
Name:

Directions: Work only on this sheet (on both sides, if
needed); do not turn in any supplementary sheets of pa-
per. There is actually plenty of room for your answers, as
long as you organize yourself BEFORE starting writing.
In order to get full credit, SHOW YOUR WORK.

IMPORTANT NOTE: Leave definite integrals as is.
For example, write

∫ 1

0
x2 dx instead of 1/3.

1. Consider the bus example in Section 5 of the PLN
which reviews continuous random variables.

(a) () Find P (Y > 10).

(b) () Write Y = Y1 + Y2, with Y1 being the time since
the last bus when I arrive, and with Y2 being the time
that I wait for the next bus. The fact that Y has an
Erlang distribution tells us what about Y1 and Y2?

2. () In our ordinary coins which we use every day, each
one has a slightly different probability of heads, R. Say
R has the distribution N(0.5, 0.032). Choose a coin from
a batch at random, then toss it 10 times. Let N be the
number of heads we get. Find Var(N).

3. Say we roll a die n times. Let Cn = (N1n, ..., N5n),
where Nin is the number of rolls for which the side facing
upward shows i dots.

(a) Why is Cn approximately normal?

(b) What is its covariance matrix?

Solutions:

1.a
∫∞
10

0.01te−0.1t dt

1.b As noted in the PLN, Y has a two-component Er-
lang distribution, so it is a sum of two independent ex-
ponentially distributed random variables with the same
parameter. By the Markov property, Y2 is exponentially
distributed, so Y1 must be the “other” exponential com-
ponent. So, we can conclude that (i) Y1 and Y2 are ex-
ponentially distributed with mean 10, (ii) they are inde-
pendent.

2. From the PLN, we know that

V ar(N) = E[V ar(N |R)] + V ar[E(N |R)] (1)

Note carefully that even though there are integrals in-
volved here, there will be NO EXPLICIT INTE-
GRALS IN THIS SOLUTION. This illustrates the
real usefulness of the Theorem of Total Expectation.

Let’s evaluate E[Var(N|R)] first. The conditional distri-
bution of N, given R, is binomial with n = 10 and p = R.
Therefore

V ar(N |R) = 10R(1 − R) (2)

and thus

E[V ar(N |R)] = 10
[
E(R) − E(R2)

]
(3)

We can get E(R2) from the relation V ar(R) = E(R2) −
(ER)2. Substituting this in (3), we have

E[V ar(N |R)] = 10
[
0.5 − (0.032 + 0.52)

]
≈ 2.5 (4)

As to the second term in (1), we have that

V ar[E(N |R)] = V ar(10R) = 100 · 0.032 ≈ 0.1 (5)

Thus V ar(N) ≈ 2.6.

3.a This is due to the multivariate Central Limit Theo-
rem, applied to the vectors Ui = (V1i, ..., V5i), where Vji

is 1 if the ith roll of the die produces j, 0 otherwise, j =
1,...,5.

(Note carefully that this is a generalization of the analysis
we used in our PLN unit on continuous random variables
to show that the binomial is approximately normal.)

Since

Cn =
n∑

i=1

Ui (6)

the multivariate CLT says that Cn is approximately nor-
mal.

3.b

Cov(Nrn, Nsn) = Cov

[
n∑

i=1

Vri,

n∑
k=1

Vsk

]
(7)

=
n∑

i=1

n∑
k=1

Cov(Vri, Vsk) (8)

=
n∑

i=1

Cov(Vri, Vsi) (9)

where the second equality comes from the bilinearity
of Cov(·, ·) and the third comes from the fact that
the independence of the rolls of the die implies that
Cov(Vri, Vsk) = 0 when i 6= k.

Now for r 6= s,

Cov(Vri, Vsi) = E(VriVsi) − E(Vri)E(Vsi) (10)

= 0 − 1
6

2

(11)

= − 1
36

(12)

1



So,

Cov(Nrn, Nsn) =
{

n · 5
36 , if r = s

−n · 1
36 , if r 6= s (13)

Note by the way that the reason I didn’t include a N6n is
that it is a linear combination of the other variables.
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