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Ridge regression is thus rather subjective, without much “science” behind
it. Perhaps the most scientific approach is to use cross validation. Thus
let’s try ridge.cv():

> r i dg e . cv ( as .matrix ( curr1 [ , −5 ] ) , curr1 [ , 5 ] )
$ i n t e r c e p t

224.9451

$coef f ic ients
XCanada XMark XFranc XPound

−5.786784 57.713978 −34.399449 −5.394038

$lambda . opt
[ 1 ] 0 .3168208

The recomended λ value here is about 0.32, rather larger than what we
might have chosen using the “knee” method. On the other hand, this
larger value makes sense in light of our earlier observation concerning the
mark.

Shrinkage did occur. Here are the OLS estimates:

> lm(Yen ∼ . , data=curr1 )
. . .
C o e f f i c i e n t s :
( I n t e r c ep t ) Canada Mark Franc

224.945 −5.615 57 .889 −34.703
Pound
−5.332

Ridge slightly reduced the absolute values of most of the coefficients, Canada
being the exception. The fact that the reductions were only slight should
not surprise us, given the rough guidelines in Section 8.11.1.3. The n/p
ratio is pretty large, and even the multicollinearity was mild according to
the generally used rule of thumb (Section 8.2.3.1).

8.4 The LASSO

Much of our material on the LASSO will appear in Chapters 9 and 12 but
we introduce it in this chapter due to its status as a shrinkage estimator. To
motivate this method, recall first that shrinkage estimators form another
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example of the bias-variance tradeoff. With ridge regression, for instance,
by shrinking �β, we are reducing its variance (actually, its covariance ma-
trix), at the expense of introducing some bias. If we can choose a good value
of λ, we can find a “sweet spot” in that tradeoff, and hopefully improve
predictive ability. This of course is the motivation for using cross-validation
to choose λ.

The Least Absolute Shrinkage and Selection Operator — the LASSO —
takes another approach to shrinking. As with ridge regression, the LASSO
actually has two equivalent formulations, which in rough terms are:

• Penalize large values of �β.

• Place an explicit limit to the size of �β.

We will begin with the first of these.

8.4.1 Definition

As noted in Section 8.2.4.2 and in earlier chapters, a more traditional way
than shrinkage to improve prediction error is subset selection, meaning to
pare down the set of predictor variables into a smaller but representative
set. As discussed earlier, this reduces variance, though again increasing
bias. One advantage of this approach is that it is appealing to deal with
just a small number of predictors, often termed a parsimonious model.

The LASSO was invented with the goal of combining the best aspects of
ridge regression on the one hand, and subset selection on the other. It
involves shrinkage, like ridge regression, but often results in a roundabout
way of doing subset selection.

So, how does the LASSO accomplish all this? The answer is remarkably
simple: In (8.11), simply replace ||b||22 by ||b||1 (see (A.2)). In other words,
the LASSO estimator is defined to be the value of b that minimizes

n�

i=1

(Yi − �Xib)
2 + λ||b||1 (8.18)

Similar to the ridge case, one can show that an equivalent definition is that
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the LASSO estimator is chosen to minimize

n�

i=1

(Yi − �Xib)
2 (8.19)

subject to a constraint of the form

||b||1 ≤ γ (8.20)

Using the argument in Section 8.11.2, we see that the LASSO does produce
a shrinkage estimator. But it is designed so that typically many of the
estimated coefficients turn out to be 0, thus effecting subset selection, which
we will see in Section 9.7.7.1.

8.4.2 The lars Package

We’ll use the R package lars [65]. It starts with no predictors in the model,
then adds them (in some cases changing its mind and deleting some) one at
a time. At each step, the action is taken that is deemed to best improve the
model, as with forward stepwise regression, to be discussed in Chapter 9.
At each step, the LASSO is applied, with λ determined by cross-validation.

The lars package is quite versatile. Only its basic capabilities will be shown
here.

8.4.3 Example: Currency Data

As noted, the LASSO is commonly used as a method for variable selection,
the topic of Chapter 9. Since we have only p = 4 predictors, and more
than 700 observations, variable selection is not really an issue. But in this
chapter’s context of multicollinearity, it is of interest to see how much the
software decides to shrink.

> l a s s ou t <− l a r s ( as .matrix ( curr1 [ , −5 ] ) , curr1 [ , 5 ] )
> l a s s ou t
. . .
R−squared : 0 .892
Sequence o f LASSO moves :

Canada Mark Pound Franc
Var 1 2 4 3
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Step 1 2 3 4

Note that lars requires the predictor values to be given as a matrix.

At Step 0, there are no predictors; it is a regression model with just a
constant term, so we are just predicting Y from its unconditional mean.
We see that at Step 1, lars() brought in the Canada predictor, then the
mark, then the pound and lastly, the franc.

Let’s take a closer look:

> summary( l a s s ou t )
LARS/LASSO
Call : l a r s ( x = as .matrix ( curr1 [ , −5]) , y = curr1 [ , 5 ] )

Df Rss Cp
0 1 2052191 6263.50
1 2 2041869 6230.18
2 3 392264 587 .31
3 4 377574 539 .04
4 5 220927 5 .00

The Cp criterion is similar to adjusted-R2, and will be discussed in full in
Chapter 9. The user may choose to use the Cp value as a guide as to which
model to use. In this case, that approach would choose the full model, with
all predictors, not surprising in this context of p << n.

Since the LASSO is mainly used for subset selection, the actual values of
the estimated coefficients are rather secondary, and not presented in the
output of summary(). But they are indeed accessible:

> l a s s ou t$beta
Canada Mark Franc Pound

0 0.0000000 0.00000 0.00000 0.000000
1 −0.2042481 0.00000 0.00000 0.000000
2 −28.6567963 28.45255 0.00000 0.000000
3 −28.1081479 29.61350 0.00000 −1.393401
4 −5.6151436 57.88856 −34.70273 −5.331583
. . .

Again, this is presented in terms of the values at each step, and the 0s
show which predictors were not in the model as of that step. In our multi-
collinearity context in this chapter, we are interested in the final values, at
Step 4. They are seen to provide shrinkage similar to the mild amount we
saw in Section 8.3.3.
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increase prediction error.

In other words, yes, dimension reduction is just as much an issue in the
nonparametric setting as in the parametric one.

9.7.7 The LASSO

One of the reasons for the popularity of the LASSO is that it does automatic
variable selection. We will take a closer look at LASSO methods in this
section.

9.7.7.1 Why the LASSO Often Performs Subsetting

First, similar to the ridge case, minimizing (8.18) is equivalent to minimiz-
ing4

q(b) =

n�

i=1

(Yi − �Xib)
2 (9.21)

subject to the constraint

||b||1 ≤ λ (9.22)

This motivates Figure 9.1.

The figure is for the case of p = 2 predictors (for simplicity, we assume
there is no constant term β0). Writing b = (b1, b2)

�, then the horizontal
and vertical axes are for b1 and b2, as shown. The corners of the diamond
are at (λ, 0), (0,λ) and so on. Due to the constraint (9.22), our LASSO

estimator �βl must be somewhere within the diamond.

What about the ellipses? They are contours of q: For a given value of
q, say c, then the locus of points b for which q(b) = c takes the form of
an ellipse. Each value of c gives us a different ellipse; two of them, out of
infinitely many, are shown in the figure, with the smaller one corresponding
to a smaller value of c.

But remember, we are trying to minimize q, so we want c to be as small as
possible, i.e., we want the countour curve to be small — but our constraint

4The computational details of the minimization process are beyond the scope of this
book.
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Figure 9.1: Subsetting nature of the LASSO

requires that the curve must include at least one point within the diamond.
In our figure here, this implies that we must choose c so that the ellipse is
barely touching the diamond, as the larger ellipse does.

Now, here is the key point: The point at which the ellipse barely touches
the diamond will typically be one of the four corners of the diamond. And
at each of those corners, either b1 or b2 is 0 — i.e., �βl has selected a subset
of the predictors, in this case a subset of size 1.

The same geometric argument works in higher dimensions, and this is then
the appeal of the LASSO for many analysts:

The LASSO often does automatic subset selection. The analyst
need only use the predictors X(i) for which �βi �= 0.

We say that the LASSO tends to produce a sparse estimator of β. Needless
to say, though this is indeed an appealing property, there is no guarantee
that this produces a “good” set of predictors.

Suppose in the figure, the inner ellipse corresponds to the ordinary estima-
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tor b = �βOLS , i.e.,

c = q(�βOLS) (9.23)

In order to satisfy the LASSO constraint, we needed to accept a larger
value of q, corresponding to the outer ellipse, and thus a smaller �β. This
illustrates the shrinkage nature of the LASSO.

On the other hand, the ellipse corresponding to OLS might already dip into
the diamond. In this case,

�βl = �βOLS (9.24)

So, it is not guaranteed that the LASSO will choose a sparse �β. As was
noted earlier for shrinkage estimators in general, for fixed p, the larger n is,
the less need for shrinkage, and the above situation may occur.

There is of course the matter of choosing the value of λ. Our old friend,
cross-validation, is an obvious approach to this, and others have been pro-
posed as well. The lars package includes a function cv.lars() to do k-fold
cross-validation.

9.7.7.2 Example: Bodyfat Data

Let’s continue the example of Section 9.7.4. Let’s see what lars finds here.

> l ibrary ( l a r s )
> l a r s ou t <− l a r s ( as .matrix ( bodyfat [ , −1 ] ) , bodyfat [ , 1 ] )
> l a r s ou t
Call :
l a r s ( x = as .matrix ( bodyfat [ , −1]) , y = bodyfat [ , 1 ] )
R−squared : 0 .749
Sequence o f LASSO moves :

abdomen he ight age wr i s t neck forearm hip
Var 6 3 1 13 4 12 7
Step 1 2 3 4 5 6 7

weight b i c ep s th igh ankle ches t knee
Var 2 11 8 10 5 9
Step 8 9 10 11 12 13

So, at Step 1, the abdomen predictor was brought in, then height at Step
2, and so on. Now look further:
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> summary( l a r s ou t )
. . .

Df Rss Cp
0 1 15079.0 698.131
1 2 5423 .4 93 .012
2 3 5230 .7 82 .893
3 4 4914 .9 65 .038
4 5 4333 .6 30 .484
5 6 4313 .5 31 .225
6 7 4101 .8 19 .910
7 8 4090 .5 21 .202
8 9 4006 .5 17 .919
9 10 3980 .0 18 .252
10 11 3859 .5 12 .679
11 12 3793 .0 10 .495
12 13 3786 .0 12 .057
13 14 3785 .1 14 .000

Based on the Cp value, we might stop after Step 11, right after the ankle
variable is brought in. The resulting model would consist of predictors
abdomen, height, age, wrist, neck, forearm, hip, weight, biceps, thigh and
ankle.

By contrast, if one takes the traditional approach and selects the variables
on the basis of p-values, as discussed in Section 9.5, only 4 predictors would
be chosen (see output in Section 9.7.4), rather than 9 as above.

We can also determine what λ values were used:

> l a r s ou t$lambda
[ 1 ] 99.9203960 18.1246879 15.5110550 10.7746865
[ 5 ] 4 .8247693 4.5923026 2.6282871 2.5472757
[ 9 ] 1 .9518718 1.7731184 1.0385786 0.3162681

[ 1 3 ] 0 .1051796

9.8 Post-Selection Inference

Stepwise predictor selection is an adaptive technique. This refers to any
statistical method that works in stages, with the outcome of any stage de-
termining what action is taken at the next stage. The problem with this is
that a proper statistical analysis would be based on the conditional distribu-
tion in the later stage, given the earlier stage, rather than the unconditional


