
Chapter 2

“Why Is My Program So
Slow?”: Obstacles to
Speed

Here is an all-too-common scenario: An analyst acquires a brand new mul-
ticore machine, capable of wondrous things. With great excitement, he
codes up his favorite large problem on the new machine—only to find that
the parallel version runs more slowly than the serial one. What a disap-
pointment!

Though you are no doubt eager to get to some more code, a firm grounding
in the infrastructural issues will prove to be quite valuable indeed, hence
the need for this chapter. These issues will arise repeatedly in the rest of
the book. If you wish, you could skip ahead to the other chapters now, and
come back to this one as the need arises, but it’s better if you go through
it now. So, let’s see what factors can lead to such a situation in which our
hapless analyst above sees his wonderful plans go awry.

2.1 Obstacles to Speed

Let’s refer to the computational entities as processes, such as the workers
in the case of snow. There are two main performance issues in parallel
programming:

17



18 CHAPTER 2. OBSTACLES TO SPEED

• Communications overhead: Typically data must be transferred back
and forth between processes. This takes time, which can take quite a
toll on performance.

In addition, the processes can get in each other’s way if they all try to
access the same data at once. They can collide when trying to access
the same communications channel, the same memory module, and so
on. This is another sap on speed.

The term granularity is used to refer, roughly, to the ratio of computa-
tion to overhead. Large-grained or coarse-grained algorithms involve
large enough chunks of computation that the overhead isn’t much of a
problem. In fine-grained algorithms, we really need to avoid overhead
as much as possible.

• Load balance: As noted in the last chapter, if we are not careful in
the way in which we assign work to processes, we risk assigning much
more work to some than to others. This compromises performance,
as it leaves some processes unproductive at the end of the run, while
there is still work to be done.

There are a number of issues of this sort that occur generally enough to be
collected into this chapter, as an “early warning” of issues that can arise.
This is just an overview, with details coming in subsequent chapters, but
being forewarned of the problems will make it easier to recognize them as
they are encountered.

2.2 Performance and Hardware Structures

Scorecards, scorecards! You can’t tell the players without the scorecards!—
old chant of scorecard vendors at baseball games

The foot bone connected to the ankle bone, The ankle bone connected to the

shin bone...—from the children’s song, “Dem Bones”

The reason our unfortunate analyst in the preceding section was surprised
that his code ran more slowly on the parallel machine was almost certainly
due to a lack of understanding of the underlying hardware and systems
software. While one certainly need not understand the hardware on an
electronics level, a basic knowledge of “what is connected to what” is es-
sential.

In this section, we’ll present overviews of the major hardware issues, and
of the two parallel hardware technologies the reader is mostly likely to



2.2. PERFORMANCE AND HARDWARE STRUCTURES 19

encounter, multiprocessors and clusters:1

• A multiprocessor system has, as the name implies, two or more pro-
cessors, i.e., two or more CPUs, so that two or more programs (or
parts of the same program) can be doing computation at the same
time. A multicore system, common in the home, is essentially a low-
end multiprocessor, as we will see later. Multiprocessors are also
known as shared-memory systems, since they indeed share the same
physical RAM.

These days, almost any home PC or laptop is at least dual core. If
you own such a machine, congratulations, you own a multiprocessor
system!

You are also to be congratulated for owning a multiprocessor system
if you have a fairly sophisticated video card in your computer, one
that can serve as a graphics processing unit. GPUs are specialized
shared-memory systems.

• A cluster consists of multiple computers, each capable of running
independently, that are networked together, enabling their engaging
in a concerted effort to solve a big numerical problem.

If you have a network at home, say with a wireless or wired router,
then congratulations, you own a cluster!2

I emphasize the “household item” aspect above, to stress that these are not
esoteric architectures, though of course scale can vary widely from what
you have at home to far more sophisticated and expensive systems, with
quite a bit in between.

The terms shared-memory and networked above give clues as to the ob-
stacles to computational speed that arise, which are key. So, we will first
discuss the high-level workings of these two hardware structures, in Sections
2.3 and 2.4.

We’ll then explain how they apply to the overhead issue with our two basic
platform types, multicore (Section 2.5.1.1) and cluster (Section 2.5.1.2).
We’ll cover just enough details to illustrate the performance issues discussed
later in this chapter, and return for further details in later chapters.

1What about clouds? A cloud consists of multicore machines and clusters too, but
operating behind the scenes.

2It should be noted that in the case of large clusters used for intensive computation,
one generally must install software for the purpose of controlling which program runs on
which machines. But your two-node home system is still a cluster.



20 CHAPTER 2. OBSTACLES TO SPEED

2.3 Memory Basics

Slowness of memory access is one of the most common issues arising in
high-performance computing. Thus a basic understanding of memory is
vital.

Consider an ordinary assignment statement, copying one variable (a single
integer, say) to another:

y = x

Typically, both x and y will be stored somewhere in memory, i.e., RAM
(Random Access Memory). Memory is broken down into bytes, designed
to hold one character, and words, usually designed to contain one number.
A byte consists of eight bits, i.e., eight 0s and 1s. On typical computers
today, the word size is 64 bits, or eight bytes.

Each word has an ID number, called an address. (Individual bytes have
addresses too, but this will not concern us here.) So the compiler (in the
case of C/C++/FORTRAN) or the interpreter (in the case of a language
like R), will assign specific addresses in memory at which x and y are to be
stored. The above assignment will be executed by the machine’s copying
one word to the other.

A vector will typically be stored in a set of consecutive words. This will be
the case for matrices too, but there is a question as to whether this storage
will be row-by-row or column-by-column. C/C++ uses row-major order:
First all of the first row (called row 0) is stored, then all of the second row,
and so on. R and FORTRAN use column-major order, storing all of the
first column (named column 1) etc. So, for instance, if z is a 5×8 matrix in
R, then z[2,3] will be in the 12th word (5+5+2) in the portion of memory
occupied by z. These considerations will affect performance, as we will see
later.

Memory access time, even though measured in tens of nanoseconds—billionths
of a second—is slow relative to CPU speeds. This is due not only to elec-
tronic delays within the memory chips themselves, but also due to the fact
that the pathway to memory is often a bottleneck. More on this below.

2.3.1 Caches

A device commonly used to deal with slow memory access is a cache. This
is a small but fast chunk of memory that is located on or near the processor



2.3. MEMORY BASICS 21

chip. For this purpose, memory is divided into blocks, say of 64 bytes each.
Memory address 1200, for instance, would be in block 18, since 1200/64 is
equal to 18 plus a fraction. (The first block is called Block 0.)

The cache is divided into lines, each the size of a memory block. At any
given time, the cache contains local copies of some blocks of memory, with
the specific choice of blocks being dynamic—at some times the cache will
contain copies of some memory blocks, while a bit later it may contain
copies of some other blocks.3

If we are lucky, in most cases, the memory word that the processor wishes
to access (i.e., the variable in the programmer’s code she wishes to access)
already has a copy in its cache—a cache hit. If this is a read access (of
x in our little example above), then it’s great—we avoid the slow memory
access.

On the other hand, in the case of a write access (to y above), if the requested
word is currently in the cache, that’s nice too, as it saves us the long trip to
memory (if we do not “write through” and update memory right away, as
we are assuming here). But it does produce a discrepancy between the given
word in memory and its copy in the cache. In the cache architecture we are
discussing here, that discrepancy is tolerated, and eventually resolved when
the block in question is “evicted,” as we will see below. (With a multicore
machine, cache operation becomes more complicated, as typically each core
will have its own cache, thus potentially causing severe discrepancies. This
will be discussed in Section 2.5.1.1.)

If in a read or write access the desired memory word is not currently in the
cache, this is termed a cache miss. This is fairly expensive. When it occurs,
the entire block containing the requested word must be brought into the
cache. In other words, we must access many words of memory, not just one.
Moreover, usually a block currently in the cache must be evicted to make
room for the new one being brought in. If the old block had been written
to at all, we must now write that entire block back to memory, to update
the latter.4

So, though we save memory access time when we have a cache hit, we incur
a substantial penalty at a miss. Good cache design can make it so that
the penalty is incurred only rarely. When a read miss occurs, the hardware
makes “educated guesses” as to which blocks are least likely to be needed
again in the near future, and evicts one of these. It usually guesses well, so

3What follows below is a description of a common cache design. There are many
variations, not discussed here.

4There is a dirty bit that records whether we’ve written to the block, but not which
particular words were affected. Thus the entire block must be written.



22 CHAPTER 2. OBSTACLES TO SPEED

that cache hit rates are typically well above 90%. Note carefully, though,
that this can be affected by the way we code. This will be discussed in
future chapters.

A machine will typically have two or more levels of cache. The one in or
next to the CPU is called the L1, or Level 1 cache. Then there may be an
L2 cache, a “cache for the cache.” If the desired item is not found in the L1
cache, the CPU will then search the L2 cache before resorting to accessing
the item in memory.

2.3.2 Virtual Memory

Though it won’t arise much in our context, we should at least briefly dis-
cuss virtual memory. Consider our example above, in which our program
contained variables x and y. Say these are assigned to addresses 200 and
8888, respectively. Fine, but what if another program is also running on the
machine? The compiler/interpreter may have assigned one of its variables,
say g, to address 200. How do we resolve this?

The standard solution is to make the address 200 (and all others) only
“virtual.” It may be, for instance, that x from the first program is actually
stored in physical address 7260. The program will still say x is at word
200, but the hardware will translate 200 to 7260 as the program executes.
If g in the second program is actually in word 6548, the hardware will
replace 200 by 6548 every time the program requests access to word 200.
The hardware has a table to do these lookups, one table for each program
currently running on the machine, with the table being maintained by the
operating system.

Virtual memory systems break memory into pages, say of 4096 bytes each,
analogous to cache blocks. Usually, only some of your program’s pages are
resident in memory at any given time, with the remainder of the pages out
on disk. If your program needs some memory word not currently resident—
a page fault, analogous to a cache miss—the hardware senses this, and
transfers control to the operating system. The OS must bring in the re-
quested page from disk, an extremely expensive operation in terms of time,
due to the fact that a disk drive is mechanical rather than electronic like
RAM.5 Thus page faults can really slow down program speed, and again as
with the cache case, you may be able to reduce page faults through careful
design of your code.

5Some more expensive drives, known as Solid State Drives (SSDs), are in fact elec-
tronic.



2.4. NETWORK BASICS 23

2.3.3 Monitoring Cache Misses and Page Faults

Both cache misses and page faults are enemies of good performance, so it
would be nice to monitor them.

This actually can be done in the case of page faults. As noted, a page
fault triggers a jump to the OS, which can thus record it. In Unix-family
systems, the time command gives not only run time but also a count of
page faults.

By contrast, cache misses are handled purely in hardware, thus not record-
able by the OS. But one might try to gauge the cache behavior of a program
by using the number of page faults as a proxy. There are also simulators,
such as valgrind, which can be used to measure cache performance.

2.3.4 Locality of Reference

Clearly, the effectiveness of caches and virtual memory depend on repeat-
edly using items in the same blocks (spatial locality) within short time pe-
riods (temporal locality). As mentioned earlier, this in turn can be affected
to some degree by the way the programmer codes things.

Say we wish to find the sum of all elements in a matrix. Should our code
traverse the matrix row-by-row or column-by-column? In R, for instance,
which as mentioned stores matrices in column-major order, we should go
column-by-column, to get better locality.

A detailed case study on cache behavior will be presented in Section 5.8.

2.4 Network Basics

A single Ethernet (or other similar system), say within a building, is called
a network. The Internet is simply the interconnection of many networks–
millions of them.

Say you direct the browser on your computer to go to the Cable Network
News (CNN) home page, and you are located in San Francisco. Since CNN
is headquartered in Atlanta, packets of information will go from San Fran-
cisco to Atlanta. (Actually, they may not go that far, since Internet service
providers (ISPs) often cache Web pages, but let’s suppose that doesn’t
occur.) Actually, a packet’s journey will be rather complicated:



24 CHAPTER 2. OBSTACLES TO SPEED

• Your browser program will write your Web request to a socket. The
latter is not a physical object, but rather a software interface from
your program to the network.

• The socket software will form a packet from your request, which will
then go through several layers of the network protocol stack in your
OS. Along the way, the packet will grow, as more information is being
added, but also it will split into multiple, smaller packets.

• Eventually the packets will reach your computer’s network interface
hardware, from which they go onto the network.

• A gateway on the network will notice that the ultimate destination is
external to this network, so the packets will be transferred to another
network that the gateway is also attached to.

• Your packets will wend their way across the country, being sent from
one network to the next.6

• When your packets reach a CNN computer, they will now work their
way up the levels of the OS, finally reaching the Web server program.

2.5 Latency and Bandwidth

Getting there is half the fun—old saying, regarding the pleasures of traveling

The speed of a communications channel—whether between processor cores
and memory in shared-memory platforms, or between network nodes in a
cluster of machines—is measured in terms of latency, the end-to-end travel
time for a single bit, and bandwidth, the number of bits per second that we
can pump onto the channel.

To make the notions a little more concrete, consider the San Francisco Bay
Bridge, a long, multilane structure for which westbound drivers pay a toll.
The notion of latency would describe the time it takes for a car to drive
from one end of the bridge to the other. (For simplicity, assume they all go
the same speed.) By contrast, the bandwidth would be the number of cars
exiting from the toll booths per unit time. We can reduce the latency by
raising the speed limit on the bridge, while we could increase the bandwidth
by adding more lanes and more toll booths.

6Run the traceroute command on your machine to see the exact path, though this
can change over time.



2.5. LATENCY AND BANDWIDTH 25

The network time in seconds to send an n-byte message, with a latency of
l seconds and a bandwidth of b bytes/second, is clearly

l + n/b (2.1)

Of course, this assumes that there are no other messages contending for the
communication channel.

Clearly there are numerous delays in networks, including the less-obvious
ones incurred in traversing the layers of the OS. Such traversal involves
copying the packet from layer to layer, and in cases of interest in this book,
such copying can involve huge matrices and thus take a lot of time.

Though parallel computation is typically done within a network rather than
across networks as above, many of those delays are still there. So, network
speeds are much, much lower than processor speeds, both in terms of latency
and bandwidth.

The latency in even a fast network such as Infiniband is on the order of
microseconds, i.e., millionths of a second, which is eons compared to the
nanosecond level of execution time for a machine instruction in a processor.
(Beware of a network that is said to be fast but turns out only to have high
bandwidth, not also low latency.)

Latency and bandwidth issues arise in shared-memory systems too. Con-
sider GPUs, for instance. In most applications, there is a lot of data trans-
fer between the CPU and the GPU, with attendant potential for slowdown.
Latency, for example, is the time for a single bit to go from the CPU to the
GPU, or vice versa.

One way to ameliorate the slowdown from long latency delays is latency

hiding. The basic idea is to try to do other useful work while a communi-
cation having long latency is pending. This approach is used, for instance,
in the use of nonblocking I/O in message-passing systems (Section 8.7.1) to
deal with network latency, and in GPUs (Chapter 6) to deal with memory
latency.

2.5.1 Two Representative Hardware Platforms: Mul-
ticore Machines and Clusters

Multicore machines have become standard on the desktop (even in the cell
phone!), and many data scientists have access to computer clusters. What
are the performance issues on these platforms? The next two sections



26 CHAPTER 2. OBSTACLES TO SPEED

Figure 2.1: Symmetric Multiprocsssor System

provide an overview.

2.5.1.1 Multicore

A symmetric multiprocessor system looks something like Figure 2.1 in terms
of components and, most importantly, their interconnection. What do we
see?

• There are processors, depicted by the Ps, in which your program is
physically executed.

• There are memory banks, the Ms, in which your program and data
reside during execution.7

• The processors and memory banks are connected to a bus, a set of
parallel wires used for communication between these computer com-
ponents.

Your input/output hardware—disk drives, keyboards and so on—are also
connected to the bus, and there may actually be more than one bus, but
our focus will be mainly on the processors and memory.

A threaded program will have several instantiations of itself, called threads,
that are working in concert to achieve parallelism. They run independently,
except that they share the data of the program in common. If your program
is threaded, it will be running on several of the processors at once, each
thread on a different core. A key point, as we will see, is that the shared

7These were called banks in the old days. Later the term modules became more
popular, but with the recent popularity of GPUs, the word banks has come back into
favor.



2.5. LATENCY AND BANDWIDTH 27

memory becomes the vehicle for communication between the various pro-
cesses.

Your program consists of a number of machine language instructions. (If
you write in an interpreted language such as R, the interpreter itself consists
of such instructions.) As the processors execute your program, they will
fetch the instructions from memory.

As noted earlier, your data—the variables in your program—is stored in
memory. The machine instructions fetch the data from memory as needed,
so that it can be processed, e.g., summed, in the processors.

Until recently, ordinary PCs sold at your local electronics store followed
the model in Figure 2.1 but with only one P. Multiprocessor systems en-
abled parallel computation, but cost hundreds of thousands of dollars. But
then it became standard for systems to have a multicore form. This means
that there are multiple Ps, but with the important distinction that they
are all on a single chip (each P is one core), making for inexpensive sys-
tems.8 Whether on a single chip or not, having multiple Ps sets up parallel
computation, and is known as the shared-memory paradigm, for obvious
reasons.

By the way, why are there multiple Ms in Figure 2.1? To improve memory
performance, the system is set up so that memory is partitioned into several
banks (typically there are the same number of Ms as Ps). This enables
us to not only do computation on a parallel basis—several Ps working on
different pieces of a problem in parallel—but also to do memory access

in parallel—several memory accesses being active in parallel, in different
banks. This amortizes the memory access penalty. Of course, if more than
one P happens to need to access the same M at about the same time, we
lose this parallelism.

As you can see, a potential bottleneck is the bus. When more than one P
needs to access memory at a time, even if to different banks, attempting
to place memory access requests on the bus, all but one of them will need
to wait. This bus contention can cause significant slowdown. Much more
elaborate systems, featuring multiple communications channels to memory
rather than just a bus, have also been developed and serve to ameliorate
the bottleneck issue. Most readers of this book, however, are more likely
to use a multicore system on a single memory bus.

You can see now why efficient memory access is such a crucial factor in
achieving high performance. There is one more tool to handle this that is

8Terminology is not standardized, unfortunately. It is common to refer to that chip
as “the” processor, even though there actually are multiple processors inside.



28 CHAPTER 2. OBSTACLES TO SPEED

vital to discuss here: Use of caches. Note the plural; in Figure 2.1, there is
usually a C in between each P and the bus.

As with uniprocessor systems, caching can bring a big win in performance.
In fact, the potential is even greater with a multiprocessor system, since
caching will now bring the additional benefit of reducing bus contention.
Unfortunately, it also produces a new problem, cache coherency, as follows.9

Consider what happens upon a write hit, i.e., a write to a location for which
a local cache copy exists. For instance, consider code such as

x = 28 ;

with x having address 200. This code might be executed at a time when
there is a copy of word 200 in that processor’s cache. The problem is that
other caches may also have a copy of this word, so they are now invalid
for that block. (Recall that validity is defined only at the block level; if all
words in a block but one are valid, the whole block is considered invalid.)
The hardware must now inform those other caches that their copies of this
block are invalid.

The hardware does so via the bus, thus incurring an expensive bus opera-
tion. Moreover, the next time this word (or for that matter, any word in
this block) is requested at one of the other caches, there will be a cache
miss, again an expensive event.

Once again, proper coding on the programmer’s part can sometimes ame-
liorate the cache coherency problem.

A final point on multicore structure: Even on a uniprocessor machine, one
generally has multiple programs running concurrently. You might have your
browser busy downloading a file, say, while at the same time you are using a
photo processing application. With just a single processor, these programs
will actually take turns running; each one will run for a short time, say 50
milliseconds, then hand off the processor to the next program, in a cyclic
manner. (You as the user probably won’t be aware of this directly, but you
may notice the system as a whole slowing down.) Note by the way that if a
program is doing a lot of input/output (e.g., file access), it is effectively idle
during I/O times; as soon as it starts an I/O operation, it will relinquish
the processor.

By contrast, on a multicore machine, you can have multiple programs run-
ning physically simultaneously (though of course they will still take turns
if there are more of them than there are cores).

9As noted earlier, there are variations of the structure described here, but this one is
typical.



2.6. THREAD SCHEDULING 29

2.5.1.2 Clusters

These are much simpler to describe, though with equally thorny perfor-
mance obstacles.

The term cluster simply refers to a set of independent processing elements

(PEs) or nodes that are connected by a local area network, such as the
common Ethernet or the high-performance Infiniband. Each PE consists
of a CPU and some RAM. The PE could be a full desktop computer,
including keyboard, disk drive and monitor, but if it is used primarily for
parallel computation, then just one monitor, keyboard and so on suffice for
the entire system. A cluster may also have a special operating system, to
coordinate assigning of user programs to PEs.

We will have one computational process per PE (unless each PE is a multi-
core system, as is common). Communication between the processes occurs
via the network. The latter aspect, of course, is where the major problems
occur.

2.5.2 The Principle of “Just Leave It There”

All of these considerations regarding latency and bandwidth means, among
other things, that data copying is often the enemy of speed. This is partic-
ularly true for high-latency platforms such as clusters and GPUs.

In such a situation, it may be crucial to design the algorithm to minimize
copying. With an iterative algorithm, for instance, be sure to leave inter-
mediate results on the remote nodes in the cluster case, and in the GPU
memory in that setting, if possible.

2.6 Thread Scheduling

Say you have a threaded program, for example with four threads and a
machine with four cores. Then the four threads will run physically simul-
taneously (if there are no other programs competing with them). That of
course is the entire point, to achieve parallelism, but there is more to it
than that.

Modern operating systems for general-purpose computers use timesharing:
Unseen by the users, programs are taking turns (timeslices) using the cores
of the machine. Say for instance that Manny and Moe are using a university



30 CHAPTER 2. OBSTACLES TO SPEED

computer named Jack, with Manny sitting at the console and Moe logged in
remotely. For concreteness, say Manny is running an R program, and Moe
is running something in Python, with both currently having long-running
computations in progress.

Assume first that this is a single-core machine. Then only one program
can run at a time. Manny’s program will run for a while, but after a set
amount of time, the hardware timer will issue an interrupt, causing a jump
to another program. That program has been configured to be the operating
system. The OS will look on its process table to find another program in
ready state, meaning runnable (as opposed to say, suspended while awaiting
keyboard input). Assuming there are no other processes, Moe’s program
will now get a turn. This transition from Manny to Moe is called a context

switch. Moe’s program will run for a while, then another interrupt comes,
and Manny will get another turn, and so on.

Now suppose it is a dual-core machine. Here Manny and Moe’s programs
will run more or less continuously, in parallel, though with periodic down-
times due to the interrupts and attendant brief OS runs.

But suppose Moe’s code is threaded, running two threads. Now we will have
three threads—Moe’s two and Manny’s one (even a non-threaded program
consists of one thread)—competing to use three cores. Moe’s two threads
will sometimes run in parallel with each other but sometimes not. Instead
of a 2X speedup, Moe is getting about 1.5X.10

There are also possible cache issues. When a thread starts a new turn, it
may be on a different core than that used in the last turn. If there is a
separate cache for each core, the cache as the new core probably contains
little if anything useful to this thread. Thus there will be a lot of cache
misses for a while in this timeslice. There may be a remedy in the form of
setting processor affinity; see Section 5.9.4.

By the way, what happens when one of those programs finishes its com-
putation and returns to the user prompt, e.g., > in the case of Manny’s
R program? R will then be waiting for Manny’s keyboard input. But the
OS won’t wait, and the OS does in fact get involved. R is trying to read
from the keyboard, and to do this it calls a C library function, which in
turn makes a call to a function in the OS. The OS, realizing that it may be
quite a while before Manny types, will mark his entry in the process table
as being in sleep state. When he finally does hit a key, the keyboard sends
an interrupt,11 causing the OS to run, and the latter will mark his program
as now being back in ready state, and it will eventually get another turn.

10Even the 2X figure assumes that Moe’s code was load balanced in the first place,
which may not be the case.

11In Moe’s case, the interrupt will come from Jack’s network card.



2.7. HOW MANY PROCESSES/THREADS? 31

2.7 How Many Processes/Threads?

As mentioned earlier, it is customary in the R world to refer to each worker
in a snow program as a process. A question that then arises is, how many
processes should we run?

Say for instance we have a cluster of 16 nodes. Should we set up 16 workers
for our snow program? The same issues arise with threaded programs,
say with Rdsm or OpenMP (Chapters 4 and 5). On a quadcore machine,
should we run 4 threads?

The answer is not automatically Yes to these questions. With a fine-grained
program, using too many processes/threads may actually degrade perfor-
mance, as the overhead may overwhelm the presumed advantage of throw-
ing more hardware at the problem. So, one might actually use fewer cluster
nodes or fewer cores than one has available.

On the other hand, one might try to oversubscribe the resources. As dis-
cussed earlier, a cache miss causes a considerable delay, and a page fault
even more. This is time during which one of the nodes/cores will not be
doing any computation, exacting an opportunity cost from performance. It
may pay, then, to have “extra” threads for the program available to run.

2.8 Example: Mutual Outlink Problem

To make this concrete, let’s measure times for the mutual outlinks problem
(Section 1.4), with larger and larger numbers of processes.

Here I ran on a shared-memory machine consisting of four processor chips,
each of which has eight cores. This gives us a 32-core system, and I ran
the mutual outlinks problem with values of nc, the number of cores, equal
to 2, 4, 6, 8, 10, 12, 16, 24, 28 and 32. The problem size was 1000 rows by
1000 columns. The times are plotted in Figure 2.2.

Here we see a classical U-shaped pattern: As we throw more and more
processes on the problem, it helps in the early stages, but performance
actually degrades after a certain point. The latter phenomenon is probably
due to the communications overhead we discussed earlier, in this case bus
contention and the like.12

12Though the processes are independent and do not share memory, they do share the
bus.



32 CHAPTER 2. OBSTACLES TO SPEED

Figure 2.2: Run Time Versus Number of Cores

By the way, for each of our nc workers, we had one invocation of R running
on the machine. There was also an additional invocation, for the manager.
However, this is not a performance issue in this case, as the manager spends
most of its time idle, waiting for the workers.

2.9 “Big O” Notation

With all this talk of physical obstacles to overcome, such as memory access
time, it’s important also to raise the question as to whether the application
itself is very parallelizable in the first place. One measure of that is “big
O” notation.

In our mutual outlinks example with an n × n adjacency matrix, we need
to do on average n/2 sum operations per row, with n rows, thus n · n/2
operations in all. In parallel processing circles, the key question asked about
hardware, software, algorithms and so on is, “Does it scale?”, meaning,
Does the run time grow manageably as the problem size grows?



2.10. DATA SERIALIZATION 33

We see above that the run time of the mutual outlinks problem grows
proportionally to the square of the problem size, in this case the number of
websites. (Dividing by 2 doesn’t affect this growth rate.) We write this as
O(n2), known colloquially as “big O” notation. When applied to analysis
of run time, we say that it measures the time complexity.

Ironically, applications that are manageable often are poor candidates for
parallel processing, due to overhead playing a greater role in such problems.
An application with O(n) time complexity, for instance, may present a
challenge. We will return to this notion at various points in this book.

2.10 Data Serialization

Some parallel R packages, e.g., snow, that send data through a network
serialize the data, meaning to convert it to ASCII form. The data must
then be unserialized on the receiving end. This creates a delay, which may
or may not be serious but must be taken into consideration.

2.11 “Embarrassingly Parallel” Applications

The term embarrassingly parallel is heard often in talk about parallel pro-
gramming. It is a central topic, hence deserving of having a separate section
devoted to it.

2.11.1 What People Mean by “Embarrassingly Paral-
lel”

It’s no shame to be poor...but it’s no great honor either—the character
Tevye in Fiddler on the Roof

Consider a matrix multiplication application, for instance, in which we
compute AX for a matrix A and a vector X. One way to parallelize this
problem would be to have each processor handle a group of rows of A,
multiplying each by X in parallel with the other processors, which are
handling other groups of rows. We call the problem embarrassingly parallel,
with the word “embarrassing” meaning that the problem is too easy, i.e.,
there is no intellectual challenge involved. It is pretty obvious that the
computation Y = AX can be parallelized very easily by splitting the rows
of A into groups.



34 CHAPTER 2. OBSTACLES TO SPEED

By contrast, most parallel sorting algorithms require a great deal of inter-
action. For instance, consider Mergesort. It breaks the vector to be sorted
into two (or more) independent parts, say the left half and right half, which
are then sorted in parallel by two processes. So far, this is embarrassingly
parallel, at least after the vector is broken in half. But then the two sorted
halves must be merged to produce the sorted version of the original vector,
and that process is not embarrassingly parallel; it can be parallelized, but
in a more complex, less obvious manner.

Of course, it’s no shame to have an embarrassingly parallel problem! On the
contrary, except for showoff academics, having an embarrassingly parallel
application is a cause for celebration, as it is easy to program.

In recent years, the term embarrassingly parallel has drifted to a somewhat
different meaning. Algorithms that are embarrassingly parallel in the above
sense of simplicity tend to have very low communication between processes,
key to good performance. That latter trait is the center of attention nowa-
days, so the term embarrassingly parallel generally refers to an algorithm
with low communication needs.

2.11.2 Suitable Platforms for Non-Embarrassingly Par-
allel Applications

The only general-purpose parallel computing platform suitable for non-
embarrassingly parallel applications is that of the multicore/multiprocessor
system. This is due to the fact that processor/memory copies have the least
communication overhead. Note carefully that this does not mean there is
NO overhead—if a cache coherency transaction occurs, we pay a heavy
price. But at least the “base” overhead is small.

Still, non-embarrassingly parallel problems are generally tough nuts to
crack. A good, commonplace example is linear regression analysis. Here a
matrix inversion or equivalent such as QR factorization, is tough to paral-
lelize. We’ll return to this issue frequently in this book.

2.12 Further Reading

For more information on memory addresses and structures, timesharing
operating systems and so on, see my open source book on computer systems,
An Introduction to Computer Systems, N. Matloff, http://heather.cs.
ucdavis.edu/~matloff/50/PLN/CompSystsBook.pdf.


