present and future.\footnote{Recall Section ??.] and we will use
this data to develop an estimate,

\[\hat{f}_W(142) \]

(25.1)

for the population quantity

\[f_W(182) \]

(25.2)

But how can we do this?

25.2 Basic Ideas in Density Estimation

Suppose we have a random sample \(R_1, \ldots, R_n \) from a distribution \(F_R \). How can we estimate \(f_R \) from the \(R_i \)?

Recall from the first day of your calculus course that for a function \(g() \)

\[
g'(x) = \lim_{h \to 0} \frac{g(x + h) - g(x)}{h} \quad (25.3)\]

and thus for small \(h \),

\[
g'(x) \approx \frac{g(x + h) - g(x)}{h} \quad (25.4)\]

Now take \(g() \) to be \(F_R() \) for our random variable \(R \) above, so that

\[
f_R(t) \approx \frac{F_R(t + h) - F_R(t)}{h} \quad (25.5)\]

We can alter this a little: Instead of looking at the interval \((t, t + h) \), we can use \((t - h, t + h) \):

\[
f_R(t) \approx \frac{F_R(t + h) - F_R(t - h)}{2h} \quad (25.6)\]

That means that
25.3. HISTOGRAMS

\[f_R(t) \approx \frac{F_R(t + h) - F_R(t - h)}{2h} \quad (25.7) \]
\[= \frac{P(R \leq t + h) - P(R \leq t - h)}{2h} \quad (25.8) \]
\[= \frac{P(t - h < R \leq t + h)}{2h} \quad (25.9) \]

if \(h \) is small. We can then form an estimate \(\hat{f}_R(t) \) by plugging in sample analogs in the right-hand side of (25.7):

\[\hat{f}_R(t) = \frac{\#(t - h, t + h)/n}{2h} \quad (25.10) \]
\[= \frac{\#(t - h, t + h)}{2hn} \quad (25.11) \]

where the notation \(\#(a, b) \) means the number of \(R_i \) in the interval \((a, b) \).

There is an important issue of how to choose the value of \(h \) here, but let’s postpone that for now. For the moment, let’s take

\[h = \frac{\max_i R_i - \min_i R_i}{100} \quad (25.12) \]

i.e. take \(h \) to be 0.01 of the range of our data.

At this point, we’d then compute (25.7) at lots of different points \(t \). Although it would seem that theoretically we must compute (25.7) at infinitely many such points, the graph of the function is actually a step function. Imagine \(t \) moving to the right, starting at \(\min_i R_i \). The interval \((t - h, t + h) \) moves along with it. Whenever the interval moves enough to the right to either pick up a new \(R_i \) or lose one that it had had, (25.7) will change value, but not at any other time. So, we only need to evaluate the function at about \(2n \) values of \(t \).

25.3 Histograms

If for some reason we really want to save on computation, let’s again say that we first break the interval \((\min_i R_i, \max_i R_i) \) into 100 subintervals of size \(h \) given by (25.7). We then compute (25.7) only at the midpoints of those intervals, and assume that the graph of \(\hat{f}_R(t) \) is approximately constant within each subinterval (true for small \(h \)). Do you know what we get from that? A histogram! Yes,
a histogram is a form of density estimation. (Usually a histogram merely displays counts. We do so here too, but we have scaled things so that the total area under the curve is 1, a property of densities.)

25.4 Kernel-Based Density Estimation

No matter what the interval width is, the histogram will consist of a bunch of rectangles, rather than a curve. We can get a smoother result if we used more sophisticated methods, one of which is called kernel-based density estimation. In base R, this is handled by the function `density()`.

For any particular value of t, $\hat{f}_R(t)$ above depends only on the R_i that fall into that interval. If for instance some R_i is just barely outside the interval, it won’t count. We’ll now change that.

We need a set of weights, more precisely a weight function k, called the kernel. Any nonnegative function which integrates to 1—i.e. a density function in its own right—will work. Our estimator is then

$$\hat{f}_R(t) = \frac{1}{nh} \sum_{i=1}^{n} k\left(\frac{t - R_i}{h} \right)$$

To make this idea concrete, take k to be the uniform density on (-1,1), which has the value 0.5 on (-1,1) and 0 elsewhere. Then (25.13) reduces to (25.14). Note how the parameter h, called the bandwidth, continues to control how far away from to t we wish to go for data points.

But as mentioned, what we really want is to include all data points, so we typically use a kernel with support on all of $(-\infty, \infty)$. In R’s `density()` function, the default kernel is that of the N(0,1) density.

The bandwidth h controls how much smoothing we do; smaller values of h place heavier weights on data points near t and much lighter weights on the distant points.

There is no surefire way to choose a good bandwidth. A commonly used rule of thumb is

$$h = 1.06 s n^{-1/5}$$

where s is the sample standard deviation.

The default bandwidth in R is taken to the the standard deviation of k.

25.5 **Example: Baseball Player Data**

Some figures are plotted below for the baseball data, introduced in Section ??, for player weights, using functions in `ggplot2`:

- Figure ?? shows a histogram using the default number of bins, 30, programmed as follows

  ```r
  p <- ggplot(baseball) + geom_histogram(data=baseball, aes(x=Weight, y=..density..))
  ```

 As conceded in the documentation for `geom_histogram()`, the default tends to be not very good. This was the case here, with a very choppy figure.

- I then tried a binwidth of 10 pounds,

  ```r
  p + geom_histogram(data=baseball, aes(x=Weight, y=..density..), binwidth=10)
  ```

 This gave the much smoother plot in Figure ??.

- I then tried a kernel density estimate with the default bandwidth:

  ```r
  p + geom_density(aes(x=Weight))
  ```

 The result was similar to the histogram, but smoother, which is the goal.

- Finally, I superimposed on that last plot a plot for the catchers only (the latter in red):

  ```r
  p + geom_density(aes(x=Weight)) + geom_density(data=catch, aes(x=Weight, colour="red"))
  ```

 As seen in Figure ??, the catchers tend to be a bit heavier, and have less variation than the players in general.

25.6 **More on Density Estimation in ggplot2**

See Section ??.

25.7 **Bias, Variance and Aliasing**

Nonparametric density estimation gives us an opportunity to apply the principles of bias from Chapter ??.
25.7.1 Bias vs. Variance

Recall from Section ?? that for an estimator \(\hat{\theta} \) of a population quantity \(\theta \) we have that an overall measure of the accuracy of the estimator is

\[
E[(\hat{\theta} - \theta)^2] = \text{bias}(\hat{\theta})^2 + \text{Var}(\hat{\theta})
\]

(25.15)

In many cases there is a tradeoff between the bias and variance components here. We can have a smaller bias, for instance, but at the expense of increased variance. This is certainly the case with nonparametric density estimation.

As an illustration, suppose the true population density is \(f_{R}(t) = 4t^3 \) for \(t \) in \((0,1) \), 0 elsewhere. Let’s use (??):

\[
\tilde{f}_{R}(t) = \frac{\#(t - h, t + h)}{2hn}
\]

(25.16)
What is the bias? The numerator has a binomial distribution with n trials and success probability \(p \) \(^2\):

\[
p = P(t - h < R < t + h) = \int_{t-h}^{t+h} 4u^3 \, du = (t + h)^4 - (t - h)^4 = 8t^3h + 8th^3 \quad (25.17)
\]

By the binomial property, the numerator of (25.17) has expected value np, and thus

\[
E[\hat{f}_R(t)] = \frac{np}{2nh} = 4t^3 + 4th^2 \quad (25.18)
\]

Subtracting \(f_R(t) \), we have

\[
bias[\hat{f}_R(t)] = 4th^2 \quad (25.19)
\]

\(^2\)Note in the calculation here that it doesn’t matter whether we write \(\leq t + h \) or \(< t + h \), since \(R \) is a continuous random variable.
So, the smaller we set h, the smaller the bias, consistent with intuition.

How about the variance? Again using the binomial property, the variance of the numerator of (??) is $np(1-p)$, so that

$$\text{Var}[\hat{f}_R(t)] = \frac{np(1-p)}{(2nh)^2} = \frac{np}{2nh} \cdot \frac{1-p}{2nh} = (4t^3 + 4th^2) \cdot \frac{1-p}{2nh} \quad (25.20)$$

This matches intuition too: On the one hand, for fixed h, the larger n is, the smaller the variance of our estimator—i.e. larger samples are better, as expected. On the other hand, the smaller we set h, the larger the variance, because with small h there just won’t be many R_i falling into our interval $(t-h, t+h)$.

So, you can really see the bias-variance tradeoff here, in terms of what value we choose for h.

3 You might ask about finding the h to minimize (??). This would not make sense in our present context, in which we are simply assuming a known density in order to explore the bias and variance issues here. In practice, of
25.7. BIAS, VARIANCE AND ALIASING

Figure 25.4: Kernel estimate, all players plus catchers (red), default bandwidth

25.7.2 Aliasing

There is another issue here to recognize: The integration in (??) tacitly assumed that \(t - h > 0 \) and \(t + h < 1 \). But suppose we are interested in \(f_R(1) \). Then the upper limit in the integral in (??) will be 1, not \(t+h \), which will approximately reduce the value of the integral by a factor of 2.

This results in strong bias near the endpoints of the support.\(^4\) Let’s illustrate this with the same density explored in our last section.

Using the general method in Section \(\ref{7.11} \) for generating random numbers from a specified distribution, we have that this function will generate \(n \) random numbers from the density \(4t^3 \) on \((0,1) \):

\(\)

\(\)

\(^4 \)Recall that this term was defined in Section \(\ref{7.5} \)
\(f \leftarrow \text{function}(n) \ \text{runif}(n)^{0.25} \)

So, let's generate some numbers and plot the density estimate:

\[
> \text{plot}(\text{density}(f(1000)))
\]

The result is shown in Figure 25.5. Sure enough, the estimated density drops after about \(t = 0.9 \), instead of continuing to rise.

25.8 Nearest-Neighbor Methods

Consider (??) again. We count data points that are within a fixed distance from \(t \); the number of such points will be random. With the nearest-neighbor approach, it's just the opposite: Now the number will be fixed, while the maximum distance from \(t \) will be random.

Specifically, at any point \(t \) we find the \(k \) nearest \(R_i \) to \(t \), where \(k \) is chosen by the analyst just like \(h \) is selected in the kernel case. (And the method is are usually referred to as the \(k \)-Nearest Neighbor method, \(k \text{NN} \).) The estimate is now
25.9. **ESTIMATING A CDF**

Let’s introduce the notion of the **empirical distribution function** (ecdf), based on a sample $X_1, ..., X_n$. It is a sample estimate of a cdf, defined to be the proportion of X_i that are below t in the sample. Graphically, F_X is a step function, with jumps at the values of the X_i.

As a small example, say $n = 4$ and our data are 4.8, 1.2, 2.2 and 6.1. We can plot the empirical cdf by calling R’s `ecdf()` function:

```r
> plot(ecdf(x))
```

The graph is in Figure ?? (In ggplot2, the function `stat_ecdf()` is similar.)

\[
\hat{f}_R(t) = \frac{k/n}{2 \max_i |R_i - t|} \tag{25.21}
\]

\[
= \frac{k}{2n \max_i |R_i - t|} \tag{25.22}
\]

\[
= \frac{k}{n \max_i |R_i - t|} \tag{25.23}
\]
25.10 Hazard Function Estimation

In principle, estimating a hazard function from data should be a direct application of nonparametric density function methods. In (14.3) we would estimate the numerator with a kernel-based method, say, and the cdf in the denominator using the ecdf (Section ??).

However, the situation is complicated in that in many applications we have censored data, meaning that not all the data is available, due to an event not yet happening.

Say we measure lifetimes of batteries, and that at the time we collect our data, some of the batteries have died but some are still working. The problem is that we don’t know the lifetimes of the latter. If one has run, say, for 212 hours so far, we know that its lifetime will be at least 212, but we don’t know the actual value yet.

This is an advanced topic, but a good starting point would be R’s muhaz library in the CRAN repository. See the references in the documentation.

25.11 For Further Reading

To see an example of nonparametric density estimation applied to biology, see this paper by a UCD professor:

Also see *All of Nonparametric Statistics*, Larry Wasserman Springer, 2007.
Chapter 26

Introduction to Model Building

All models are wrong, but some are useful.—George Box

[Mathematical models] should be made as simple as possible, but not simpler.—Albert Einstein

Beware of geeks bearing formulas.—Warrent Buffett, 2009, on the role of “quants” (Wall Street analysts who form probabilistic models for currency, bonds etc.) in the 2008 financial collapse.

The above quote by Box says it all. Consider for example the family of normal distributions. In real life, random variables are bounded—no person’s height is negative or greater than 500 inches—and are inherently discrete, due to the finite precision of our measuring instruments. Thus, technically, no random variable in practice can have an exact normal distribution. Yet the assumption of normality pervades statistics, and has been enormously successful, provided one understands its approximate nature.

The situation is similar to that of physics. Paraphrasing Box, we might say “The physical models used when engineers design an airplane wing are all wrong—but they are useful.” We know that in many analyses of bodies in motion, we can neglect the effect of air resistance. But we also know that in some situations one must include that factor in our model.

So, the field of probability and statistics is fundamentally about modeling. The field is extremely useful, provided the user understands the modeling issues well. For this reason, this book contains this separate chapter on modeling issues.

1George Box (1919-) is a famous statistician, with several statistical procedures named after him.
2The reader is undoubtedly aware of Einstein’s (1879-1955) famous theories of relativity, but may not know his connections to probability theory. His work on Brownian motion, which describes the path of a molecule as it is bombarded by others, is probabilistic in nature, and later developed into a major branch of probability theory. Einstein was also a pioneer in quantum mechanics, which is probabilistic as well. At one point, he doubted the validity of quantum theory, and made his famous remark, “God does not play dice with the universe.”
26.1 “Desperate for Data”

Suppose we have the samples of men’s and women’s heights, X_1, \ldots, X_n and Y_1, \ldots, Y_n. Assume for simplicity that the variance of height is the same for each gender, σ^2. The means of the two populations are designated by μ_1 and μ_2.

Say we wish to guess the height of a new person who we know to be a man but for whom we know nothing else. We do not see him, etc.

26.1.1 Known Distribution

Suppose for just a moment that we actually know the distribution of X, i.e. the population distribution of male heights. What would be the best constant g to use as our guess for a person about whom we know nothing other than gender?

Well, we might borrow from Section ?? and use mean squared error,

$$E[(g - X)^2]$$

as our criterion of goodness of guessing. But we already know what the best g is, from Section 3.66. The best g is μ_1. Our best guess for this unseen man’s height is the mean height of all men in the population.

26.1.2 Estimated Mean

Of course, we don’t know μ_1, but we can do the next-best thing, i.e. use an estimate of it from our sample.

The natural choice for that estimator would be

$$T_1 = \bar{X},$$

the mean height of men in our sample.

But what if n is really small, say $n = 5$? That’s awfully small. We may wish to consider adding the women’s heights to our estimate, in order to get a larger sample. Then we would estimate μ_1 by

$$T_2 = \frac{\bar{X} + \bar{Y}}{2},$$
It may at first seem obvious that T_1 is the better estimator. Women tend to be shorter, after all, so pooling the data from the two genders would induce a bias. On the other hand, we found in Section ?? that for any estimator,

\[\text{MSE} = \text{variance of the estimator} + \text{bias of the estimator}^2 \]

(26.4)

In other words, *some amount of bias may be tolerable*, if it will buy us a substantial reduction in variance. After all, women are not that much shorter than men, so the bias might not be too bad. Meanwhile, the pooled estimate should have lower variance, as it is based on $2n$ observations instead of n; (??) indicates that.

Before continuing, note first that T_2 is based on a simpler model than is T_1, as T_2 ignores gender. We thus refer to T_1 as being based on the more complex model.

Which one is better? The answer will need a criterion for goodness of estimation, which we will take to be mean squared error, MSE. So, the question becomes, which has the smaller MSE, T_1 or T_2? In other words:

Which is smaller, $E[(T_1 - \mu_1)^2]$ or $E[(T_2 - \mu_1)^2]$?

26.1.3 The Bias/Variance Tradeoff

We could calculate MSE from scratch, but it would probably be better to make use of the work we already went through, producing (??). This is especially true in that we know a lot about variance of sample means, and we will take this route.

So, let’s find the biases of the two estimators.

- T_1
 - T_1 is unbiased, from (??). So,
 - bias of $T_1 = 0$

- T_2

 \[E(T_2) = E(0.5\bar{X} + 0.5\bar{Y}) \] (definition)
 \[= 0.5E\bar{X} + 0.5E\bar{Y} \] (linearity of $E()$)
 \[= 0.5\mu_1 + 0.5\mu_2 \] [from (??)]

So,
bias of $T_2 = (0.5\mu_1 + 0.5\mu_2) - \mu_1$

On the other hand, T_2 has a smaller variance than T_1:

- T_1
 Recalling (??), we have
 \[
 Var(T_1) = \frac{\sigma^2}{n} \tag{26.8}
 \]

- T_2
 \[
 Var(T_2) = Var(0.5\bar{X} + 0.5\bar{Y}) = \frac{0.5^2 Var(\bar{X}) + 0.5^2 Var(\bar{Y})}{1} (\text{properties of } Var()) \tag{26.9}
 \]
 \[
 = 2 \cdot 0.25 \cdot \frac{\sigma^2}{n} \quad [\text{from } ??] \tag{26.10}
 \]
 \[
 = \frac{\sigma^2}{2n} \tag{26.11}
 \]

These findings are highly instructive. You might at first think that “of course” T_1 would be the better predictor than T_2. But for a small sample size, the smaller (actually 0) bias of T_1 is not enough to counteract its larger variance. T_2 is biased, yes, but it is based on double the sample size and thus has half the variance.

In light of (??), we see that T_1, the “true” predictor, may not necessarily be the better of the two predictors. Granted, it has no bias whereas T_2 does have a bias, but the latter has a smaller variance.

So, under what circumstances will T_1 be better than T_2? Let’s answer this by using (??):

\[
MSE(T_1) = \frac{\sigma^2}{n} + 0^2 = \frac{\sigma^2}{n} \tag{26.13}
\]

\[
MSE(T_2) = \frac{\sigma^2}{2n} + \left(\frac{\mu_1 + \mu_2}{2} - \mu_1 \right)^2 = \frac{\sigma^2}{2n} + \left(\frac{\mu_2 - \mu_1}{2} \right)^2 \tag{26.14}
\]

T_1 is a better predictor than T_2 if (??) is smaller than (??), which is true if

\[
\left(\frac{\mu_2 - \mu_1}{2} \right)^2 > \frac{\sigma^2}{2n} \tag{26.15}
\]
26.1. “DESPERATE FOR DATA”

Granted, we don’t know the values of the μ_1 and σ^2, so in a real situation, we won’t really know whether to use T_1 or T_2. But the above analysis makes the point that under some circumstances, it really is better to pool the data in spite of bias.

26.1.4 Implications

So you can see that T_1 is better only if either

- n is large enough, or
- the difference in population mean heights between men and women is large enough, or
- there is not much variation within each population, e.g. most men have very similar heights

Since that third item, small within-population variance, is rarely seen, let’s concentrate on the first two items. The big revelation here is that:

A more complex model is more accurate than a simpler one only if either

- we have enough data to support it, or
- the complex model is sufficiently different from the simpler one

In height/gender example above, if n is too small, we are “desperate for data,” and thus make use of the female data to augment our male data. Though women tend to be shorter than men, the bias that results from that augmentation is offset by the reduction in estimator variance that we get. But if n is large enough, the variance will be small in either model, so when we go to the more complex model, the advantage gained by reducing the bias will more than compensate for the increase in variance.

THIS IS AN ABSOLUTELY FUNDAMENTAL NOTION IN STATISTICS.

This was a very simple example, but you can see that in complex settings, fitting too rich a model can result in very high MSEs for the estimates. In essence, everything becomes noise. (Some people have cleverly coined the term **noise mining**, a play on the term **data mining**.) This is the famous **overfitting** problem.

In our unit on statistical relations, Chapter ??, we will show the results of a scary experiment done at the Wharton School, the University of Pennsylvania’s business school. The researchers deliberately added fake data to a prediction equation, and standard statistical software identified it as “significant”! This is partly a problem with the word itself, as we saw in Section ??, but also a problem of using far too complex a model, as will be seen in that future unit.
Note that of course (??) contains several unknown population quantities. I derived it here merely to establish a principle, namely that a more complex model may perform more poorly under some circumstances.

It would be possible, though, to make (??) into a practical decision tool, by estimating the unknown quantities, e.g. replacing μ_1 by \bar{X}. This then creates possible problems with confidence intervals, whose derivation did not include this extra decision step. Such estimators, termed adaptive, are beyond the scope of this book.

26.2 Assessing “Goodness of Fit” of a Model

Our example in Section ?? concerned how to estimate the parameters of a gamma distribution, given a sample from the distribution. But that assumed that we had already decided that the gamma model was reasonable in our application. Here we will be concerned with how we might come to such decisions.

Assume we have a random sample X_1, \ldots, X_n from a distribution having density f_X. To keep things simple, let’s suppose we are considering an exponential model.

26.2.1 The Chi-Square Goodness of Fit Test

The classic way to do this would be the Chi-Square Goodness of Fit Test. We would set

$$H_0 : f_X \text{ is a member of the exponential parametric family} \quad (26.16)$$

This would involve partitioning $(0, \infty)$ into k intervals (s_{i-1}, s_i) of our choice, and setting

$$N_i = \text{number of } X_i \text{ in } (s_{i-1}, s_i) \quad (26.17)$$

We would then find the Maximum Likelihood Estimate (MLE) of λ, on the assumption that the distribution of X really is exponential. The MLE turns out to be the reciprocal of the sample mean, i.e.

$$\hat{\lambda} = 1/\bar{X} \quad (26.18)$$

This would be considered the parameter of the “best-fitting” exponential density for our data. We
26.2. **ASSESSING “GOODNESS OF FIT” OF A MODEL**

would then estimate the probabilities

\[p_i = P[X \in (s_{i-1}, s_i)] = e^{-\lambda s_{i-1}} - e^{-\lambda s_i}, \ i = 1, ..., k. \]

(26.19)

by

\[\hat{p}_i = e^{-\hat{\lambda} s_{i-1}} - e^{-\hat{\lambda} s_i}, \ i = 1, ..., k. \]

(26.20)

Note that \(N_i \) has a binomial distribution, with \(n \) trials and success probability \(p_i \). Using this, the expected value of \(EN_i \) is estimated to be

\[\nu_i = n(e^{-\hat{\lambda} s_{i-1}} - e^{-\hat{\lambda} s_i}), \ i = 1, ..., k. \]

(26.21)

Our test statistic would then be

\[Q = \sum_{i=1}^{k} \frac{(N_i - \nu_i)^2}{\nu_i} \]

(26.22)

where \(\nu_i \) is the expected value of \(N_i \) under the assumption of “exponentialness.” It can be shown that \(Q \) is approximately chi-square distributed with \(k-2 \) degrees of freedom.\(^3\) Note that only large values of \(Q \) should be suspicious, i.e. should lead us to reject \(H_0 \); if \(Q \) is small, it indicates a good fit. If \(Q \) were large enough to be a “rare event,” say larger than \(\chi^2_{0.95,k-2} \), we would decide NOT to use the exponential model; otherwise, we would use it.

Hopefully the reader has immediately recognized the problem here. If we have a large sample, this procedure will pounce on tiny deviations from the exponential distribution, and we would decide not to use the exponential model—even if those deviations were quite minor. Again, no model is 100% correct, and thus a goodness of fit test will eventually tell us not to use any model at all.

26.2.2 Kolmogorov-Smirnov Confidence Bands

Again consider the problem above, in which we were assessing the fit of an exponential model. In line with our major point that confidence intervals are far superior to hypothesis tests, we now present **Kolmogorov-Smirnov confidence bands**, which work as follows.

\(^3\)We have \(k \) intervals, but the \(N_i \) must sum to \(n \), so there are only \(k-1 \) free values. We then subtract one more degree of freedom, having estimated the parameter \(\lambda \).
Since this method relies on cdfs, recall notion of the empirical distribution function (ecdf), Section 26.1. It is a sample estimate of a cdf, defined to be the proportion of \(X_i \) that are below \(t \) in the sample. Graphically, \(\hat{F}_X \) is a step function, with jumps at the values of the \(X_i \).

What Kolmogorov-Smirnov does is form a confidence band around the empirical cdf of a sample. The basis for this is that the distribution of

\[
M = \max_{-\infty < t < \infty} |\hat{F}_X(t) - F_X(t)|
\]

is the same for all distributions having a density. This fact (whose proof is related to the general method for simulating random variables having a given density, in Section 7.11) tells us that, without knowing anything about the distribution of \(X \), we can be sure that \(M \) has the same distribution. And it turns out that

\[
F_M(1.358n^{-1/2}) \approx 0.95
\]

(26.24)

Define “upper” and “lower” functions

\[
U(t) = \hat{F}_X(t) + 1.358n^{-1/2}, \quad L(t) = \hat{F}_X(t) - 1.358n^{-1/2}
\]

(26.25)

So, what (26.23) and (26.24) tell us is

\[
0.95 \approx P(\text{the curve } F_X \text{ is entirely between } U \text{ and } L)
\]

(26.26)

So, the pair of curves, \((L(t), U(t))\) is called a a 95% confidence band for \(F_X \).

Now suppose we wish to see how well, say, the gamma distribution family fits our application. If the band is very wide, we know we really don’t have enough data to decide much about the distribution of \(X \). But if the band is narrow but some member of the family is in the band or is close to it, we would probably decide that the model is a good one. Once again, we should NOT pounce on tiny deviations from the model.

Warning: The Kolmogorov-Smirnov procedure available in the R language performs only a hypothesis test, rather than forming a confidence band. In other words, it simply checks to see whether a member of the family falls within the band. This is not what we want, because we may be perfectly happy if a member is only near the band.
26.3. ROBUSTNESS

26.2.3 Less Formal Methods

Of course, another way, this one less formal, of assessing data for suitability for some model is to plot the data in a histogram or something of that nature. In this section, let’s explore using ecdfs for this. We can plot the ecdf against a fitted model.

Let’s try this with the baseball player data (Section ??). Here is the code:

```r
library(ggplot2)
p <- ggplot(bb, aes(Age))
p + stat.ecdf() # plot ecdf
# define a function for the cdf of a fitted normal distribution
ncdf <- function(t) pnorm(t, mean=mean(bb$Age), sd=sd(bb$Age))
p + stat.ecdf() + stat_function(fun=ncdf)
```

The resulting plot is in Figure ??.

Of course, we could do the same with densities. But that would mean choosing bin width, bandwidth, number of nearest neighbors or something like that. **BUT THERE IS NO GOOD WAY TO CHOOSE THE BIN WIDTH OR h.** Even though there is a lot of theory to suggest how to choose the bin width or h, no method is foolproof. This is made even worse by the fact that the theory generally has a goal of minimizing integrated mean squared error,

\[
\int_{-\infty}^{\infty} E \left[\left(\hat{f}_R(t) - f_R(t) \right)^2 \right] dt
\] \hspace{1cm} (26.27)

rather than, say, the mean squared error at a particular point of interest, v:

\[
E \left[\left(\hat{f}_R(t) - f_R(t) \right)^2 \right]
\] \hspace{1cm} (26.28)

26.3 Robustness

Traditionally, the term robust in statistics has meant resilience to violations in assumptions. For example, in Section ??, we presented Student-t, a method for finding exact confidence intervals for

\footnote{Don’t confuse this with the Central Limit Theorem. Here we are modeling the population itself has having a normal distribution, not sample means from it.}
means, assuming normally-distributed populations. But as noted at the outset of this chapter, no population in the real world has an exact normal distribution. The question at hand (which we will address below) is, does the Student-t method still give approximately correct results if the sample population is not normal? If so, we say that Student-t is robust to the normality assumption.

Later, there was quite a lot of interest among statisticians in estimation procedures that do well even if there are outliers in the data, i.e. erroneous observations that are in the fringes of the sample. Such procedures are said to be robust to outliers.

Our interest here is on robustness to assumptions. Let us first consider the Student-t example. As
discussed in Section ??, the main statistic here is

\[T = \frac{\bar{X} - \mu}{s/\sqrt{n}} \]

(26.29)

where \(\mu \) is the population mean and \(s \) is the unbiased version of the sample variance:

\[s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n - 1}} \]

(26.30)

The distribution of \(T \), under the assumption of a normal population, has been tabulated, and tables for it appear in virtually every textbook on statistics. But what if the population is not normal, as is inevitably the case?

The answer is that it doesn’t matter. For large \(n \), even for samples having, say, \(n = 20 \), the distribution of \(T \) is close to \(N(0,1) \) by the Central Limit Theorem regardless of whether the population is normal.

By contrast, consider the classic procedure for performing hypothesis tests and forming confidence intervals for a population variance \(\sigma^2 \), which relies on the statistic

\[K = \frac{(n - 1)s^2}{\sigma^2} \]

(26.31)

where again \(s^2 \) is the unbiased version of the sample variance. If the sampled population is normal, then \(K \) can be shown to have a chi-square distribution with \(n-1 \) degrees of freedom. This then sets up the tests or intervals. However, it has been shown that these procedures are not robust to the assumption of a normal population. See The Analysis of Variance: Fixed, Random, and Mixed Models, by Hardeo Sahai and Mohammed I. Ageel, Springer, 2000, and the earlier references they cite, especially the pioneering work of Scheffe’.

26.4 Real Populations and Conceptual Populations

In our example in Section ??, we were sampling from a real population. However, in many, probably most applications of statistics, either the population or the sampling is more conceptual.

Consider an experiment we will discuss in Section ??, in which we compare the programmability of three scripting languages. (You need not read ahead.) We divide our programmers into three groups, and assign each group to program in one of the languages. We then compare how long it took the three groups to finish writing and debugging the code, and so on.
We think of our programmers as being a random sample from the population of all programmers, but that is probably an idealization. We probably did NOT choose our programmers randomly; we just used whoever we had available. But we can think of them as a “random sample” from the rather conceptual “population” of all programmers who might work at this company.

You can see from this that if one chooses to apply statistics carefully—which you absolutely should do—there sometimes are some knotty problems of interpretation to think about.

Exercises

1. In our example in Section ??, assume $\mu_1 = 70, \mu_2 = 66, \sigma = 4$ and the distribution of height is normal in the two populations. Suppose we are predicting the height of a man who, unknown to us, has height 68. We hope to guess within two inches. Find $P(|T_1 - 68| < 2)$ and $P(|T_2 - 68| < 2)$ for various values of n.

2. In Chapter ?? we discuss simultaneous inference, the forming of confidence intervals whose joint confidence level was 95% or some other target value. The Kolmogorov-Smirnov confidence band in Section ?? allows us to computer infinitely many confidence intervals for $F_X(t)$ at different values of t, at a “price” of only 1.358. Still, if we are just estimating $F_X(t)$ at a single value of t, an individual confidence interval using (??) would be narrower than that given to us by Kolmogorov-Smirnov. Compare the widths of these two intervals in a situation in which the true value of $F_X(t) = 0.4$.

3. Say we have a random sample X_1, \ldots, X_n from a population with mean μ and variance σ^2. The usual estimator of μ is the sample mean \bar{X}, but here we will use what is called a shrinkage estimator: Our estimate of μ will be $0.9\bar{X}$. Find the mean squared error of this estimator, and give an inequality (you don’t have to algebraically simplify it) that shows under what circumstances $0.9\bar{X}$ is better than \bar{X}. (Strong advice: Do NOT “reinvent the wheel.” Make use of what we have already derived.)

5You’re probably wondering why we haven’t discussed other factors, such as differing levels of experience among the programmers. This will be dealt with in our unit on regression analysis, Chapter ??.
Chapter 27

Linear Regression

In many senses, this chapter and several of the following ones form the real core of statistics, especially from a computer science point of view.

In this chapter and the next, we are interested in relations between variables, in two main senses:

- In regression analysis, we are interested in the relation of one variable with one or more others.

- In other kinds of analyses, such as principal components analysis, we are interested in relations among several variables, symmetrically, i.e. not having one variable play a special role.

Note carefully that many types of methods that go by another name are actually regression methods. Examples are the classification problem, discriminant analysis, pattern recognition, machine learning and so on. We’ll return to this point in Chapter ??.

27.1 The Goals: Prediction and Description

Prediction is difficult, especially when it’s about the future.—Yogi Berra

Before beginning, it is important to understand the typical goals in regression analysis.

\footnote{Yogi Berra (1925-2015) is a former baseball player and manager, famous for his malapropisms, such as “When you reach a fork in the road, take it”; “That restaurant is so crowded that no one goes there anymore”; and “I never said half the things I really said.”}

491
CHAPTER 27. LINEAR REGRESSION

- **Prediction:** Here we are trying to predict one variable from one or more others.

- **Description:** Here we wish to determine which of several variables have a greater effect on (or relation to) a given variable. An important special case is that in which we are interested in determining the effect of one predictor variable, after the effects of the other predictors are removed.

Denote the predictor variables by, $X^{(1)}, \ldots, X^{(r)}$, alluding to the Prediction goal. They are also called independent variables or explanatory variables (the latter term highlighting the Description goal) The variable to be predicted, Y, is often called the response variable, or the dependent variable. Note that one or more of the variables—whether the predictors or the response variable—may be indicator variables (Section 3.9). Another name for response variables of that type is dummy variables.

Methodology for this kind of setting is called regression analysis. If the response variable Y is an indicator variable, the values 1 and 0 to indicate class membership, we call this the classification problem. (If we have more than two classes, we need several Ys.)

In the above context, we are interested in the relation of a single variable Y with other variables $X^{(i)}$. But in some applications, we are interested in the more symmetric problem of relations among variables $X^{(i)}$ (with there being no Y). A typical tool for the case of continuous random variables is principal components analysis, and a popular one for the discrete case is log-linear model; both will be discussed later in this chapter.

27.2 Example Applications: Software Engineering, Networks, Text Mining

Example: As an aid in deciding which applicants to admit to a graduate program in computer science, we might try to predict Y, a faculty rating of a student after completion of his/her first year in the program, from $X^{(1)} = \text{the student’s CS GRE score}$, $X^{(2)} = \text{the student’s undergraduate GPA}$ and various other variables. Here our goal would be Prediction, but educational researchers might do the same thing with the goal of Description. For an example of the latter, see Predicting Academic Performance in the School of Computing & Information Technology (SCIT), 35th ASEE/IEEE Frontiers in Education Conference, by Paul Golding and Sophia McNamarah, 2005.

Example: In a paper, Estimation of Network Distances Using Off-line Measurements, Computer Communications, by Prasun Sinha, Danny Raz and Nidhan Choudhuri, 2006, the authors wanted to predict Y, the round-trip time (RTT) for packets in a network, using the predictor variables $X^{(1)} = \text{geographical distance between the two nodes}$, $X^{(2)} = \text{number of router-to-router hops}$, and other offline variables. The goal here was primarily Prediction.
27.3. ADJUSTING FOR COVARIATES

Example: In a paper, Productivity Analysis of Object-Oriented Software Developed in a Commercial Environment, *Software—Practice and Experience*, by Thomas E. Potok, Mladen Vouk and Andy Rindos, 1999, the authors mainly had an Description goal: What impact, positive or negative, does the use of object-oriented programming have on programmer productivity? Here they predicted \(Y = \) number of person-months needed to complete the project, from \(X^{(1)} = \) size of the project as measured in lines of code, \(X^{(2)} = 1 \) or \(0 \) depending on whether an object-oriented or procedural approach was used, and other variables.

Example: Most text mining applications are classification problems. For example, the paper Untangling Text Data Mining, *Proceedings of ACL'99*, by Marti Hearst, 1999 cites, *inter alia*, an application in which the analysts wished to know what proportion of patents come from publicly funded research. They were using a patent database, which of course is far too huge to feasibly search by hand. That meant that they needed to be able to (reasonably reliably) predict \(Y = 1 \) or \(0 \), according to whether the patent was publicly funded from a number of \(X^{(i)} \), each of which was an indicator variable for a given key word, such as “NSF.” They would then treat the predicted \(Y \) values as the real ones, and estimate their proportion from them.

Example: A major health insurance company wanted to have a tool to predict which of its members would be likely to need hospitalization in the next year. Here \(Y = 1 \) or \(0 \), according to whether the patient turns out to be hospitalized, and the predictor variables were the members’ demographics, previous medical history and so on. (Interestingly, rather hiring its own data scientist to do the analysis, the company put the problem on Kaggle, a site that holds predictive analytics competitions, www.kaggle.com).

27.3 Adjusting for Covariates

The first statistical consulting engagement I ever worked involved something called *adjusting for covariates*. I was retained by the Kaiser hospital chain to investigate how heart attack patients fared at the various hospitals—did patients have a better chance to survive in some hospitals than in others? There were four hospitals of particular interest.

I could have simply computed raw survival rates, say the proportion of patients who survive for a month following a heart attack, and then used the methods of Section ??, for instance. This could have been misleading, though, because one of the four hospitals served a largely elderly population. A straight comparison of survival rates might then unfairly paint that particular hospital as giving lower quality of care than the others.

So, we want to somehow adjust for the effects of age. I did this by setting \(Y \) to \(1 \) or \(0 \), for survival, \(X^{(1)} \) to age, and \(X^{(2+i)} \) to be an indicator random variable for whether the patient was at hospital \(i, i = 1,2,3^2 \).

\(^2\)Note that there is no \(i = 4 \) case, since if the first three hospital variables are all \(0 \), that already tells us that this
27.4 What Does “Relationship” Really Mean?

Consider the Davis city population example again. In addition to the random variable W for weight, let H denote the person’s height. Suppose we are interested in exploring the relationship between height and weight.

As usual, we must first ask, what does that really mean? What do we mean by “relationship”? Clearly, there is no exact relationship; for instance, a person’s weight is not an exact function of his/her height.

Effective use of the methods to be presented here requires an understanding of what exactly is meant by the term relationship in this context.

27.4.1 Precise Definition

Intuitively, we would guess that mean weight increases with height. To state this precisely, the key word in the previous sentence is mean.

Take Y to be the weight W and $X^{(1)}$ to be the height H, and define

$$m_{W:H}(t) = E(W|H = t) \quad (27.1)$$

This looks abstract, but it is just common-sense stuff. For example, $m_{W:H}(68)$ would be the mean weight of all people in the population of height 68 inches. The value of $m_{W:H}(t)$ varies with t, and we would expect that a graph of it would show an increasing trend with t, reflecting that taller people tend to be heavier.

We call $m_{W:H}$ the regression function of W on H. In general, $m_{Y:X}(t)$ means the mean of Y among all units in the population for which $X = t$3.

Note the word population in that last sentence. The function $m()$ is a population function.

So we have:

Major Point 1: When we talk about the relationship of one variable to one or more others, we are referring to the regression function, which expresses the mean of the first variable as a function of the others. The key word here is mean!

^3The word “regression” is an allusion to the famous comment of Sir Francis Galton in the late 1800s regarding “regression toward the mean.” This referred to the fact that tall parents tend to have children who are less tall—closer to the mean—with a similar statement for short parents. The predictor variable here might be, say, the father’s height F, with the response variable being, say, the son’s height S. Galton was saying that $E(S | F) < F$. patient was at the fourth hospital.
27.4. WHAT DOES “RELATIONSHIP” REALLY MEAN?

Table 27.1: Bivariate pmf for the Marble Problem

<table>
<thead>
<tr>
<th>i ↓, j →</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0079</td>
<td>0.0952</td>
<td>0.1429</td>
<td>0.0317</td>
</tr>
<tr>
<td>1</td>
<td>0.0635</td>
<td>0.2857</td>
<td>0.1905</td>
<td>0.1587</td>
</tr>
<tr>
<td>2</td>
<td>0.0476</td>
<td>0.0952</td>
<td>0.0238</td>
<td>0.000</td>
</tr>
</tbody>
</table>

27.4.2 (Rather Artificial) Example: Marble Problem

Recall the marble selection example in Section ??: Suppose we have a bag containing two yellow marbles, three blue ones and four green ones. We choose four marbles from the bag at random, without replacement. Let Y and B denote the number of yellow and blue marbles that we get. Let’s find $m_{Y;B}(2)$.

For convenience, Table ?? shows what we found before for $P(Y = i \text{ and } B = j)$.

Now keep in mind that since $m_{Y;B}(t)$ is the conditional mean of Y given B, we need to use conditional probabilities to compute it. For our example here of $m_{Y;B}(2)$, we need the probabilities $P(Y = k|B = 2)$. For instance,

\[
P(Y = 1|B = 2) = \frac{p_{Y,B}(1,2)}{p_B(2)} = \frac{0.1905}{0.1492 + 0.1905 + 0.0238} = 0.5333
\]

The other conditional $P(Y = k|B = 2)$ are then found to be $0.1429/0.3572 = 0.4001$ for $k = 0$ and $0.0238/0.3572 = 0.0667$ for $k = 2$.

\[
m_{Y;B}(2) = 0.4001 \cdot 0 + 0.5333 \cdot 1 + 0.0667 \cdot 2 = 0.667
\]
27.5 Estimating That Relationship from Sample Data

The marble example in the last section was rather artificial, in that the exact distribution of the variables was known (Table ??). In real applications, we don’t know this distribution, and must estimate it from sample data.

As noted, \(m_{W:H}(t) \) is a population function, dependent on population distributions. How can we estimate this function from sample data?

Toward that end, let’s again suppose we have a random sample of 1000 people from Davis, with \((H_1, W_1), \ldots, (H_{1000}, W_{1000})\) (27.6) being their heights and weights. We again wish to use this data to estimate population values, meaning the population regression function of \(W \) on \(H \), \(m_{W:H}(t) \). But the difference here is that we are estimating a whole function now, the whole curve \(m_{W:H}(t) \). That means we are estimating infinitely many values, with one \(m_{W:H}(t) \) value for each \(t \).

One approach would be as follows. Say we wish to find \(\hat{m}_{W:H}(t) \) (note the hat, for “estimate of”) at \(t = 70.2 \). In other words, we wish to estimate the mean weight—in the population—among all people of height 70.2. What we could do is look at all the people in our sample who are within, say, 1.0 inch of 70.2, and calculate the average of all their weights. This would then be our \(\hat{m}_{W:H}(t) \).

27.5.1 Parametric Models for the Regression Function \(m() \)

There are many methods like the above (Chapter ??), but the traditional method is to choose a parametric model for the regression function. That way we estimate only a finite number of quantities instead of an infinite number. This would be good in light of Section ??.

Typically the parametric model chosen is linear, i.e. we assume that \(m_{W:H}(t) \) is a linear function of \(t \):

\[
m_{W:H}(t) = ct + d \quad (27.7)
\]

for some constants \(c \) and \(d \). If this assumption is reasonable—meaning that though it may not be exactly true it is reasonably close—then it is a huge gain for us over a nonparametric model. Do you see why? Again, the answer is that instead of having to estimate an infinite number of quantities, we now must estimate only two quantities—the parameters \(c \) and \(d \).

\^Of course, the population of Davis is finite, but there is the conceptual population of all people who could live in Davis.
27.5. ESTIMATING THAT RELATIONSHIP FROM SAMPLE DATA

Equation (??) is thus called a **parametric** model of $m_{W:H}(t)$. The set of straight lines indexed by c and d is a two-parameter family, analogous to parametric families of distributions, such as the two-parametric gamma family; the difference, of course, is that in the gamma case we were modeling a density function, and here we are modeling a regression function.

Note that c and d are indeed population parameters in the same sense that, for instance, r and λ are parameters in the gamma distribution family. We must estimate c and d from our sample data. So we have:

Major Point 2: The function $m_{W:H}(t)$ is a population entity, so we must estimate it from our sample data. To do this, we have a choice of either assuming that $m_{W:H}(t)$ takes on some parametric form, or making no such assumption.

If we opt for a parametric approach, the most common model is linear, i.e. (??). Again, the quantities c and d in (??) are population values, and as such, we must estimate them from the data.

27.5.2 Estimation in Parametric Regression Models

So, how can we estimate these population values c and d? We’ll go into details in Section ??, but here is a preview:

Using the result on page 58 together with the principle of iterated expectation, (4.68) and (7.77), we can show that the minimum value of the quantity

$$E \left[(W - g(H))^2 \right]$$

overall all possible functions $g(H)$, is attained by setting

$$g(H) = m_{W:H}(H)$$

In other words, $m_{W:H}(H)$ is the optimal predictor of W among all possible functions of H, in the sense of minimizing mean squared prediction error.\(^5\)

Since we are assuming the model (??), this in turn means that:

\(^5\)But if we wish to minimize the mean absolute prediction error, $E \left(|W - g(H)| \right)$, the best function turns out to be is $g(H) = \text{median}(W|H)$.

The quantity

$$E \left[(W - (uH + v))^2 \right]$$

(27.10)

is minimized by setting \(u = c \) and \(v = d \).

This then gives us a clue as to how to estimate \(c \) and \(d \) from our data, as follows.

If you recall, in earlier chapters we’ve often chosen estimators by using sample analogs, e.g. \(s^2 \) as an estimator of \(\sigma^2 \). Well, the sample analog of (??) is

$$\frac{1}{n} \sum_{i=1}^{n} \left[W_i - (uH_i + v) \right]^2$$

(27.11)

Here (??) is the mean squared prediction error using \(u \) and \(v \) in the population, and (??) is the mean squared prediction error using \(u \) and \(v \) in our sample. Since \(u = c \) and \(v = d \) minimize (??), it is natural to estimate \(c \) and \(d \) by the \(u \) and \(v \) that minimize (??).

Using the “hat” notation common for estimators, we’ll denote the \(u \) and \(v \) that minimize (??) by \(\hat{c} \) and \(\hat{d} \), respectively. These numbers are then the classical least-squares estimators of the population values \(c \) and \(d \).

Major Point 3: In statistical regression analysis, one uses a linear model as in (??), estimating the coefficients by minimizing (??).

We will elaborate on this in Section ??.

27.5.3 More on Parametric vs. Nonparametric Models

Suppose we’re interested in the distribution of battery lifetimes, and we have a sample of them, say \(B_1, ..., B_{100} \). We wish to estimate the density of lifetimes in the population of all batteries of this kind, \(f_B(t) \).

We have two choices:

(a) We can simply plot a histogram of our data, which we found in Chapter ?? is actually a density estimator. We are estimating infinitely many population quantities, namely the heights of the curve \(f_B(t) \) at infinitely many values of \(t \).
(b) We could postulate a model for the distribution of battery lifetime, say using the gamma family (Section 7.6.4). Then we would estimate just two parameters, \(\lambda \) and \(r \).

What are the pros and cons of (a) versus (b)? The approach (a) is nice, because we don’t have to make any assumptions about the form of the curve \(f_B(t) \); we just estimate it directly, with the histogram or other method from Chapter ??. But we are, in essence, using a finite amount of data to estimate an infinite values.

As to (b), it requires us to estimate only two parameters, which is nice. Also, having a nice, compact parametric form for our estimate is appealing. But we have the problem of having to make an assumption about the form of the model. We then have to see how well the model fits the data, say using the methods in Chapter ?? . If it turns out not to fit well, we may try other models (e.g. from the Weibull family, not presented in this book).

The above situation is exactly parallel to what we are studying in the present chapter. The analogy here of estimating a density function is estimating a regression function. The analog of the histogram in (a) is the “average the people near a given height” method. The analog here of using a parametric family of densities, such as the gamma, is using a parametric family of straight lines. And the analog of comparing several candidate parametric density models is to compare several regression models, e.g. adding quadratic or cubic terms \((t^2, t^3)\) for height in (??). (See Section ?? for reading on model assessment methods.)

Most statistical analysts prefer parameteric models, but nonparametric approaches are becoming increasingly popular.

27.6 Example: Baseball Data

Let’s do a regression analysis of weight against height in the baseball player data introduced in Section ??.

27.6.1 R Code

I ran R’s \texttt{lm()} (“linear model”) function to perform the regression analysis:

\begin{verbatim}
> summary(lm(players$Weight ~ players$Height))
\end{verbatim}

\textbf{Call}:
\begin{verbatim}
lm(formula = players$Weight ~ players$Height)
\end{verbatim}

\textbf{Residuals}: