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The Drivers and Their Result

• Parallel hardware for the masses:

• 4 cores standard, 16 not too expensive
• GPUs
• Intel Xeon Phi, ≈ 60 cores (!), coprocessor, as low as a

few hundred dollars

• Big Data

• Whatever that is.

Result: Users believe,

“I’ve got the hardware and I’ve got the data need —
so I should be all set to do parallel computation in R
on the data.”
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Not So Simple

• Non-“embarrassingly parallel” algorithms.

• Overhead issues:

• Contention for memory/network.
• Bandwidth limits — CPU/memory, CPU/network,

CPU/GPU.
• Cache coherency problems (inconsistent caches in

multicore systems).
• Contention for I/O ports.
• OS/R limits on number of sockets (network connections).
• Serialization.
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Wish List

• Ability to run on various types of hardware — from R.

• Ease of use for the non-cognoscenti.

• Parameters to tweak for the experts or the daring.
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the Daring

Help, I’m in over my head here! – a prominent R developer,
entering the parallel comp. world.
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Non-cognoscenti (cont’d.)

• Casual users, even if they are deft programmers, quickly
learn that this is no casual operation.

• After getting burned by disappointing performance, some
will be emboldened to learn the subtleties.

• Painless parallel computation is not possible.
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Example: Matrix-Vector
Multiplication

• D = AX , with A being n × p and X being p × 1

• Naive approach: Parallelize the loop

f o r ( i i n 1 : n )
d [ i ] ← a [ i , ] %∗% x

• Naive use of foreach package likely quite slow;
scatter-gather overhead a substantial proportion of the
overall time.
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Example (cont’d.)

• Solution is obvious: For r processes, partition rows Ai into
n/r chunks and change the above loop from n iterations
to n/r .

f o r ( k i n 1 : r )
d [ rowb lockk ] ← a [ rowblockk , ] %∗% x

• But casual users may miss this. And automatic
parallelization would miss it.
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Use Cases

A few reference examples, somewhat spanning the space:

• Compute-intensive parametric: Quantile regression.

• Compute-intensive nonparametric: Nearest-neighbor
regression.

• Compute-intensive nonparametric: Graph algorithms.

• Run-of-the-mill aggregation: Group-by-and-find-means op.

• Tougher aggregation: Credit card fraud detection.
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Software Alchemy (SA)

• My term for method developed by a number of authors
(Matloff, 2016).

• Break data into chunks. Apply estimator, say lm() to
each chunk, then average the results.

• For parallel comp. with r processes, use r chunks.

• Same statistical accuracy.

• Often produces superlinear speedup, i.e. > r .

• Useful in some apps.

• Available in partools package (NM, C. Fitzgerald),
github.com/matloff.
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• For parallel comp. with r processes, use r chunks.

• Same statistical accuracy.

• Often produces superlinear speedup, i.e. > r .

• Useful in some apps.

• Available in partools package (NM, C. Fitzgerald),
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Programming World Views

• Message passing/distributed comp.: Send data to the R
processes; each process works on its data; possibly
combine results.

In R, e.g. parallel (the part from snow), rMPI.

In C, e.g.
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World Views (cont’d.)

• Shared-memory: The processes have access to a common
memory, so no data transfer needed.

Not (yet) common in R, but do have Rdsm (NM), thread
(R. Bartnik).

In C, e.g.
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Premises in This Talk

• There is a lot of hype about parallel computation.

• Parallel computation is not for the casual user.

• Efficient automatic parallelization — no user
intervention/sophistication needed — is generally not
possible and should not be expected. Please stop asking
for it. :-)

• As in politics, transparency in software tools is vital. :-)
What do those APIs really do?

• UseRs are different from aggregation-oriented (e.g. Spark)
users.

• Aggregation is only part of what useRs do.
• We need iterative estimators, std. errors, linear algebra,

etc.
• Newer methodology, e.g. ML, random graphs etc.
• UseRs may have become fairly good programmers, but

lack systems knowledge.
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Premises (cont’d).

• Use of SA as means of parallelization should be fine for
things like linear models, quantile regression, k-nearest
neighbor regression etc.

• Some apps, e.g. graph algorithms, are based on sharing
state, so shared-memory world view/hardware may be
needed.

• But in most of the Use Cases, including the SA ones,
distributed world view works well, and may be needed
anyway at very large scale.

• Bottom line: For most Use Cases, use one of the
following

• SA
• Distributed computation, esp. using “Leave it there”

concept.
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Spark

One well-publicized distributed approach today is
Spark/SparkR.

• MapReduce not well-suited to most of the above Use
Cases.

• Highly elaborate Spark machinery violates the
transparency requirement.

• On the other hand, the distributed file system approach of
Hadoop/Spark is good for useRs too.
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Example Study: I

• (Gittens et al, 2016). Matrix Factorizations at Scale: a
Comparison of Scientific Data Analytics in Spark and
C+MPI Using Three Case Studies
In spite of careful optimization, performance of Spark
ranged from slightly slower to really, really slower. :-)
Just not what Spark was designed for.

My personal side comment: Not clear whether, say, PCA,
has much accuracy or usefulness at the truly Big Data
scale, including for sparse matrices.
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Example Study: II

Reyes-Ortiz et al, Big Data Analytics in the Cloud: Spark on
Hadoop vs MPI/OpenMP on Beowulf

Abstract:

...MPI/OpenMP outperforms Spark by more than one
order of magnitude in terms of processing speed and
provides more consistent performance. However,
Spark shows better data management infrastructure
and the possibility of dealing with other aspects such
as node failure and data replication

I contend that very few useRs, even those who need parallel
computation, need to guard against node failure.
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and the possibility of dealing with other aspects such
as node failure and data replication

I contend that very few useRs, even those who need parallel
computation, need to guard against node failure.
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The Principle of “Leave It There”

Extremely simple idea, but very powerful.

• Common setting (e.g. parallel package): Scatter/gather.

(a) Manager node partitions (scatters) data to worker nodes.
(b) Worker nodes work on their chunks.
(c) Manager collects (gathers) and combines the results.

• But NO, avoid step (c) as much as possible.
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Example of “Leave It There”

Say we wish to perform the following on some dataset:

• Convert categorical variables to dummies.

• Replace NA values by means. (Not great, but just an
example.)

• Remove outliers, as def. by |X − µ| > 3σ. (Just an
example.)

• Run linear regression analysis.

The point is to NOT do the gather op after each of the above
steps. Leave the data there (in distributed form).

Note too: The last step can be done in parallel too, with SA.
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Comparing Just a Few Packages

A few packages that facilitate the above approach:

pkg flexibility high-level ops

partools high few

ddR medium medium

multidplyr low more
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Going One Step Further:
Distributed Files

• Since will do “Leave it there” over many ops,

• might as well distribute a persistent version of the data,
i.e. have distributed files.

• Like Hadoop/Spark, but without the complex machinery.

• Our partools package includes various functions for
managing distributed files
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Distributed Files in partools

• File x spread across x.001, x.002 etc.

• filesplit(): Make distributed file from monolithic one.

• fileread(): If node i does fileread(x,d), then x.i will be
read into the variable d.

• filesave(): Saves distributed data to distributed file.

• Etc.
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Partools Example of “Leave It
There”

• Say have distributed file xy, physically stored in files
xy.001, xy.002 etc.

• Say we have written functions (not shown) NAtoMean
and deleteOuts, to handle missing values and remove
outliers, as mentioned before. The functions have been
given to the workers
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“Leave It There” Example
(cont’d.)

# do NA remova l a t each worker ,

# on the worker ’ s chunk o f xy

c l u s t e r E v a lQ ( c l s , xy ← apply ( xy , 2 , NAtoMean ) )
# do the o u t l i e r r emova l a t each worker ,

# on the worker ’ s chunk o f xy

c l u s t e r E v a lQ ( c l s , xy ← apply ( xy , 2 , d e l e t eOu t s ) )

# use S o f twa r e Alchemy to pe r f o rm l i n e a r r e g r e s s i o n ,

# r e t u r n i n g j u s t th e c o e f f i c i e n t s i n t h i s c a s e

calm ( c l s , ’ y ∼ . , data=xy ’ )$ t h t
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What Is Happening

E.g.

c l u s t e r E v a lQ ( c l s , xy ← apply ( xy , 2 , NAtoMean ) )

We are saying, At each worker node, do

xy ← apply ( xy , 2 , NAtoMean ) )

which means, each node does the apply op on its portion of xy.
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“Leave It There” Example
(cont’d.)

The key point:

For typical data analysis, hopefully we have:

• Data file stored in distributed fashion.
• Lots of “leave it there” ops:

• Parallel.
• No network delay.
• No serialization overhead.

• Have occasional “collect” ops, hopefully small in
size, e.g. from an aggregation such as
colMeans.

• If change data or create new data, save in
distributed file form too! Use partools::filesave.
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Heavy Use of SA

• Have SA forms of

• lm()/glm()
• k-NN
• random forests
• PCA
• quantile()

• Very easy to make your own SA functions.
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Various Collection Ops

E.g. addlists().
Say have distributed list, 2 compoments. From one, manager
node receives

l i s t ( a=3,b=8)

and from the other

l i s t ( a=5,b=1,c=12)

The functions “adds” them, producing (non-distributed)

l i s t ( a=8,b=9,c=12)
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Conclusions

No “silver bullet.” But the following should go a long way
toward your need for parallel computation.

• SA for the computational stuff.

• For aggregation, “leave it there” and distributed files.

• Could do in other packages, not just partools.

Ready for the dissent. :-)
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