
Name:

Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary sheets of paper.
There is actually plenty of room for your answers, as long as you organize yourself BEFORE starting writing.

SHOW YOUR WORK!
1. Suppose that the conditional distribution of Y given X (the latter a scalar, i.e. we have just one predictor) is
Poisson with parameter β1X. We wish to estimate β1 from our data, (X1, Y1), ..., (Xn, Yn), with the n pairs being
assumed to be i.i.d.

(a) (25) Find the conditional Maximum Likelihood estimator of β1. (There is a closed-form solution.)

(b) (25) Give formulas for unconditional and conditional approximate 95% confidence intervals for β1. Justify
your answers!

2. (50) Consider the linear regression model in Chapter 9, but with the following change. Instead of the homogeneous-
variance model (9.32), suppose that

V ar(Yi|Xi) = σ2
i (1)

where the σ2
2 are known positive quantities.

In that case, (9.25) is still a reasonable estimator—it will still be consistent, for instance—but (9.38) would be
invalid and thus not usable for confidence intervals and significance tests. Moreover, (9.25) has certain optimality
properties,1 so it would be good to find a way to still use (9.25) in this heterogeneous-variance setting.

Toward that end, you will transform the original problem into a new one that satisfies (9.25). Do this by finding
a constant matrix A such that the new random vector W = AV satisfies the condition (9.32). Then use (9.25) on
W, eventually transforming back so that we have an optimal estimator β̂ of β of the original problem, complete
with covariance matrix for that β̂. Remember, all your final quantities will have the σi in them, but that’s all right
because they are assumed known.

Note: Matrix quantities must be simplified to the extent possible.

Solution:

1. The (conditional) likelihood function is

L = Πn
i=1

[
e−β1Xi(β1Xi)Yi!

Yi!

]
(2)

So set

l = ln(L) =
n∑
i=1

[−β1Xi + Yi(ln(β1) + ln(Xi)− ln(Yi))] (3)

Then setting 0 = dl
dβ1

and solving, we get

β̂1 =
Ŷ

X̂
(4)

For constructing the unconditional confidence interval for β1, we know from the application of Slutsky’s Theorem in
Section 7.4.3 that we can treat as a constant. Our confidence interval is then

Ŷ

X̂
± 1.96

sY
X̄

(5)

s2Y is the sample variance of the Yi.

For the conditional confidence, note that by the Poisson property,
1Minimum variance among all unbiased estimators.
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V ar(Yi|Xi) = E(Yi|Xi) = β1Xi (6)

Then

V ar(Ȳ | the Xi) = V ar

(
Y1 + ...+ Yn

n

∣∣∣∣Xi) (7)

=
1
n2

n∑
i=1

V ar(Yi|Xi) (8)

=
1
n2

n∑
i=1

β1Xi (9)

= β1X̄/n (10)

So from (4) we have

V ar(β̂1| the Xi) =
1
X̄2

V ar(Ȳ | the Xi) = β1/(nX̄) (11)

The conditional standard error of β̂1 is then √
β̂1/(nX̄) =

√
Ȳ /(nX̄2) (12)

2. Set A to be the diagonal matrix whose ith element is 1/σi. Then

Cov(W ) = I (13)

That means that (9.32) is satisified, with σ2 = 1. (Note that the σi are KNOWN. It was wrong to answer that A
would have as its ith element 1/σi, as that would introduce a new quantity, σ2 that is not part of the problem.)

Let γ denote the vector of population coefficients for the regression function of W on Q. (9.32) gives us

γ̂ = (q′q)−1q′w (14)

Now to get back to the original setting with V instead of W, note that since W = AV, we have

γ = E(W |Q) = AE(V |Q) = Aβ (15)

Thus we set

β̂ = A−1γ̂ (16)

so

β̂ = A−1(Q′Q)−1Q′W = A−1(Q′Q)−1Q′AV (17)

Writing that last quantity as RV, we have

Cov(β̂) = RCov(V )R′ = R(A−1)2R′ (18)

Lots of stuff cancels in that last expression, and eventually we get

Cov(β̂) = A−1(Q′Q)−1A−1 (19)
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