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In any event, though, the effects of overfitting are clear.

4.3 Bias vs. Variance

Let’s take a closer look, in an RS context. Say we believe (3.14) is a good model for the setting
described in that section, i.e. men becoming more liberal raters as they age but women becoming
more conservative. If we omit the interaction term, than we will underpredict older men and
overpredict older women. This biases our ratings.

On the other hand, we need to worry about sampling variance. Consider the case of opinion polls
during an election campaign, in which the goal is to estimate p, the proportion of voters who will
vote for Candidate Jones. If we use too small a sample size, say 50, our results will probably be
inaccurate. This is due to sampling instability: Two pollsters, each randomly sampling 50 people,
will sample different sets of people, thus each having different values of p̂, their sample estimates
of p. For a sample of size 50, it is likely that their two values of p̂ will be substantially different
from each other, whereas if the sample size were 5000, the two estimates would likely be close to
each other. In other words, the variance of p̂ is too high if the sample size is just 50.2

In a parametric regression setting, increasing the number of terms roughly means that the sampling
variance of the β̂i will increase.

So we have the famous bias/variance tradeoff : As we use more and more terms in our regression
model (predictors, polynomials, interaction terms), the bias decreases but the variance increases.
This “tug of war” between these decreasing and increasing quantities typically yields a U-shaped
curve: As we increase the number of terms from 1, mean absolute prediction error will at first
decrease but eventually will increase. Once we get to the point at which it increases, we are
overfitting.

This is particularly a problem when one has many dummy variables. For instance, there are more
than 42,000 ZIP (postal) codes in the US; to have a dummy for each would almost certainly be
overfitting. If we have only, say, 100,000 rows in our data, on average each ZIP code would have
only about 2 rows, hardly enough for a good estimate of the effect of that code.

4.4 Mathematical Analysis of the Bias vs. Variance Tradeoff

Let’s take a more precise look, employing a simple mathematical model.

2The repeatable experiment here is randomly choosing 50 people. Each time we perform this experiment, we get
a different set of 50 people, thus a different value of p̂. The latter is a random variable, and thus has a variance.
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4.4.1 The Setting

Suppose we have the samples of men’s and women’s heights, X1, ..., Xn and Y1, ..., Yn. Assume for
simplicity that the population variance of height is the same for each gender, σ2. The means of the
two populations are designated by µ1 and µ2.

Say we wish to guess the height of a new person who we know to be a man but for whom we know
nothing else. We do not see him, etc.

Suppose for just a moment that we actually know the distribution of X, i.e. the population distri-
bution of male heights. What would be the best constant g to use as our guess for a person about
whom we know nothing other than gender?

It is easily shown that the mean squared error MSE

E[(g −X)2] (4.1)

is minimized by setting g = µ1. Our best guess for this unseen man’s height is the mean height of all
men in the population. (Note that “mean” above averaged over all possible men in the population.)

Of course, we don’t know µ1, but we can do the next-best thing, i.e. use an estimate of it from our
sample. The natural choice for that estimator would be

T1 = X, (4.2)

the mean height of men in our sample.

4.4.2 Context of Interest: Very Small Sample

But what if our sample size n is really small, say n = 5? That’s awfully small. We may wish to
consider pooling the women’s heights into our estimate, in order to get a larger sample. Then we
would estimate µ1 by incorporating the sample mean of women’s heights, Y :

T2 =
X + Y

2
, (4.3)

It may at first seem obvious that T1 is the better estimator. Women tend to be shorter, after all,
so pooling the data from the two genders would induce a bias, defined as

bias = mean of the estimator - true population value (4.4)
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Here “mean” refers to the average of the estimator over all possible samples from this population.

It can be shown that for a sample mean M , drawn from a population with mean ν,

E(M) = ν (4.5)

In other words, M has 0 bias. Thus our T1 here has 0 bias. But that is not the case for T2:

E(T2) = 0.5E(X) + 0.5E(Y ) = (µ1 + µ2)/2 < µ1 (4.6)

In other words. T2 would have a negative bias.

For an estimator of T of some population quantity θ, its mean square error is defined to be

MSE = E[(T − θ)2] (4.7)

One can derive that

MSE = variance of the estimator + bias of the estimator2 (4.8)

In other words, some amount of bias may be tolerable, if it will buy us a subtantial reduction in
variance. After all, women are not that much shorter than men, so the bias might not be too bad.
Meanwhile, the pooled estimate should have lower variance, as it is based on 2n data points, rather
than n.

Before continuing, note first that T2 is based on a simpler model than is T1, as T2 ignores gender.
We thus refer to T1 as being based on the more complex model.

So, the question becomes, which has the smaller MSE, T1 or T2? In other words:

Which is smaller, E[(T1 − µ1)2] or E[(T2 − µ1)2]?

4.4.3 Drawing Conclusions from This Example

After some elementary math stat operations, one can show that T1 is a better predictor than T2 if

(
µ2 − µ1

2

)2

>
σ2

2n
(4.9)
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Granted, we don’t know the values of the µ1 and σ2, so in a real situation, we won’t really know
whether to use T1 or T2. But the above analysis makes the point that under some circumstances,
it really is better to pool the data in spite of bias.

So you can see that T1 is better only if either

• n is large enough, or

• the difference in population mean heights between men and women is large enough, or

• there is not much variation within each population, e.g. most men have very similar heights

In other words:

A more complex model is more accurate than a simpler one only if either

(a) we have enough data to support it, or

(b) the complex model is sufficiently different from the simpler one

A very rough, intuitive way to view (a) is that our data is being “shared” by all the parameters to
be estimated. In our example above, the simple model had one parameter, µ while the complex one
had two, µ1 and µ2. Due to this “sharing,” each parameter in the complex version has “a smaller
piece of the pie.”

In Section 4.2, we ran an lm() model with 2624 parameters, definitely a complex model. Was
n = 100000 large enough to satisfy (a) above? We don’t know, but again, it raises the issue of
possible overfitting.

4.5 Can Anything Be Done about It?

So, where is the “happy medium,” the model that is rich enough to capture most of the dynamics
of the variables at hand, but simple enough to avoid variance issues? Unfortunately, there is no
good answer to this question.

4.5.1 Rough Rule of Thumb

One quick rule, backed up by mathematical theory, is that one should have p <
√
n, where p is

the number of predictors, including polynomial and interaction terms (not to be confused with
the quantity of the same name in our polling example above), and n is the number of cases in
our sample. But this is certainly not a firm rule by any means, and I find it tends to be overly
conservative.
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the blurriness.

• Applying NMF or PCA/SVD to a whole collection of images, e.g. MNIST, further heightens
this approximate nature of the process.

• But we need to do something to avoid overfitting, i.e. some kind of dimension reduction, and
finding a low-rank approximation does that.

5.8 The Bias vs. Variance Tradeoff

The blurriness in that second picture is really an issue of bias, as follows. Consider a given pixel,
say in the 3rd row and 52nd column. That pixel’s intensity in the second picture will be a weighted
average of various pixels in the first picture. Some of the latter may be in locations within the
picture that are somewhat far away from the 3rd row and 52nd column. This biases the pixel in
the second picture.

On the other hand, there definitely is a variance issue. Let’s review what this entails.

Recall from Chapter 4 that an intuitive way to view the variance issue in overfitting is that our
data are being “shared” by the various things we’re estimating, so that in a rough sense, each of
these things has less data to itself. Less data means more sample-to-sample variability, i.e. higher
variance. In linear regression with p features, we are estimating p + 1 parameters (including β0);
the larger p is, the larger the variance of the estimated βi. Thus in turn we get larger variance to
our predicted values. For predicting a new case, different samples will give us different predictions,
and larger p will give us higher variance in our predicted value for that case.

Let n and m denote the number of rows and columns in A. Then W and H will be of dimensions
n× k and k ×m. Well, then, how many parameters are we estimating? It’s

nk + km = k(n+m) (5.9)

So, the larger we make k, the larger the variance.

In other words, in predicting a specific Aij , our predicted value Âij will experience this tradeoff:

• Larger k means lesser bias in our estimate of Âij .

• Larger k means greater variance in Âij .


