
26 CHAPTER 2. SOME INFRASTRUCTURE: LINEAR ALGEBRA

then check that it produces the identity matrix I, then ponder why this should be the case.

2.3.8 More on the PC Coefficients

There is more to consider.

Do the PC coefficients have any interpretation? The answer is probably no for ordinary people, but
for the domain experts, very possibly yes. In the teaching evaluation example above, a specialist in
survey design or teaching methods may well be able to interpret the dominance of Q1 in the second
PC. A method called factor analysis, an extension of PCA, is popular in social science research.

For the rest of us, PCA is just a handy way to do dimension reduction.

But there is geometric terminology that will be helpful, as follows. Let’s look at the mlb dataset
from the regtools package. This is data on Major League baseball players.

Name Team Position Height Weight Age

1 Adam_Donachie BAL Catcher 74 180 22.99

2 Paul_Bako BAL Catcher 74 215 34.69

3 Ramon_Hernandez BAL Catcher 72 210 30.78

4 Kevin_Millar BAL First_Baseman 72 210 35.43

5 Chris_Gomez BAL First_Baseman 73 188 35.71

6 Brian_Roberts BAL Second_Baseman 69 176 29.39

PosCategory

1 Catcher

2 Catcher

3 Catcher

4 Infielder

5 Infielder

6 Infielder

Let’s apply PCA:

> hw <- as.matrix(mlb [,4:5])

> pcout <- prcomp(hw)

> pcout$rotation

PC1 PC2

Height -0.05948695 0.99822908

Weight -0.99822908 -0.05948695

If we were to plot hw, we would put hw[1,] at the point (74,1.0) on our graph. Recall from high
school math that 74 and 180 are called the coordinates of co2[1,], with respect to our “H axis”
and “W axis.”

2.4. VECTOR NORMS 27

But in doing PCA, we are creating new axes, PC1 and PC2, which are rotated versions of the H
and W axes. (Hence the naming of the U matrix as “rotation” in the prcomp() return value.)
Let’s find the coordinates of hw[1,] with respect to the new axes:

> hw[1,] %*% pcout$rotation

PC1 PC2

[1,] -184.0833 63.1613

So (74,180) has become (-184.1,63.2) under the new coordinate system. Let’s see what the angle
of rotation is. We can do that by seeing where a point on the H axis rotates to.

> pc10 <- c(1,0) %*% pcout$rotation

> pc10

PC1 PC2

[1,] -0.05948695 0.9982291

> (atan(pc10 [2] / pc10 [1])) * 180/pi

[1] -86.58964

Almost 90 degrees clockwise.

2.4 Vector Norms

In math, the lp norm of a vector in n-dimensional space is defined by

||x||p =

(
n∑

i=1

[xi|p
)1/p

(2.36)

This is actually a family of norms, for 1 ≤ p ≤ ∞.1 You are familiar with the Euclidean norm,
p = 2. In statistics and machine learning, we are often minimizing the norm of some vector, usually
with either p = 1 or p = 2.

You will often see the notation Lp instead of lp. However, in math the former is used for function
spaces, while the latter designates n-dimensional vectors, and we use the latter here.

You will also see references to the Frobenius norm of an r × s matrix. That is actually just the l2
norm, treating the matrix as an rs-dimensional vector.

1||x||∞ = maxi |xi|

3.4. BIAS, VARIANCE, OVERFITTING AND P-HACKING 45

3.4.1 What Is Overfitting?

Suppose we have just one predictor, and n data points. If we fit a polynomial model of degree
n− 1, the resulting curve will pass through all n points, a “perfect” fit. For instance:

> x <- rnorm (6)

> y <- rnorm (6) # unrelated to x!

> df <- data.frame(x,y)

> df$x2 <- x^2

> df$x3 <- x^3

> df$x4 <- x^4

> df$x5 <- x^5

> df

x y x2 x3

1 -1.1855131 0.2881291 1.40544120 -1.666168894

2 -1.7838769 -2.0741740 3.18221664 -5.676682627

3 -0.7124510 -0.4253678 0.50758640 -0.361630431

4 0.1676111 -0.1949265 0.02809348 0.004708779

5 1.2462926 -0.7348481 1.55324535 1.935798245

6 0.3741604 1.9521667 0.13999601 0.052380963

x4 x5

1 1.975265e+00 -2.341702414

2 1.012650e+01 -18.064433938

3 2.576440e-01 -0.183558689

4 7.892437e-04 0.000132286

5 2.412571e+00 3.006769615

6 1.959888e-02 0.007333126

> lmo <- lm(y ∼ .,data=df)

> lmo

Call:

lm(formula = y ∼ ., data = df)

Coefficients:

(Intercept) x x2 x3

-1.3127 4.7632 11.4809 0.5781

x4 x5

-6.9685 -2.4938

> lmo$fitted.values

1 2 3 4 5

0.2881291 -2.0741740 -0.4253678 -0.1949265 -0.7348481

46 CHAPTER 3. SOME INFRASTRUCTURE: PROBABILITY AND STATISTICS

6

1.9521667

> y

[1] 0.2881291 -2.0741740 -0.4253678 -0.1949265 -0.7348481

[6] 1.9521667

Yes, we “predicted” y perfectly, even though there was no relation between the response
and predictor variables). Clearly that “perfect fit” is illusory, “noise fitting.” Our ability to
predict future cases would not be good. This is overfitting.

Let’s take a closer look, in an RS context. Say we believe (3.14) is a good model for the setting
described in that section, i.e. men becoming more liberal raters as they age but women becoming
more conservative. If we omit the interaction term, than we will underpredict older men and
overpredict older women. This biases our ratings.

On the other hand, we need to worry about sampling variance. Consider the case of opinion polls
during an election campaign, in which the goal is to estimate p, the proportion of voters who will
vote for Candidate Jones. If we use too small a sample size, say 50, our results will probably be
inaccurate. This is due to sampling instability: Two pollsters, each randomly sampling 50 people,
will sample different sets of people, thus each having different values of p̂, their sample estimates
of p. For a sample of size 50, it is likely that their two values of p̂ will be substantially different
from each other, whereas if the sample size were 5000, the two estimates would likely be close to
each other. In other words, the variance of p̂ is too high if the sample size is just 50.11

In a parametric regression setting, increasing the number of terms roughly means that the sampling
variance of the β̂i will increase.

So we have the famous bias/variance tradeoff : As we use more and more terms in our regression
model (predictors, polynomials, interaction terms), the bias decreases but the variance increases.
This “tug of war” between these decreasing and increasing quantities typically yields a U-shaped
curve: As we increase the number of terms from 1, mean absolute prediction error will at first
decrease but eventually will increase. Once we get to the point at which it increases, we are
overfitting.

This is particularly a problem when one has many dummy variables. For instance, there are more
than 42,000 ZIP Codes in the US; to have a dummy for each would almost certainly be overfitting.

11The repeatable experiment here is randomly choosing 50 people. Each time we perform this experiment, we get
a different set of 50 people, thus a different value of p̂. The latter is a random variable, and thus has a variance.

3.4. BIAS, VARIANCE, OVERFITTING AND P-HACKING 47

3.4.2 Can Anything Be Done about It?

So, where is the “happy medium,” the model that is rich enough to capture most of the dynamics
of the variables at hand, but simple enough to avoid variance issues? Unfortunately, there is no
good answer to this question.

Rough Rule of Thumb:

One quick rule, backed up by mathematical theory, is that one should have p <
√
n, where p is

the number of predictors, including polynomial and interaction terms (not to be confused with
the quantity of the same name in our polling example above), and n is the number of cases in
our sample. But this is certainly not a firm rule by any means, and I find it tends to be overly
conservative.

Cross-Validation:

From the polynomial-ftting example in Section 3.4.1, we see the following key point:

An assessment of predictive ability, based on predicting the same data on which our
model is fit, tends to be overly optimistic and may be meaningless or close to it.

This motivates the most common approach to dealing with the bias/variance tradeoff, cross valida-
tion. In the simplest version, one randomly splits the data into a training set and a test set.12 We
fit the model to the training set and then, pretending we don’t know the “Y” (i.e. response) values
in the test set, predict those values from our fitted model and the “X” values (i.e. the predictors)
in the test set. We then “unpretend,” and check how well those predictions worked.

The test set is “fresh, new” data, since we called lm() or whatever only on the training set. Thus
we are avoiding the “noise fitting” problem. We can try several candidate models, then choose the
one that best predicts the test data.

(Note carefully that after fitting the model via cross-validation, we then use the full data for later
prediction. Splitting the data for cross-validation was just a temporary device for model selection.)

Cross-validation is essentially the standard for model selection, and it works well if we only try a
few models. Problems can occur if we try many models, as seen in the next section.

Regularization:

Suppose we are estimating a vector mean µ, using sample data on a vector X. For instance, we
may have X equal to (height,weight,age,blood pressure). Following standard notation, let p denote
the number of components of X, e.g. p = 4 in the above example.

12The latter is also called a holdout set or a validation set. Note that there are many variants of this, e.g. something
called K-fold cross validation.

48 CHAPTER 3. SOME INFRASTRUCTURE: PROBABILITY AND STATISTICS

The standard estimate is of course the sample mean, X. In the above example, this would be the
4-vector consisting of the averages of height, weight, age and blood pressure in our sample.

Some years ago, mathematical statistician Charles Stein caused quite a stir by proving the following
remarkable fact:

• If p ≤ 2, then X is the optimal estimator of µ.13

• If p ≥ 3, then the optimal estimator is cX for some 0 < c < 1.

h

So, in higher dimensions — remember, we are working with p in the dozens or even hundreds —
we should shrink down our estimator. The intuition here is this: Occasionally sample data will
contain some really extreme data points, and these skew our X estimator. By shrinking down the
estimator, we reduce the influence of those extreme values. And with p ≥ 3, extreme values happen
often enough to make shrinkage (or regularization) a “win.”

This was later applied to linear regression models, PCA and so on. Instead of finding b that
minimizes (3.5), we minimize

r =
n∑

i=1

[Wi − (b0 + b1Hi + b2Ai)]
2 + λ||b||1 (3.19)

where ||b||1 is the l1 vector norm of b:

||b|| =
p∑

i=1

|bi| (3.20)

This is not done directly out of concern for outliers so much as is as a remedy to overfitting. In
the polynomial models we discussed earlier, higher-degree models at least have more components
in b but also tend to be larger due to high variance. Of course, we have to choose λ, a tuning
parameter (as s was for PCA); this is typically done by trying various values and assessing via
cross-validation.

This technique in linear regression is called the LASSO, the Least Absolute Shrinkage and Selection
Operator. A popular implementation in R is the lars package.

13Under Mean Squared Error loss.

3.5. EXTENDED EXAMPLE 49

3.4.3 The Problem of P-hacking

The (rather recent) term p-hacking refers to the following abuse of statistics.14

Say we have 250 pennies, and we wish to determine whether any are unbalanced, i.e. have probability
of heads different from 0.5. We do so by tossing each coin 100 times. If we get fewer than 40 heads
or more than 60, we decide this coin is unbalanced.15 The problem is that, even if all the coins are
perfectly balanced, we eventually will have one that has fewer than 40 or greater than 60 heads,
just by accident. We will then falsely declare this coin to be unbalanced.

Or, to give a somewhat frivolous example that still will make the point, say we are investigating
whether there is any genetic component to a person’s sense of humor. Is there a Humor gene?
There are many, many genes to consider. Testing each one for relation to sense of humor is like
checking each penny for being unbalanced: Even if there is no Humor gene, then eventually, just
by accident, we’ll stumble upon one that seems to be related to humor.16

Though the above is not about prediction, it has big implications for the prediction realm. In ML
there are various datasets on which analysts engage in contests, vying for the honor of developing
the model with the highest prediction accuracy, say for classification of images. If there is a large
number of analysts competing for the prize, then even if all the analysts have models of equal
accuracy, it is likely that one is substantially higher than the others, just due to an accident of
sampling variation. This is true in spite of the fact that they all are using the same sample; it may
be that the “winning” analyst’ model happens to do especially well in the given data, and may
not be so good on another sample from the same population. So, when some researcher sets a new
record on a famous ML dataset, it may be that the research really has found a better prediction
model — or it may be that it merely looks better, due to p-hacking.

The same is true for your own analyses. If you try a large number of models, the “winning” one
may actually not be better than all the others.

3.5 Extended Example

Let’s illustrate this on the dataset prgeng, assembled from the 2000 US census. It consists of
wage and other information on 20090 programmers and engineers in Silicon Valley. This dataset

14The term abuse here will not necessarily connote intent. It may occur out of ignorance of the problem.
15For those who know statistics: This gives us a Type I error rate of about 0.05, the standard used by most people.
16For those with background in statistics, the reason this is called “p-hacking” is that the researcher may form

a significance test for each gene, computing a p-value for each test. Since under the null hypothesis we have a 5%
chance of getting a “significant” p-value for any given gene, the probability of having at least one significant result
out of the thousands of tests is quite high, even if the null hypothesis is true in all cases. There are techniques called
multiple inference or multiple comparison methods, to avoid p-hacking in performing statistical inference. See for
example Multiple Comparisons: Theory and Methods, Jason Hsu, 1996, CRC.

50 CHAPTER 3. SOME INFRASTRUCTURE: PROBABILITY AND STATISTICS

is included in the R polyreg package, which fits polynomial models as we saw in Section 3.3.5.1
above.17

As usual, let’s take a glance at the data:

> head(prgeng)

age educ occ sex wageinc wkswrkd

1 50.30082 13 102 2 75000 52

2 41.10139 9 101 1 12300 20

3 24.67374 9 102 2 15400 52

4 50.19951 11 100 1 0 52

5 51.18112 11 100 2 160 1

6 57.70413 11 100 1 0 0

Note that age, education, occupation and sex are categorical variables, which R will convert to
dummies for us. Here is the code:

library(regtools)

library(polyreg)

data(prgeng)

pe <- prgeng[,c(1:4 ,6 ,5)]

head(pe)

tstidxs <- sample (1: nrow(prgeng) ,1000)

petrn <- pe[-tstidxs ,]

petst <- pe[tstidxs ,]

for (i in 1:4) {

pfout <- polyFit(petrn ,deg=i)

preds <- predict(pfout ,petst)

print(mean(abs(preds -petst$wageinc)))

print(length(pfoutfitcoefficients))

}

And the resulting Mean Absolute Prediction Errors and p Values :

degre MAPE p

1 24248.43 24

2 23468.56 164

3 24367.16 496

4 818934.9 1020

Remember, p is the number of predictors, including all the dummies. When we have a degree 2

17Available from github.com/matloff.

3.5. EXTENDED EXAMPLE 51

model, we have all the squared terms (except for the dummies), and the cross-product terms, e.g.
interaction between age and gender. So p increase pretty rapidly with degree.

In any event, though, the effects of overfitting are clear.

52 CHAPTER 3. SOME INFRASTRUCTURE: PROBABILITY AND STATISTICS

Chapter 4

Matrix Factorization Methods

Recall the brief introduction in Chapter 1: Let A denote the ratings matrix, with the element in
row i, column j storing the rating of item j given by user i. Most of A is unknown, i.e. NA values
in R. We wish to estimate the unknown ones.

Say the dimension of A is u × v. We wish to find rank-k matrices W (u × k) and H (k × v) such
that

A ≈WH (4.1)

Again, most of the elements of A are unknown. But because it is typically the case that similar
users have similar ratings patterns, we hope to obtain good estimates of all of A even though only
a small part of it is known.

This is a form of dimension reduction, with the rank k controlling the bias-variance tradeoff.
Typically a good approximation can be achieved with

k � rank(A) (4.2)

There are two main approaches to matrix factorization in recommender systems and general ma-
chine learning:

• Singular Value Decomposition (SVD): This is a “cousin” of PCA, kind of a “square root” of
the latter. There is a function in base R for this, svd().

• Nonnegative Matrix Factorization (NMF): Here the matrix A has nonnegative elements, and
one desires the same property for W and H. This may lead to sparsity in WH, and in some

53

54 CHAPTER 4. MATRIX FACTORIZATION METHODS

cases a helpful intepretability. There are several R packages for this; see below.

Since most of the issues are the same for both methods, we’ll mainly stick to one, NMF.

4.1 Notation

We’ll use the following notation for a matrix Q

• Qij : element in row i, column j

• Qi·: row i

• Q·j : column j

4.2 Synthetic, Representative RS Users

Note the key relation, which we showed in Section 2.2:

(WH)i· =

k∑
m=1

WimHm· (4.3)

In other words, in (4.1), we have that:

(a) The entire vector of predicted ratings by user i can be expressed as a linear combination of
the rows of H.

(b) Thus the rows of H can be thought of as an “approximate basis” for the rows of A.1

(c) The rows of H can thus be thought of as synthetic “users” who are representative of users in
general. Hrs is the rating that synthetic user r gives item s.

In this manner, we can predict ratings for any user that is already in A. but what about an entirely
new user? What we need is the coordinates of this new user with respect to the rows of H. We’ll
see how to get these later in the chapter.2

1Recall that the term basis in linear algebra means a linearly independent set of vectors that spans the given
subspace, i.e. any vector in the subspace can be expressed as a linear combinations of the basis vectors.

2After accumlating enough new users, of course, we should update A, and thus W and H.

4.3. THE CASE OF ENTIRELY KNOWN A 55

Of course, interchanging the roles of rows and columns above, we have that the columns of W
serve as an approximate basis for the columns of A. In other words, the latter become synthetic,
representative items, e.g. representative movies in the MovieLens data.

4.3 The Case of Entirely Known A

This notion of nonnegative matrix factorization has become widely used in a variety of ML appli-
cations in which the matrix A entirely known.

4.3.1 Image Classification

Say we have n image files, each of which has brightness data for r rows and c columns of pixels.
We also know the class, i.e. the subject, of each image. The famous MNIST dataset, for instance,
consists of 70,000 28x28 images of hand-drawn digits. Thus the data for an image consists of
282 = 784 pixel intensities, each in the range 0,1,2,...,255. (255 is fully black, 0 is fully white and
the others are shades of gray.) We have 10 classes, ’0’ through ’9’.

We wish to predict the classses of new images. Denote the class of image j in our original data by
Cj .

We form a matrix A with n rows and w = rc columns, where the ith row, Ai· stores the data for
the ith image, say in row-major order:3 Ai· would first store row 1 of that image, then store row 2
of the image, and so on.4

In the sense stated above, the rows of H serve as synthetic, representative images. Row i of A, i.e.
the ith image in our training data, is then approximately a linear combination of the rows of H,
with the coordinates being the elements of row i of W .

So, just as in the PCA case, we transform our training data, via A → W . We apply our favorite
classification method, say the logistic, to this new training data (together with the class vector for
that data), then use it to classify new data vectors S.

To do the latter, we must find the coordinates of S with respect to the rows of H. This means
finding the linear combination of rows of H that is closest to S, i.e.

arg min
l
||S − l′H|| (4.4)

3Make sure not to confuse the rows of A with the rows of an image.
4For simplicity here we will assume greyscale. For color, each row of A will consist of three pixel vectors, one for

each primary color.

56 CHAPTER 4. MATRIX FACTORIZATION METHODS

When then set λ to the minimizing l (we’ll see how, shortly), and this is the coordinate vector for
the new case.

Thus we are going from rc variables to rk of them, where k is the chosen rank. If

k � rank(A) (4.5)

we have a big dimension reduction.

Again, there is the issue of choosing k, as with choosing s in PCA, and so on. More on this in
Section 4.6.

4.3.2 Text classification

Here A consists of, say, word counts. We have a list of k keywords, and d documents of known
classes (politics, finance, sports etc.). Row i of A contains the counts of the various keywords (or
maybe just a binary variable indicating presence or absence of the word). Otherwise, the situation
is the same as for image recognition above.

4.3.3 Relation to Recommender Systems

Many RS methods are text-based or even image-based. Say there is a new movie, not user ratings
yet at all. One might compare the movie studio’s synopsis of the film with those of flims for which
we have ratings data, and try to predict how well each user would like this film.

A more ambiitious approach would be to do the same for images in the film’s ad trailer.

4.3.4 How Do We Minimize (4.4)?

To answer this question, it will be helpful to keep some concrete numbers in mind, say with the
MNIST data. Say we wish a rank of 50. Then

• A is 70000x784;

• W is 70000x0;

• H is 50x784;

• S is 1x784; and

4.4. THE R PACKAGE NMF 57

• l is 50x1.

Keeping these numbers in mind as concrete examples, now note that in (4.4),

||S − l′H||2 = (S − l′H)(S − l′H)′ (4.6)

This looks pretty close to (3.6). But recall that S and l′H are row vectors, so (4.6) looks slightly
different. Now, using the fact from linear algebra that (UV)′ = V ′U ′, (4.6) says

||S − l′H||2 = (S′ −H ′l)(S′ −H ′l) (4.7)

Now it’s in the form of (3.6), so our minimization problem is solved! In (3.11), just set D, A and b
to S′, H ′ and l, respectively. This gives us

λ = (HH ′)−1HS′ (4.8)

We could compute this directly, using R’s matrix operations (for matrix inversion, we can use
solve(), or for better numerical accuracy, solve.qr()), but it’s easier to send it to lm(), e.g.

lm(s ∼ t(h) - 1)$coef

The ‘-1” tells lm(), “Don’t add a column of 1s to H ′.”

4.4 The R Package NMF

The R package NMF is quite extensive, with many, many options. In its simplest form, though,
it is quite easy to use. For a matrix a and desired rank k, we simply run

> nout <- nmf(a,k)

Here the returned value nout is an object of class ”NMF” defined in the package. It uses R’s S4
class structure, with @ as the delimiter denoting class membership, as opposed to $ as in the S3
case.

As is the case in many R packages, ”NMF” objects contain classes within classes. The computed
factors are in nout@fit@W and nout@fit@H.

Let’s illustrate it in an image context, using the following:

58 CHAPTER 4. MATRIX FACTORIZATION METHODS

Here we have only one image, and we’ll store it as a matrix A (rows of the matrix corresponding
to rows of A). we’ll use NMF to compress it, not do classification. First obtain A:

> library(pixmap)

read file

> mtr <- read.pnm(’MtRush.pgm’)

> class(mtr)

[1] "pixmapGrey"

attr(,"package")

[1] "pixmap"

mtr is an R S4 object of class "pixmapGrey"

extract the pixels matrix

> a <- mtr@grey

Now, perform NMF with rank 50, find the approximation to A, and display it:

> aout <- nmf(a,50)

> w <- aout@fit@W

> h <- aout@fit@H

> approxa <- w %*% h

brightness values must be in [0,1]

> approxa <- pmin(approxa ,1)

> mtrnew <- mtr

> mtrnew@grey <- approxa

> plot(mtrnew) # dispatched to plot.pixmapGrey ()

Here is the result:

4.5. COMPUTATION 59

This is somewhat blurry. The original matrix has dimension 194 × 259, and thus presumably
has rank 194.5 We’ve approximated the matrix by one of rank only 50. We could use this for
compression, and if we had millions of images and this amount of blurriness were acceptable, we
could take this approach.

Actually, there are better ways to compress images, and this was just an illustration of the effect
of the reduced rank. Getting back to our classification context, the point is:

• When we use the term low-rank approximation, it is indeed approximate, as can be seen by
the blurriness.

• Applying NMF or PCA/SVD to a whole collection of images, e.g. MNIST, further heightens
this approximate nature of the process.

• But we need to do something to avoid overfitting, i.e. some kind of dimension reduction, and
finding a low-rank approximation does that.

4.5 Computation

How are the NMF solutions found? What is nmf() doing internally?

5One could check this by finding the number of nonzero eigenvalues of A′A, say by running prcomp().

60 CHAPTER 4. MATRIX FACTORIZATION METHODS

Needless to say, the methods are all iterative, with one approach being that of the Alternating
Least Squares algorithm AltLS). It’s quite intuitive, builds on our previous material and provides
insight into NMF itself.6

And most importantly — AltLS is easily adapted to the recommender systems setting. Remember,
recommender systems differ fundamentally from, say, the image and text classification applications
cited earlier, due to the fact that some, typically the vast majority, of elements of the A matrix are
unknown.

So let’s take a look, still assuming for now that A is competely known.

4.5.1 Objective Function

We need an objective function, a criterion to optimize, in this case a criterion for goodness of
approximation. Here we will take that to be the Frobenius norm (Section 2.4),

‖Q‖2 =

√∑
i,j

Q2
ij (4.9)

So our criterion for error of approximation will be

‖A−WH‖2 (4.10)

This measure is specified in nmf() by setting objective = ’euclidean’.

4.5.2 Alternating Least Squares

So, how does Alternating Least Squares work? Suppose just for a moment that we know the exact
value of W , with H unknown. Then for each j we could minimize

‖A·j −WH·j‖2 (4.11)

We are seeking to find H·j that minimizes (4.9), with A·j and W known. But since the Frobenius
norm is just a sum of squares, that minimization is just a least-squares problem, i.e. linear regression,
just as in Section 4.3.4. We are “predicting” A·j from W ,

So again in the notation of Section 3.3.5:

6By the way, Alt. Least Squares is not the default for nmf(). To select it, set method = ’snmf/r’.

4.5. COMPUTATION 61

• The matrix A there is our W here, known.

• The vector D there is our A·j here, known.

• The vector b there is our H·j here, unknown and to be solved for.

So we compute

> h[,j] <- lm(a[,j] ∼ w - 1)$coef

for each j.7

On the other hand, suppose we know H but not W . We could take transposes,

A′ = H ′W ′ (4.12)

and then just interchange the roles of W and H above. Here a call to lm() gives us a column of
W ′, thus a row of W , and we do this for all rows.

Putting all this together, we first choose initial guesses, say random numbers, for W and H; nmf()
gives us various choices as to how to do this. Then we alternate: Compute the new guess for W
assuming H is correct, then choose the new guess for H based on that new W , and so on.

During the above process, we may generate some negative values. If so, we simply truncate to 0.

4.5.3 Back to Recommender Systems: Dealing with the Missing Values

In our recommender systems setting, of course, most of A is missing. But we can easily adapt to
that. In (4.11), simply replace A·j by the known elements of that vector, and replace W by the
corresponding rows. Then proceed as before.

4.5.4 Convergence and Uniqueness Issues

There are no panaceas for applications considered here. Every solution has potential problems. I
like to call this the Pillow Theorem — pound down on one fluffy part and another part pops up.

Unlike the PCA case, one issue with NMF is uniqueness — there might not be a unique pair (W,H)
that minimizes (4.10).8 In fact, one can see this immediately: Doubling W while having H leaves

7The -1 specifies that we do not want a constant term in the model.
8See Donoho and Stodden,When Does Non-Negative Matrix Factorization Give a Correct Decomposition into

Parts?, https://web.stanford.edu/~vcs/papers/NMFCDP.pdf.

62 CHAPTER 4. MATRIX FACTORIZATION METHODS

the product WH unchanged. Of course, the product is all that really counts, but in turn, this may
result in convergence problems. The NMF documentation recommends running nmf() multiple
times; it will use a different seed for the random initial values each time.

The Alternating Least Squares method used here is considered by some to have better convergence
properties, since the solution at each iteration is unique. This may come at the expense of slower
convergence.

4.6 How Do We Choose the Rank?

This is not an easy question. One approach would be to use prcomp, or for that matter svd(),
to find the eigenvalues, then take our rank to be the number of “large” eigenvalues, as discussed in
Chapter 2.

Of course, the typical way rank is chosen is cross validation.

4.7 Why Nonnegative?

In the applications we’ve mentioned here, we always have Aij ≥ 0. However, that doesn’t necesarily
mean that we need W and H to be nonnegative, and indeed if we were to use PCA, they may not
so. (With PCA, even their product could have negative element, which we would truncate to 0.)
Why use NMF, i.e. why insist that the factors W and H themselves be nonnegative?

There are a couple of reasons NMF may be preferable. First, truncation may be questionable if we
have a lot of negative values. But the second reason is that NMF may be more useful, as follows:

In a facial image recognition case, say, there is hope that the vectors W·j will be sparse, i.e. mostly
0s. Then we might have, say, the nonzero elements of W·1 correspond to eyes, W·2 correspond to
nose and so on with other parts of the face. We are then “summing” to form a complete face. This
may enable effective parts-based recognition, with helpful interpretations.

In our recommender systems setting, this parts-based effect, NMF would give us crisper distinction
among the various synthetic users. This may reveal clusters of user behavior, which could be quite
helpful to the analyst.

4.8 Functions in rectools

The recoSystem package by Chih-Jen Li et al has a good implementation of NMF for recommender
systems (i.e. it handles the missing values). However, it uses R6 classes (and is complicated in other

4.9. DEALING WITH COVARIATES 63

ways), which are unfamiliar to many R users, so the rectools package provides wrappers. Basic
call forms are:

trainReco(ratingsIn ,rnk=10,nmf=FALSE)

predict.RecoS3(recoObj ,testSet)

Here ratingsIn is the usual three-column (userID,itemID,rating) (plus covariates, if any) data
frame; rnk is the desired rank; nmf is false for SVD, true for NMF; recoObj is the return value
from trainReco(); and testSet is the test set, in the same format as ratingsIn, minus the ratings
column.

The return value from trainReco() is an R S3 object of class ’RecoS3’, with components P and
Q, corresponding to W and H ′ in our notation. In the case of covariates (see below), some R
attributes are also included.

4.9 Dealing with Covariates

The easiest approach to handling covariates is to simply “subtract them out” for the data via linear
regression, then run NMF/SVD on the resulting residuals,9 component in the S3 object returned
by lm(). and finally, at the prediction stage, add the regression values back in.

Here are relevant code excerpts:

trainReco():

hasCovs <- (ncol(ratingsIn) > 3)

if (hasCovs) {

covs <- as.matrix(ratingsIn[, -(1:3)])

lmout <- lm(ratingsIn[, 3] ∼ covs)

now make fake ratings; for NMF , must be >= 0

minResid <- min(lmout$residuals)

ratingsIn[, 3] <- lmout$residuals - minResid

}

...

r$train(train_set , opts = list(dim = rnk , nmf = nmf))

result <- r$output(out_memory(), out_memory ())

attr(result , "hasCovs") <- hasCovs

if (hasCovs) {

attr(result , "covCoefs") <- coef(lmout)

add the residuals back in

9In regression modeling, the values of true Y minus the fitted model are called “residuals.” They are often used
to assess quality of model fit. There is a residuals

64 CHAPTER 4. MATRIX FACTORIZATION METHODS

attr(result , "minResid") <- minResid

}

class(result) <- "RecoS3"

result

predict.RecoS3():

if (hasCovs) {

tmp <- c(1, testCovs[i,]) %*% covCoefs + minResid

}

pred[i] <- p[j,] %*% q[k,] + tmp

In the covariates case, trainReco() replaces the ratings by the residuals, so the product WH
approximates them rather than the original A. Then in predict.RecoS3(), after multiplying Wi·
and H·j , the estimated regression function value for the given case is added back in.

The role of minResid is this: If we are using NMF, fitting to the residuals, which are both positive
and negative, makes no sense. So, we subtract the (algebraically) smallest residual, resulting in
only nonnegative values. Again, this is added back in later on.

4.10 Regularization

Recall Section 3.4.2, where we introduced the idea of shrinkage as a guard against overfitting.

For NMF (or SVD), we probably don’t want to force some predicted ratings to 0, the l2 norm is a
popular choice. Thus, instead of choosing W and H to minimize (4.10), we minimize

||A−WH||2 + γ1||W ||22 + γ2||H||22 (4.13)

Both γ1 and γ2 are tuning parameters.

4.11 “Bias” Removal

As noted in Chapter 5, some users tend to give more liberal ratings, while others tend to be more
cautious. Similarly, some items tend to be rated more highly than others. One way of dealing with
that is to adjust our ratings matrix A accordingly: For each user i, let Ri denote the average of all
known ratings from that user. Also, for each item j let Sj denote the average of all known ratings

4.11. “BIAS” REMOVAL 65

for that item. These are termed biases. Then do the replacement

Auv ← Auv −Ru − Sv (4.14)

and then form the matrix factorization as usual. In the end, after estimating the unknown entries
in A, restore the subtracted quantities:

Auv ← Auv +Ru + Sv (4.15)

