
1. This problem concerns the Trivedi cell phone
service model, pp.202ff in our book. Of course,
use the same notation that is used in the book.

(a) (20) Give the balance equation for state 0,
i.e. (11.5) for the case i = 0.

(b) (20) As we progress through time, the cell
will alternate between what we will call
AllCallsBlocked and NewCallsOK periods.
Find the mean length of AllCallsBlocked
periods.

2. (20) Suppose the k-element vector X has
mean vector µ and covariance matrix Σ. De-
fine the scalar Y to be the difference between
the first element of X and the average of the
remaining elements (“difference” meaning the
former minus the latter). Find V ar(Y ), ex-
pressed only in terms of µ, Σ, and k. You may
use ellipsis (“...”) notation, but may NOT refer
to individual elements of µ or Σ.

3. (20) In this problem you will write an R
function mcsim(p,nsteps) whose purpose it is
to find the approximate π vector for a discrete-
time Markov chain via simulation. It would
be used mainly for infinite-state space settings.
Here are the details:

• The argument p is a user-supplied func-
tion that specifies the transition matrix;
e.g. p(2,5) returns the probability of going
from state 2 to state 5 (in one step).

• The argument nsteps is the number
of time steps to be simulated, i.e.
X1, X2, ..., Xnsteps.

• The return value will be the approximate
π vector, expressed as an R list, with a
component for each nonzero value of our
approximate π. For instance, if we name
our list pi and find that π2 and π4 are ap-
proximately 0.8 and 0.2, then we will set
pi[[2]] and pi[[4]] to 0.8 and 0.2.

• Use the following method. First, use simu-
lation to determine whether our new state
is 1 or not. If not, then simulate to de-
termine whether our new state is 2 or not,
and so on.

If you are not very familiar with R lists, try
typing this code into R’s interactive mode:

z <− l i s t ( )
z [ [ 3 ] ] <− 8
z
i <− 6
z [ [ i ] ] <− 8888
z
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Solutions:

1.a

π0λ = π1µ

1.b (It was explained during the quiz that AllCallsBlocked periods consist of times during which NO
call not already in service will be accepted, no matter whether handoff call or new call originating
within the cell.)

Picture what happens when we enter such a period. There had been one free channel, but now
none is free. The period will end when some call currently in service ends, which could occur
either by someone hanging up or by a caller leaving the cell. Those events are occurring for each
caller at rate µ, for a total rate of nµ. Moreover, the time passing before such a transition has an
exponential distribution (due to the fact that a minimum of independent exponentially-distributed
random variables itself has an exponential distribution).

In other words, the mean length of the period will be 1/(nµ).

2. Define a k-component random vector

u = (1,−1/(k − 1),−1/(k − 1), ...,−1/(k − 1))′

Then

Y = u′X

Thus

V ar(Y ) = V ar(u′X) = u′Σu

by (12.54).

3.

# f ind the approximate s t a t i ona ry d i s t r i b u t i o n p i f o r a d i s c r e t e−time
# Markov chain , us ing s imu la t i on ; intended mainly f o r i n f i n i t e s t a t e
# spaces

# s t a t e s are 1 , 2 , 3 , . . .

# arguments :

# p( i , j ) : user−def ined , r e tu rn s element ( i , j ) o f the t r a n s i t i o n
# matrix
# nsteps : number o f time s t ep s to s imulate

# value :

# an R l i s t , one element f o r each nonzero element o f p i

mcsim <− f unc t i on (p , ns teps ) {
# record number o f v i s i t s to each s t a t e found so f a r
v i s i t s <− l i s t ( )
c u r r s t a t e <− 1 # a rb i t r a r y s t a r t i n g s t a t e
v i s i t s [ [ c u r r s t a t e ] ] <− 1
f o r ( i in 1 : ns teps ) {

# get next s t a t e
c u r r s t a t e <− s imnext j ( cu r r s t a t e , p )
# R l i s t s are touchy about adding new elements , so updating v i s i t s
# l i s t i s d e l i c a t e
i f ( c u r r s t a t e > l ength ( v i s i t s ) )

v i s i t s [ [ c u r r s t a t e ] ] <− 1 e l s e
i f ( i s . nu l l ( v i s i t s [ [ c u r r s t a t e ] ] ) )

v i s i t s [ [ c u r r s t a t e ] ] <− 1 e l s e
v i s i t s [ [ c u r r s t a t e ] ] <− v i s i t s [ [ c u r r s t a t e ] ] + 1

}
# sim done , change to propor t i on s
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f o r ( i in 1 : l ength ( ( v i s i t s ) ) ) {
tmp <− v i s i t s [ [ i ] ]
i f ( ! i s . nu l l (tmp ) )

v i s i t s [ [ i ] ] <− v i s i t s [ [ i ] ] / nsteps
}
v i s i t s

}

# simulate next s tate , g iven cu r r en t l y at i
s imnext j <− f unc t i on ( i , p ) {

j <− 1
to t <− 0
repeat {

p i j <− p( i , j )
# must use CONDITIONAL probab i l i t y
i f ( p i j > 0 && run i f (1 ) <= p i j / (1− to t ) )

re turn ( j )
to t <− to t + p i j
i f ( t o t >= 1) return ( j )
j <− j + 1

}
}

# te s t example : keep f l i p p i n g co in ; each time get 3 cons e cu t i v e heads ,
# win p r i z e ; s t a t e i means i−1 cons e cu t i v e heads so f a r ( should be 0 ,1 ,2
# but to have i n d i c e s s t a r t at 1 , have 1 ,2 ,3 )

consec3 <− f unc t i on ( i , j ) {
i f ( i==1 && j == 1 | |

i==1 && j == 2 | |
i==2 && j == 3 | |
i==2 && j == 1) re turn ( 0 . 5 )

i f ( i==3 && j == 1) re turn (1 )
re turn (0 )

}

# te s t with mcsim( consec3 , 1000 )
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