A Tour of Recommender Systems

Norm Matloff
University of California, Davis

Ancient "Yelp"

About This Book

This work is licensed under a Creative Commons Attribution-No Derivative Works 3.0 United States License. Copyright is retained by N. Matloff in all non-U.S. jurisdictions, but permission to use these materials in teaching is still granted, provided the authorship and licensing information here is displayed in each unit. I would appreciate being notified if you use this book for teaching, just so that I know the materials are being put to use, but this is not required.

The author has striven to minimize the number of errors, but no guarantee is made as to accuracy of the contents of this book.

The cover is from the British Museum onine site,
https://www.britishmuseum.org/research/collection_online/collection_object_details/ collection_image_gallery.aspx?partid=1\&assetid=1613004116\&objectid=277770
with descripition:

Clay tablet; letter from Nanni to Ea-nasir complaining that the wrong grade of copper ore has been delivered after a gulf voyage and about misdirection and delay of a further delivery...

The world's first recommender system!

Author's Biographical Sketch

Dr. Norm Matloff is a professor of computer science at the University of California at Davis, and was formerly a professor of statistics at that university. He is a former database software developer in Silicon Valley, and has been a statistical consultant for firms such as the Kaiser Permanente Health Plan.

Prof. Matloff's recently published books include'Parallel Computation for Data Science (CRC, 2015) and Statistical Regression and Classification: from Linear Models to Machine Learning (CRC 2017). The latter book was selected for the Ziegal Award in 2017.

Dr. Matloff was born in Los Angeles, and grew up in East Los Angeles and the San Gabriel Valley. He has a PhD in pure mathematics from UCLA, specializing in probability theory and statistics. He has published numerous papers in computer science and statistics, with current research interests in parallel processing, statistical computing, and regression methodology.

Prof. Matloff is a former appointed member of IFIP Working Group 11.3, an international committee concerned with database software security, established under UNESCO. He was a founding member of the UC Davis Department of Statistics, and participated in the formation of the UCD Computer Science Department as well. He is a recipient of the campuswide Distinguished Teaching Award and Distinguished Public Service Award at UC Davis.

Contents

$1 \quad$ Setting the Stage 7
1.1 What Are Recommender Systems? 7
1.2 How Is It Done? 8
1.2.1 Nearest-Neighbor Methods 8
1.2.2 Latent Factor Approach: Matrix Factorization 9
1.2.3 Latent Factor Approach: Statistical Models 9
1.2.3.1 Comparison. 10
1.3 Tuning Parameters 10
1.4 Covariates/Side Information 11
1.5 Prerequisites 11
1.6 Software 11
1.7 What You Should Gain from This Book 11
2 Some Infrastructure: Linear Algebra 13
2.1 Matrix Rank and Vector Linear Independence 13
2.2 Partitioned Matrices 14
2.2.1 How It Works 14
2.2.2 Important Special Case: Matrix Times Vector 16
2.2.3 Example: Matrix Factorization 16
2.3 The Notion of Approximate Rank: Principal Components Analysis 17
2.3.1 Dimension Reduction 18
2.3.2 Exploiting Correlations 18
2.3.3 Eigenanalysis 20
2.3.4 PCA 21
2.3.5 Applying Matrix Partitioning 22
2.3.6 Choosing the Number of Principal Components 23
2.3.7 Software and Example 23
2.3.8 More on the PC Coefficients 26
2.3.9 Scaling 27
2.4 Vector Norms 28
2.5 Handy Facts 28
3 Some Infrastructure: Probability and Statistics 29
3.1 Data as a Sample 29
3.2 Probability, Expected Value and Variance 30
3.3 Regression Models 31
3.3.1 Definition 31
3.3.2 Prediction 31
3.3.3 Estimation 32
3.3.3.1 Nonparametric 32
3.3.3.2 Parametric 32
3.3.3.3 Comparison 32
3.3.4 The $\operatorname{lm}()$ Function in R 33
3.3.5 Details of Linear Regression Estimation 35
3.3.5.1 Polynomial Terms 37
3.3.6 Categorical Variables (Predictor, Response) 37

$$
\text { 3.3.6.1 Dummy Variables as Predictors . } 37
$$

3.3.6.2 Interaction Terms 39
3.3.6.3 Dummy Variables as Response Variables 40
3.3.7 R's predict(), a Generic Function 41
3.3.8 Full Example 42
3.3.9 More Than Two Levels in Categorical Response 43
3.4 Bias, Variance, Overfitting and p-Hacking 44
3.4.1 What Is Overfitting? 45
3.4.2 Can Anything Be Done about It? 47
3.4.3 The Problem of P-hacking 49
3.5 Extended Example 50
4 Matrix Factorization Methods 53
4.1 Notation 54
4.2 Synthetic, Representative RS Users 54
4.3 The Case of Entirely Known A 55
4.3.1 Image Classification 55
4.3.2 Text classification 56
4.3.3 Relation to Recommender Systems 56
4.3.4 How Do We Minimize (4.4)? 56
4.4 The R Package NMF 57
4.5 Computation 59
4.5.1 Objective Function 60
4.5.2 Alternating Least Squares 60
4.5.3 Back to Recommender Systems: Dealing with the Missing Values 61
4.5.4 Convergence and Uniqueness Issues 61
4.6 How Do We Choose the Rank? 62
4.7 Why Nonnegative? 62
4.8 Functions in rectools 62
4.9 Dealing with Covariates 63
4.10 Regularization 64
4.11 "Bias" Removal 64
5 Nearest-Neighbor Methods 67
5.1 Notation 67
5.2 User-Based Filtering 67
5.2.1 Matrix View 68
5.2.2 (One) Implementation 68
5.3 Regression Analog 70
5.4 Choosing k 70
5.5 Defining Distance 70
5.6 Item-Based Filtering 70
5.7 Covariates 70
5.8 Edge Bias 70
6 Statistical Models 71
7 Use of Side Information 73
A R Quick Start 75
A. 1 Correspondences 75
A. 2 Starting R 76
A. 3 First Sample Programming Session 76
A. 4 Vectorization 79
A. 5 Second Sample Programming Session 79
A. 6 Recycling 80
A. 7 More on Vectorization 81
A. 8 Third Sample Programming Session 81
A. 9 Default Argument Values 82
A. 10 The R List Type 83
A.10.1 The Basics 83
A.10.2 The Reduce() Function 84
A.10.3 S3 Classes 85
A. 11 Some Workhorse Functions 86
A. 12 Handy Utilities 88
A. 13 Data Frames 89
A. 14 Graphics 91
A. 15 Packages 91
A. 16 Other Sources for Learning R 92
A. 17 Online Help 93
A. 18 Debugging in R 93
A. 19 Complex Numbers 93
A. 20 Further Reading 94

Chapter 1

Setting the Stage

Let's first get an overview of the topic and the nature of this book. Keep in mind, this is just an overview; many questions should come to your mind, hopefully whetting your appetite for the succeeding chapters!

In this chapter, we will mainly describe collaborative filtering.

1.1 What Are Recommender Systems?

What is a recommender system (RS)? We're all familiar with the obvious ones - Amazon suggesting books for us to buy, Twitter suggesting whom we may wish to follow, even OK Cupid suggesting potential dates.

But many applications are less obvious. The University of Minnesota, for instance, has developed an RS to aid its students in selection of courses. The tool not only predicts whether a student would like a certain course, but also even predicts the grade she would get!

In discussing RS systems, we use the terms users and items, with the numerical outcome being termed the rating. In the famous MovieLens dataset, which we'll use a lot, users provide their ratings of films.

Systems that combine user and item data as above are said to perform collaborative filtering. The first part of this book will focus on this type of RS. Content-based RS systems work by learning a user's tastes, say by text analysis.

Ratings can be on an ordinal scale, e.g. 1-5 in the movie case. Or they can be binary, such as a user clicking a Like symbol in Twitter, 1 for a click, 0 for no click.

But ratings in RSs are much more than just the question, "How much do you like it?" The Minnesota grade prediction example above is an instance of this.

In another example, we may wish to try to predict bad reactions to presciption drugs among patients in a medical organization. Here the user is a patient, the item is a drug, and the rating may be 1 for reaction, 0 if not.

More generally, any setting suitable for what in statistics is called a crossed heirachical model fits into RS. The word crossed here means that each user is paired with multiple items, and vice versa. The hierarchy refers to the fact that we can group users within items or vice versa. There would be two levels of hierarchy here, but there could be more.

Say we are looking at elementary school students rating story books. We could add more levels to the analysis, e.g. kids within schools within school districts. It could be, for instance, that kids in different schools like different books, and we should take that into account in our analysis. The results may help a school select textbooks that are especially motivational for their students.

Note that in RS data, most users have not rated most items. If we form a matrix of ratings, with rows representing users and columns indicating items, most of the elements of the matrix will be unknown. We are trying to predict the missing values. Note carefully that these are not the same as 0s.

1.2 How Is It Done?

Putting aside possible privacy issues that arise in some of the above $R S$ applications ${ }^{1}$ we ask here, How do they do this? In this prologue, we'll discuss a few of the major methods.

1.2.1 Nearest-Neighbor Methods

This is probably the oldest class of $R S$ methodology, still popular today. It can be explained very simply.

Say there is a movie spoofing superheroes called Batman Goes Batty (BGB). Maria hasn't seen it, and wonders whether she would like it. To form a predicted rating for her, we could search in our dataset for the k users most similar to Maria in movie ratings and who have rated BGB. We would then average their ratings in order to derive a predicted rating of BGB for Maria. We'll treat the issues of choosing the value of k and defining "similar" later, but this is the overview.

The above approach is called user-based, with a corresponding item-based method. In general, these

[^0]are called k-NN methods, for "k-nearest neighbor." (We'll shorten it to kNN.)

1.2.2 Latent Factor Approach: Matrix Factorization

Let A denote the matrix of ratings described earlier, with $A_{i j}$ denoting the rating user i gives to item j. Keep in mind, as noted, that most of the entries in A are unknown; we'll refer to them as NA, the R-language notation for missing values. Matrix factorization (MF) methods then estimate all of A as follows.

Let r and s denote the numbers of rows and colums of A, respectively. In the smallest version of the MovieLens data, for example, $r=943$ and $s=1682$. The idea is to find a low-rank approximation to A : Using on known ratings, we find matrices W and H, of dimensions $r \times m$ and $m \times s$, each of rank m, such that

$$
\begin{equation*}
A \approx W H \tag{1.1}
\end{equation*}
$$

Typically $m \ll \min (r, s)$. Software libraries typically take 10 as the default.
We will review the concept of matrix rank later, but for now the key is that W and H are known matrices, no NA values. Thus we can form the product $W H$, thus obtaining estimates for all the missing elements of A.

1.2.3 Latent Factor Approach: Statistical Models

As noted, collaborative-filtering RS applications form a special case of crossed random-effects models, a statistical methodology. In that way, a useful model for $Y_{i j}$, the rating user i gives item j, is

$$
\begin{equation*}
Y_{i j}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j} \tag{1.2}
\end{equation*}
$$

a sum of an overall mean, an effect for user i, an effect for item j, and an "all other effects" term (often called the "error term," which is rather misleading).

In the MovieLens setting, μ would be the mean rating given to all movies (in the "population" of all movies, past, present and future), α_{i} would be a measure of the tendency of user i to give ratings more liberal or harsher than the average user, and β_{j} would a measure of the popularity of movie j, relative to the average movie.

What assumptions are made here? First, μ is a fixed but unknown constant to be estimated. As to α_{i} and β_{j}, one could on the one hand treat them as fixed constants to be estimated. On the other
hand, there are some advantages to treating them as random variables, we will be seen in Chapter 6.

1.2.3.1 Comparison

Why so many methods? There is no perfect solution, and each has advantagages and disadvantages.
First, note that in the kNN and MF methods, the user must choose the value of a design parameter. In kNN , we must choose k, the number of nearest neighbors, and while in MF, we must choose m, the rank.

Parameters such as k and m are known as tuning parameters in statistics and hyperparameters in machine learning (ML). Many ML methods have multiple hyperparameters, sometimes 10 or more. This can be quite a drawback, as choosing their values is quite difficult. By contrast, the statistical model described above has no tuning parameters.

A problem with both MF and the statistical models is that one is limited to prediction only of ratings for users and items that are already in our dataset. We could not predict a new user, for instance, without recomputing an updated fit. With kNN, there is no such restriction.

1.3 Tuning Parameters

The reader is likely familiar with histograms. Recall that the analyst must choose a bin width. Here there is a tradeoff:

- If the width is too small, some bins will have no data points, or very few. This will produce a very choppy appearance.
- But it's also bad to have too large a width. In the extreme, we have bins so wide that we have just one of them, totally uninformative.

The bin width is called a tuning parameter or a hyperparameter. Most machine learning algorithms, including most in recommender systems, have several tuning parameters. Choosing the values of those parameters is not easy, but there are methods for it.

Important note: Think of datasets A and B , similar but A having only 25 data points and B having 500. Then the problem of empty or nearly-empty bins is much less of an issue. In other words, we can afford to make the bin width smaller if we have dataset B, thus getting a more detailed picture.

1.4 Covariates/Side Information

In predicting the rating for a given (user,item) pair, we may for example have demographic information on the user, such as age and gender. Incorporating such information - called covariates in statistics and side information in machine learning - may enhance our predictive ability, especially if this user has not rated many items to date.

1.5 Prerequisites

What is background is needed for this book?

- A calculus-based probability course.
- Some facility in programming.
- Good mathematical intuition.

We will be using the R programming language. No prior experience with R is assumed. A Quickstart in R is available in Appendix A .

We will also use some machine learning techniques, but no prior background is assumed.

1.6 Software

A number of libraries are available for RS methods. We will use the R package rectools, available in my GitHub repo, github.com/matloff.

1.7 What You Should Gain from This Book

- A solid understanding of RS fundamentals: You'll be able to build simple but effective RS systems, and will be able to read books and research on advanced RS methods.
- Greatly enhanced understanding of the basics of probability/statistics, machine learning and linear algebra.

Chapter 2

Some Infrastructure: Linear Algebra

There are some issues that will come up frequently. We'll first cover them briefly here, more later as the need arises. This chapter will review linear algebra, while the following one will review/extend the reader's knowledge of probability and statistics.

RS methods, as with other machine learning (ML) techniques, often make use of linear algebra, well beyond mere matrix multiplication.

2.1 Matrix Rank and Vector Linear Independence

Consider the matrix

$$
M=\left(\begin{array}{rrrr}
1 & 5 & 1 & -2 \tag{2.1}\\
8 & 3 & 2 & 8 \\
9 & 8 & 3 & 6
\end{array}\right)
$$

Note that the third row is the sum of the first two. In many contexts, this would imply that there are really only two "independent" rows in M in some sense related to the application.

Denote the rows of M by $r_{i}, i=1,2,3$. Recall that we say they are linearly independent if it is not possible to find scalars a_{i}, at least one of them nonzero, such that the linear combination $a_{1} r_{1}+a_{2} r_{2}+a_{3} r_{3}$ is equal to 0 . In this case $a_{1}=a_{2}=1$ and $a_{3}=-1$ gives us 0 , so the rows of M are linearly dependent.

Recall that the rank of a matrix is its maximal number of linearly independent rows and columns. (It can be shown that the row rank and column rank are the same.) The rank of M above is 2 .

Recall too the notion of the basis of a vector space \mathcal{V}. It is a linearly independent set of vectors whose linear combinations collectively form all of \mathcal{V}. Here r_{1} and r_{2} form a basis for the row space of M. Alternatively, r_{1} and r_{3} also form a basis, as do r_{2} and r_{3}.

The rank of an $r \times s$ matrix is thus at $\operatorname{most} \min (r, s)$. In the case of equality, we say the matrix has full rank. A ratings matrix, such as A in Section 1.2.2, should be of full rank, since there presumably are no exact dependencies among users or items.

2.2 Partitioned Matrices

It is often helpful to partition a matrix into blocks (often called tiles in the parallel computation community).

2.2.1 How It Works

Consider matrices A, B and C,

$$
A=\left(\begin{array}{ccc}
1 & 5 & 12 \tag{2.2}\\
0 & 3 & 6 \\
4 & 8 & 2
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ccc}
0 & 2 & 5 \tag{2.3}\\
0 & 9 & 10 \\
1 & 1 & 2
\end{array}\right),
$$

so that

$$
C=A B=\left(\begin{array}{ccc}
12 & 59 & 79 \tag{2.4}\\
6 & 33 & 42 \\
2 & 82 & 104
\end{array}\right) .
$$

We could partition A as, say,

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \tag{2.5}\\
A_{21} & A_{22}
\end{array}\right)
$$

where

$$
\begin{align*}
& A_{11}=\left(\begin{array}{ll}
1 & 5 \\
0 & 3
\end{array}\right), \tag{2.6}\\
& A_{12}=\binom{12}{6} \tag{2.7}\\
& A_{21}=\left(\begin{array}{ll}
4 & 8
\end{array}\right) \tag{2.8}
\end{align*}
$$

and

$$
\begin{equation*}
A_{22}=(2) . \tag{2.9}
\end{equation*}
$$

Similarly we would partition B and C into blocks of a compatible size to A,

$$
\begin{align*}
& B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \tag{2.10}\\
& C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right), \tag{2.11}
\end{align*}
$$

so that for example

$$
B_{21}=\left(\begin{array}{ll}
1 & 1 \tag{2.12}
\end{array}\right) .
$$

The key point is that multiplication still works if we pretend that those submatrices are numbers! For example, pretending like that would give the relation

$$
\begin{equation*}
C_{11}=A_{11} B_{11}+A_{12} B_{21}, \tag{2.13}
\end{equation*}
$$

which the reader should verify really is correct as matrices, i.e. the computation on the right side really does yield a matrix equal to C_{11}.

2.2.2 Important Special Case: Matrix Times Vector

Consider the product of a matrix and a vector, $A x$. This product is a linear combination of the columns of A. To see this, write

$$
\begin{equation*}
A=\left(A_{1}, A_{2}, A_{3}\right) \tag{2.14}
\end{equation*}
$$

with A_{i} being the $i^{\text {th }}$ column, and

$$
x=\left(\begin{array}{l}
x_{1} \tag{2.15}\\
x_{2} \\
x_{3}
\end{array}\right)
$$

The point is that (2.14) looks like a row vector - it isn't, but we pretend it is - so that $A x$ looks like the "dot product of one vector with another. That would give us

$$
\begin{equation*}
A x=x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3} \tag{2.16}
\end{equation*}
$$

As noted, we then "unpretend," and find that (2.16) says that
$A x$ is a linear combination of the columns of A. The coefficients in that linear combination are the elements of x.

2.2.3 Example: Matrix Factorization

Recall the relation

$$
\begin{equation*}
A \approx W H \tag{2.17}
\end{equation*}
$$

in Section 1.2.2, where A is $r \times s, W$ is $r \times m$ and H is $m \times s$. Partition the first and third matrices into rows, i.e. write

$$
A=\left(\begin{array}{c}
a_{1} \tag{2.18}\\
\ldots \\
a_{r}
\end{array}\right)
$$

and

$$
H=\left(\begin{array}{c}
h_{1} \tag{2.19}\\
\ldots \\
h_{m}
\end{array}\right)
$$

so that for instance a_{1} and h_{1} are the first row in A and H, respectively.
Keep W unpartitiond:

$$
W=\left(\begin{array}{ccc}
w_{11} & \ldots & w_{1 m} \tag{2.20}\\
\ldots & \ldots & \ldots \\
w_{r 1} & \ldots & w_{r m}
\end{array}\right)
$$

Using the partitioning idea, write $W H$ as a "matrix-vector product":

$$
W H=\left(\begin{array}{ccc}
w_{11} & \ldots & w_{1 m} \tag{2.21}\\
\ldots & \ldots & \ldots \\
w_{r 1} & \ldots & w_{r m}
\end{array}\right)\left(\begin{array}{c}
h_{1} \\
\ldots \\
h_{m}
\end{array}\right)=\left(\begin{array}{c}
w_{11} h_{1}+\ldots+w_{1 m} h_{m} \\
\ldots \\
w_{r 1} h_{1}+\ldots+w_{r m} h_{m}
\end{array}\right)
$$

Look at that! What it says is row i of $W H$, and thus approximately row i of A, is a linear combination of the rows of H. And with a different partitioning, we'd find that each column of $W H$ is a linear combination of the columns of H. We'll see in Chapter 4 that this has big implications for the matrix factorization method of RS, a topic we lay the groundwork for next.

2.3 The Notion of Approximate Rank: Principal Components Analysis

Suppose the matrix in (2.1) had been

$$
M=\left(\begin{array}{rrrr}
1 & 5 & 1 & -2 \tag{2.22}\\
8.02 & 2.99 & 2 & 8.2 \\
9 & 8 & 3 & 6
\end{array}\right)
$$

Intuitively, we still might say that the rank of M is "approximately" 2 . Or better yet, row 3 still seems redundant, Let's formalize that, leading to one of the most common techniques in statistics/machine learning. By the way, this technique will also later provide a way to find W and H in (4.1).
(Warning: This section will be somewhat long, but quite central to RS/ML.)

2.3.1 Dimension Reduction

One of the major themes in computer science is scale, as in the common question, "Does it scale?" The concern is, does an algorithm, method or whatever work well in large-scale systems?

In the RS context, just think of, say, Amazon. The business has millions of users and millions of items. In other words, the ratings matrix has millions of rows and millions of columns, and even one million rows and columns would mean a total number of $\left(10^{6}\right)^{2}=10^{12}$ entries, about 8 terabytes of data.

This is a core point in statistics/machine learning, the notion of dimension reduction. In complex applications, there is a pressing need to reduce the number of variables down to a manageable number - manageable not only in terms of computational time and space, but also the statistical problem of overfitting (Chapter 3).

So we need methods to eliminate redundant or near-redundant data, such as row 3 in 2.22 .

2.3.2 Exploiting Correlations

Statistically, the issue is one of correlation. In (2.22), the third row is highly correlated with (the sum of) the first two rows. To explore the correlation idea further, here are two graphs of bivariate normal densities:

Let's call the two variables X_{1} and X_{2}, say human height and weight, with the corresponding axes
in the graphs to be referred to as t_{1} and t_{2}. The first graph was generated with a correlation of 0.2 between the two variables, while in the second one, the correlation is 0.8 .

Not surprisingly due to the high correlation in the second graph, the "two-dimensional bell" is concentrated around a straight line, specifically the line $t_{2}=-t_{1}$. In other words, there is high probability that $X_{2} \approx-X_{1}$, so that X_{2} is largely redundant. So:

To a large extent, there is only one variable here, X_{1} (or other choices, e.g. X_{2}), not two.

In the case of correlation 0.2 , there really are two separate variables. The probability that $X_{2} \approx-X_{1}$ is lower here.

Note one more time, though, the approximate nature of the approach we are developing. There really are two variables even in that correlation 0.8 example. By using only one of them, we are relinquishing some information. But with the need to avoid overfitting, use of the approximation may be a net win for us.

Well then, how can we determine a set of near-redundant variables, so that we can consider omitting them from our analysis? Let's look at those graphs a little more closely.

Any level set in the above graphs, i.e. a curve one obtains by slicing the bells parallel to the $\left(t_{1}, t_{2}\right)$ plane can be shown to be an ellipse. As noted, the major axis of the ellipse will be the line $t_{1}+t_{2}=0$. The minor axis will be the line perpendicular to that, $t_{1}-t_{2}=0$. In turn, that means that standard probability methods can then be used to show that the variables

$$
\begin{equation*}
Y_{1}=X_{1}+X_{2} \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{2}=X_{1}-X_{2} \tag{2.24}
\end{equation*}
$$

have 0 correlation. Then we have a good case for using only Y_{1} in our data analysis, instead of using X_{1} and X_{2}.

But why not use just X_{1} ? As usual in statistics/ML, things get more complicated in higher dimensions. In choosing variables to retain in our analysis, it makes sense to require that they be uncorrelated, as Y_{1} and Y_{2} are above; if not, intuitively there is some redundancy among them, which of course is what we are hoping to avoid. Remember, we want to reduce the number of variables we'll work with, and redundancy would say that we might be able to reduce further.

With that in mind, now suppose we have p variables, $X_{1}, X_{2}, \ldots, X_{p}$, not just two. If our data is on people, these variables may be height, weight, age, gender and so on. We can no longer visualize in higher dimensions, but one can show that the level sets will be p-dimensional ellipsoids. These now have p axes rather than just two, and we can define p new variables, $Y_{1}, Y_{2}, \ldots, Y_{p}$ from the X_{i}, such that:
(a) The Y_{i} are uncorrelated.
(b) They are ordered in terms of variance:

$$
\begin{equation*}
\operatorname{Var}\left(Y_{1}\right)>\operatorname{Var}\left(Y_{2}\right)>\ldots>\operatorname{Var}\left(Y_{p}\right) \tag{2.25}
\end{equation*}
$$

Now we have a promising solution to our dimension reduction problem. In [(b)] above, we can choose to use just the first few of the Y_{i}, omitting the ones with small variance since they are essentially constants, uninformative. And again, since the Y_{i} will be uncorrelated, we are eliminating a source of possible redundancy among them.

PCA won't be a perfect solution - there is no such thing - as might be the case if the relations between variables is nonmonotonic. A common example is age, with mean income given age tending to be a quadratic (or higher degree) polynomial relation. But PCA is a very common "go to" method for dimension reduction, and may work well even in (mildly) nonmonotonic settings.

Now, how do we find these Y_{i} ?

2.3.3 Eigenanalysis

Say I have a sample of n observations on two variables, $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right.$, say height and weight on $n=100$ people. Then, formally, the correlation between the variables is

$$
\begin{equation*}
\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\text { s.d. }(x) \text { s.d. }(y)} \tag{2.26}
\end{equation*}
$$

where the denominator is the product of the sample standard deviations of the two variables, and \bar{x}) and \bar{y}) are the sample means. The correlation is a number between -1 and 1 .

The correlation matrix C - i.e. the set of all $\operatorname{corr}\left(X_{i}, X_{j}\right)$ - of a set of p variables is $p \times p$, i.e. square. Moreover, since $\operatorname{corr}\left(X_{i}, X_{j}\right)=\operatorname{corr}\left(X_{j}, X_{i}\right), C$ is symmetric:

$$
\begin{equation*}
C^{\prime}=C \tag{2.27}
\end{equation*}
$$

where ' denotes matrix transpose.
Recall that for any square matrix L, if there is a scalar λ and a nonzero vector x such that

$$
\begin{equation*}
L x=\lambda x \tag{2.28}
\end{equation*}
$$

then we say that x is an eigenvector of L, with eigenvalue λ. (Note that the above implies that x is a column vector, $p \times 1$, a convention we will use throughout the book.)

It can be shown that any symmetric matrix has real (not complex) eigenvalues, and that the corresponding eigenvectors U_{1}, \ldots, U_{p} are orthogonal,

$$
\begin{equation*}
U_{i}^{\prime} U_{j}=0, i \neq j \tag{2.29}
\end{equation*}
$$

We always take the U_{i} to have length 1: Just divide the vector by its length, so it now has length 1 , and is still an eigenvector.

2.3.4 PCA

Typically we have many cases in our data, say n, arranged in an $n \times p$ matrix Q, with row i representing case i and column j representing the $j^{\text {th }}$ variable.

Say our data is about people, 1000 of them, and we have data on height, weight, age, gender, years of schooling and income. Then $n=1000, p=6$.

So, finally, here is PCA:

1. Find the correlation matrix (or covariance matrix, a similar notion) from the data in Q. Note again that since there are p variables, the correlation matrix will be $p \times p$.
2. Compute its eigenvalues and eigenvectors. It can be shown that the eigenvalues are the variances of our new variables.
3. After ordering the eigenvalues from largest to smallest, let λ_{i} be the $i^{\text {th }}$ largest, and let U_{i} be the corresponding eigenvector, scaled to have length 1.
4. Let U be the matrix whose $i^{\text {th }}$ column is U_{i}. Its size will be $p \times p$.
5. Choose the first few eigenvalues, say s of them, using some criterion (see below). Denote the matrix of the first s columns of U by $U^{(s)}$.
6. Form a new data matrix,

$$
\begin{equation*}
R=Q U^{(s)} \tag{2.30}
\end{equation*}
$$

R will be of size $n \times s$. So, we've replaced our original p variables, the p columns of Q, by s new variables, the columns of R. Column j of R is called the $j^{\text {th }}$ principal component of the original data.
As mentioned, it can be shown that the variance of the $j^{\text {th }}$ principal component is λ_{j}. The sum of all p eigenvalues is the same as the sum of the variances of the original variables, an important point.

From this point onward, any data analysis we do will be with R, not Q. In R, row i is still data on the $i^{\text {th }}$ case, e.g. the $i^{\text {th }}$ person, but now with s new variables in place of the original p. Since typically $s \ll p$, we have achieved considerable dimension reduction.

2.3.5 Applying Matrix Partitioning

Using the approach of Section 2.2, partition $U^{(s)}$ into its columns,

$$
\begin{equation*}
U^{(s)}=\left(U_{1}, \ldots, U_{s}\right) \tag{2.31}
\end{equation*}
$$

and thus write

$$
\begin{equation*}
R=Q U^{(s)}=Q\left(U_{1}, \ldots, U_{s}\right) \tag{2.32}
\end{equation*}
$$

After that second equality, pretend that Q and the U_{i} are "numbers." Then the last expression in (2.32),

$$
\begin{equation*}
Q\left(U_{1}, \ldots, U_{s}\right) \tag{2.33}
\end{equation*}
$$

is a "scalar" times a "vector," and is thus equal to

$$
\begin{equation*}
\left(Q U_{1}, \ldots, Q U_{s}\right) \tag{2.34}
\end{equation*}
$$

So, the $i^{\text {th }}$ column of R is $Q U_{i}$. The latter quantity is of the $A x$, matrix-times-vector form of Section 2.2.3, so it is a linear combination of the columns of Q, with the coefficients in that linear combination being the elements in U_{i}.

Recall that each column of Q is one variable; e.g. for people, there may be an age column, a height column, a weight column and so on. Each column in R is one of our new variables. Therefore:

The $i^{\text {th }}$ new variable is equal to a linear combination of the old variables.

So, a new variable might be, say, 1.9 age +0.3 height +1.2 weight.

2.3.6 Choosing the Number of Principal Components

The number of components we use, s, is called a tuning parameter or hyperparameter. So, how do we choose s ? This is the hard part, and there is no universal good method. Typically s is chosen so that

$$
\begin{equation*}
\sum_{j=1}^{s} \lambda_{j} \tag{2.35}
\end{equation*}
$$

is "most" of total variance (again, that total is the above expression with p instead of s), but even this is usually done informally.

In ML/RS settings, though, s is typically chosen by a technique called cross validation, to be discussed in Chapter 3 .

2.3.7 Software and Example

The most commonly used R function for PCA is $\operatorname{prcomp}()$. As with many R functions, it has many optional arguments; we'll take the default values here.

For our example, let's use the Turkish Teaching Evaluation data, available from the UC Irvine Machine Learning Data Repository. It consists of 5820 student evaluations of university instructors. Each student evaluation consists of answers to 28 questions, each calling for a rating of 1-5, plus some other variables we won't consider here.

```
turk <- read.csv('turkiye-student-evaluation.csv',header=T)
> head(turk)
    instr class nb.repeat attendance difficulty Q1 Q2 Q3 Q4
1 1 1 2 1 1 0
2 1, 1
```

5		1		2			1			0			1	1	1
6		1		2			1			3			4	4	44
	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19
1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
6	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	Q20	Q2	21	Q22	Q23	Q24	Q25	Q26	Q27	Q28					
1	3		3	3	3	3	3	3	3	3					
2	3		3	3	3	3	3	3	3	3					
3	5		5	5	5	5	5	5	5	5					
4	3		3	3	3	3	3	3	3	3					
5	1		1	1	1	1	1	1	1	1					
6	4		4	4	4	4	4	4	4	4					
	tpc	a <	<- p	prc	mp	turk	[, - (1:5)							

Let's explore the output. First, the standard deviations of the new variables:

```
> tpca$sdev
    [1] 6.1294752 1.4366581 0.8169210}00.7663429 0.6881709 (%
    [6] 0.6528149 0.5776757 0.5460676 0.5270327
[11] 0.4776421 0.4714887 0.4449105 0.4364215 0.4327540
[16] 0.4236855 0.4182859 0.4053242 0.3937768 0.3895587
```



```
[26] 0.3312691 0.2979928 0.2888057
> tmp <- cumsum(tpca$sdev^2)
> tmp / tmp[28]
    [1] 0.8219815 0.8671382 0.8817389 0.8945877 0.9049489
    [6] 0.9142727 0.9215737}00.9280977 0.9341747 0.9392732
[11] 0.9442646 0.9491282 0.9534589 0.9576259 0.9617232
[16] 0.9656506 0.9694785 0.9730729 0.9764653 0.9797855
[21] 0.9827925 0.9857464 0.9886104 0.9913333 0.9938314
[26] 0.9962324 0.9981752 1.0000000
```

This is striking. The first principal component (PC) already accounts for 82% of the total variance among all 28 questions. The first five PCs cover over 90%. This suggests that the designer of the evaluation survey could have written a much more concise survey instrument with almost the same utility.

Now keep in mind that each PC here is essentially a "super-question" capturing student opinion

2.3. THE NOTION OF APPROXIMATE RANK: PRINCIPAL COMPONENTS ANALYSIS 25

via a weighted sum of the original 28 questions. Let's look at the first two PCs' weights:

> tpca\$rotation $[, 1]$				
Q1	Q2	Q3	Q4	Q5
-0.1787291	-0.1869604	-0.1821853	-0.1841701	-0.1902141
Q6	Q7	Q8	Q9	Q10
-0.1870812	-0.1878324	-0.1867865	-0.1823915	-0.1923626
Q11	Q12	Q13	Q14	Q15
-0.1866948	-0.1862382	-0.1922729	-0.1911814	-0.1902380
Q16	Q17	Q18	Q19	Q20
-0.1962885	-0.1808833	-0.1935788	-0.1927359	-0.1931985
Q21	Q22	Q23	Q24	Q25
-0.1911060	-0.1908591	-0.1948393	-0.1931334	-0.1888957
Q26	Q27	Q28		
-0.1908694	-0.1897555	-0.1886699		

Q1	Q2	Q3	Q4	Q5
0.35645673	0.23223504	0.11551155	0.24533527	0.20717759
Q6	Q7	Q8	Q9	Q10
0.20075314	0.24290761	0.24901577	0.12919618	0.18911720
Q11	Q12	Q13	Q14	Q15
0.11051480	0.21203229	-0.10616030	-0.15629705	-0.15533847
Q16	Q17	Q18	Q19	Q20
-0.04865706	-0.26259518	-0.12905840	-0.15363392	-0.19670071
Q21	Q22	Q23	Q24	Q25
-0.22007368	-0.22347198	-0.10278122	-0.06210583	-0.20787213
Q26	Q27	Q28		
-0.12045026	-0.07204024	-0.21401477		

The first PC turned out to place approximately equal weights on all 28 questions. The second PC, though, placed its heaviest weight on Q1, with substantially varying weights on the other questions.

While we are here, let's check that the columns of U are orthogonal.

```
> t(tpca$rotation [, 1]) %*% tpca$rotation [, 2]
    [,1]
[1,] -2.012279e-16
```

Yes, 0 (with roundoff error). As an exercise in matrix partitioning, the reader should run

```
t(tpca$rotation) %*% tpca$rotation
```

then check that it produces the identity matrix I, then ponder why this should be the case.

2.3.8 More on the PC Coefficients

There is more to consider.
Do the PC coefficients have any interpretation? The answer is probably no for ordinary people, but for the domain experts, very possibly yes. In the teaching evaluation example above, a specialist in survey design or teaching methods may well be able to interpret the dominance of Q1 in the second PC. A method called factor analysis, an extension of PCA, is popular in social science research.

For the rest of us, PCA is just a handy way to do dimension reduction.
But there is geometric terminology that will be helpful, as follows. Let's look at the mlb dataset from the regtools package. This is data on Major League baseball players.

	Name	Team	Position	Height	Weight	Age
1	Adam_Donachie	BAL	Catcher	74	180	22.99
2	Paul_Bako	BAL	Catcher	74	215	34.69
3	Ramon_Hernandez	BAL	Catcher	72	210	30.78
4	Kevin_Millar	BAL	First_Baseman	72	210	35.43
5	Chris_Gomez	BAL	First_Baseman	73	188	35.71
6	Brian_Roberts	BAL	Second_Baseman	69	176	29.39
	PosCategory					
1	Catcher					
2	Catcher					
3	Catcher					
4	Infielder					

Let's apply PCA:

```
> hw <- as.matrix(mlb[,4:5])
> pcout <- prcomp(hw)
> pcout$rotation
    PC1 PC2
Height -0.05948695 0.99822908
Weight -0.99822908 -0.05948695
```

If we were to plot hw, we would put hw[1,] at the point $(74,1.0)$ on our graph. Recall from high school math that 74 and 180 are called the coordinates of $\mathbf{c o 2}[1$,$] , with respect to our "H axis"$ and "W axis."

But in doing PCA, we are creating new axes, PC1 and PC2, which are rotated versions of the H and W axes. (Hence the naming of the U matrix as "rotation" in the $\operatorname{prcomp}()$ return value.) Let's find the coordinates of $\mathbf{h w}[\mathbf{1 ,}]$ with respect to the new axes:

```
> hw[1,] %*% pcout$rotation
    PC1 PC2
[1,] -184.0833 63.1613
```

So $(74,180)$ has become ($-184.1,63.2$) under the new coordinate system. Let's see what the angle of rotation is. We can do that by seeing where a point on the H axis rotates to.

```
> pc10 <- c(1,0) %*% pcout$rotation
> pc10
    PC1 PC2
[1,] -0.05948695 0.9982291
> (atan(pc10[2] / pc10[1])) * 180/pi
[1] -86.58964
```

Almost 90 degrees clockwise.

2.3.9 Scaling

Some analysts prefer to scale the data before applying PCA. For each column, we would subtract the column mean and divide by hte column standard deviation. The column would now have mean 0.0 and variance 1.0.

The rationale for doing this is that if PCA is applied to the original data, variables with large variance will dominate. And then units would play a role; e.g. a distance variable would have more impact if it were measured in kilometers than miles.

Scaling does solve this problem, but its propriety is questionable. Consider a setting with two features, A and B, with variances 500 and 2 , respectively. Let A^{\prime} and B^{\prime} denote these features after centering and scaling.

As noted, PCA is all about removing features with small variance, as they are essentially constant. If we work with A and B, we would of course use only A. But if we work with A^{\prime} and B^{\prime}, we would use both of them, as they both have variance 1.0.

So, dealing with the disparate-variance problem (e.g. miles vs. kilometers) shouldn't generally be solved by ordinary scaling, i.e. by dividing by the standard deviation. An alternative is to divide each column by its mean. This addresses the miles-vs.-kilometers problem, and makes sense in that a variance is large or small in relation to its mean.

2.4 Vector Norms

In math, the l_{p} norm of a vector in n-dimensional space is defined by

$$
\begin{equation*}
\|x\|_{p}=\left(\sum_{i=1}^{n}\left[\left.x_{i}\right|^{p}\right)^{1 / p}\right. \tag{2.36}
\end{equation*}
$$

This is actually a family of norms, for $1 \leq p \leq \infty$ You are familiar with the Euclidean norm, $p=2$. In statistics and machine learning, we are often minimizing the norm of some vector, usually with either $p=1$ or $p=2$.

You will often see the notation L_{p} instead of l_{p}. However, in math the former is used for function spaces, while the latter designates n-dimensional vectors, and we use the latter here.

You will also see references to the Frobenius norm of an $r \times s$ matrix. That is actually just the l_{2} norm, treating the matrix as an $r s$-dimensional vector.

2.5 Handy Facts

- For conformable matrices A and B,

$$
\begin{equation*}
(A B)^{\prime}=B^{\prime} A^{\prime} \tag{2.37}
\end{equation*}
$$

- For invertible and conformable matrices A and B,

$$
\begin{equation*}
(A B)^{-1}=B^{-1} A^{-1} \tag{2.38}
\end{equation*}
$$

- The R functions $t()$ and solve() find the transpose and inverse of their matrix arguments. A more numerically stable function for inversion is $\mathbf{q r}()$.

[^1]
Chapter 3

Some Infrastructure: Probability and Statistics

Many RS methods are probabilistic in nature, so we will lay out some infrastructure. It is assumed the reader has a background in calculus-based probability structures, such as expected value and density functions. Background in statistics (as opposed to probability) and machine learning is not assumed 1

Note that while we will develop some statistical methods here, notably regression and classification models, we will not cover inferential statistical methods such as confidence intervals and significance tests. For readers familiar with such topics, occasional footnotes will be provided.

Other than laying some groundwork, e.g. introducing the term dummy variables, the primary goal of this chapter will be to discuss the issue of overfitting.

3.1 Data as a Sample

In statistics, the data are usually considered a sample from a population. For instance, during an election campaign pollsters will take a sample, typically of 1200 people, from the population of all voters. Say they are interested in p, the population proportion of voters favoring Candidate Jones. They calculate their estimate of p, denoted \widehat{p}, to be the proportion of voters in the sample who like Jones.

[^2]Sometimes the notion of sampling is merely conceptual. Say for instance we are studying hypertension, on data involving 1000 patients. We think of them as a sample from the population of all sufferers of hypertension, even though we did not go through an actual sampling process.

In RS contexts, this means that we treat the users in our dataset as a sample from the conceptual population of all potential users. We may even treat the items as a sample from a conceptual population of all possible items.

In machine learning circles, it is not customary to think explicitly in terms of populations, samples and estimates. Nevertheless, it's implied, as ML people do talk about predicting new data from the model fitted on the original data. For the model to be useful, the new data needs to come from the same source as the original - what statisticians call a population.

We will usually think in terms of sample data here.

3.2 Probability, Expected Value and Variance

We will speak in terms of a repeatable experiment, which again could be physical or conceptual.
We think of probability as the long-run proportion of the time some event occurs. Say we toss a fair coin. What do we mean by $P($ heads $=0.5)$? Here our repeatable experiment is tossing the coin. If we were to perform that experiment many times - ideally, infinitely many times - then in the long run, 50% of the repetitions would give us heads.

Now suppose our experiment, say a game, is to keep tossing a coin until we get three consecutive heads. Let X denote the number of tosses needed. Then for instance $P(X=4)=0.5^{4}=0.0625$ (we get a tail then three heads). Imagine doing this experiment infinitely many times: We toss the coin until we get three consecutive heads, and record X; we toss the coin until we get three consecutive heads, and record X; we toss the coin until we get three consecutive heads, and record X; and so on. This would result in infinitely many X values. Then in the long run, 6.25% of the X values would be 4 .

The expected value $E(X)$ of a random variable X is its long-run average value over infinitely many repetitions of the experiment. In that 3 -consecutive heads game above, it can be shown that $E(X)=14.7$. In other words, if we were to play the game infinitely many times, yielding infinitely X values, their long-run average would be 14.7.

If there is no danger of ambiguity, we usually omit the parentheses, writing $E X$ instead of $E(X)$.
The variance of a random variable is a measure of its dispersion, i.e. how much it varies from one repetition to the next. It is defined as $\operatorname{Var}(X)=E\left[(X-E X)^{2}\right]$.

Say we have a population of people and our our experiment is to randomly draw one person from
the population, denoting that person's height by H. Then intuitively, $E H$ will be the mean height of all the people in the population, traditionally written as μ.

3.3 Regression Models

Regression models, both parametric and nonparametric, form the very core of statistics and machine learning (ML). Their importance cannot be overemphasized. ${ }^{2}$

3.3.1 Definition

Suppose we are predicting a variable Y from a vector X of variables, say predicting human weight from the vector (height,age). The regression function at $t=\left(t_{1}, t_{2}\right)$ of Y on X is defined to be the mean weight of all people in the subpopulation consisting of all people of height t_{1} and age t_{2}.

Let W, H and A denote weight, height and age. We write the regression function as the conditional expectation of W given H and A,

$$
\begin{equation*}
E\left(W \mid H=t_{1}, A=t_{2}\right) \tag{3.1}
\end{equation*}
$$

If, say $E(W \mid H=70, A=28)=162$, it means that the mean weight of all people in the subpopulation consisting of 28 -year-olds of height 70 is 162 .

Note that in (3.1), the expression has a different value for each $\left(t_{1}, t_{2}\right)$ pair. So it is a function of t_{1} and t_{2}. This is why it is called the regression function of W on H and A.

Terminology: It is common to refer to W here at the response variable and H and A as the predictor variables. The latter may also be called explanatory variables (in economics and other social sciences) or features (in ML).

3.3.2 Prediction

Say we have a person whose height and age are 70 and 28 , but with unknown weight. It can be shown that the optimal (under a certain criterion) predictor of her weight is the value of the regression function at $(70,28), E(W \mid H=70, A=28)=162$. It is optimal in the sense of minimizing expected squared prediction error.

[^3]
3.3.3 Estimation

The regression function is an attribute of the population. Yet all we have is sample data. How do we estimate the regression function from our data?

3.3.3.1 Nonparametric

Intuitively, we could use a nearest-neighbor approach. To estimate $E(W \mid H=70, A=28)$, we could find, say, the 25 people in our sample for whom (H, A) is closest to $(70,28)$, and average their weights to produce our estimate of $E(W \mid H=70, A=28)$.

This kind of approach is common in ML. The famous random forests method is basically a more complex form of kNN, as we will see in Chapter 7 .
Statisticians also use methods like kNN. In fact, kNN and random forests were invented by statisticians. But more commonly, statistics uses parametric methods, as follows.

3.3.3.2 Parametric

The basic idea is to assume the regression function is linear in parameters β_{i}, e.g.

$$
\begin{equation*}
\text { mean weight }=\beta_{0}+\beta_{1} \text { height }+\beta_{2} \text { age } \tag{3.2}
\end{equation*}
$$

for some unknown values of the β_{i}.
Make sure to take careful note of the word "mean"! Clearly, the weights of individual people are not linear functions of their height and age.

As noted, the β_{i} are unknown, and need to be estimated from our sample data. The estimates will be denoted $\widehat{\beta}_{i}$. They are obtained by minimizing a certain sum of squares, to be discussed in Section 3.3.5.

By the way, if the reader is familiar with the ML methodology known as neural networks, she may be surprised that this technique is also parametric. Again, more in Chapter 7.

3.3.3.3 Comparison

Consider (3.2), our model for the function of t_{1} and t_{2}

$$
\begin{equation*}
E\left(\text { weight } \mid \text { height }=t_{1} \text {, age }=t_{2}\right) \tag{3.3}
\end{equation*}
$$

With the linear assumption (3.2), we will be estimating three quantities, the β_{i}. But with a nonparametric approach, we are estimating infinitely many quantities, one for each value of the $\left(t_{1}, t_{2}\right)$ pair.

In other words, parametric methods are a form of dimension reduction. On the other hand, this reduction comes at the expense of relying on the assumption of linearity in (3.2). However, this is not so restrictive as it may seem, because:

- There are ways to assess the validity of the assumption. This is covered in almost any book on regression, such as mine (N. Matloff, Statistical Regression and Classification: from Linear Models to Machine Learning, CRC, 2017).
- One can add polynomial terms, as seen in the next section.
- Assumptions tend to be less important in prediction contexts than in estimation. In the RS context, for instance, a rough model may be fine if we wish to take into account gender in predicting ratings, but might be insufficient if we want to estimate the actual magnitude of gender effect.

3.3.4 The $\operatorname{lm}()$ Function in R

In R, the workhorse regression estimator is the $\operatorname{lm}()$ function. Let's apply this to the MovieLens data, predicting rating from age and gender.

Warning: There are various different versions of the MovieLens data. Your version may yield different results than what you see in this book.

We'll define gender as 1 for male, 0 for female. We find (details below) that our estimated regression function of rating on age and gender is

$$
\begin{equation*}
\text { estimated mean rating }=3.3599+0.005311 \text { age }-0.0069 \text { gender } \tag{3.4}
\end{equation*}
$$

(Note the word estimated! These are not the true unknown population values, just estimates based on sample data.)

Actually, this shows that age and gender are pretty weak predictors of movie rating, which you will recall is on a scale of 1 to 5 . A 10-year difference in age raises the predicted rating only by about 0.05 ! The effect of gender is small too. And while it is interesting to see that older people tend to give slighly higher ratings, as do women, we must keep in mind that the magnitude of the effect here is small 3^{3} Of course, the gender effect may be large in other RS datasets.

[^4]Here is the annotated code:

```
# read (user,item,rating,transID) data; name the columns
ratings <- read.table('u.data')
names(ratings) <- c('usernum','movienum','rating','transID')
# read demographic data
demog <- read.table('u.user',sep='|')
names(demog) <- c('usernum','age','gender','occ',',ZIP')
# merge (database 'join' op)
u.big <- merge(ratings,demog,by.x=1,by.y=1)
u <- u.big[,c(1,2,3,5,6)]
# fit linear model
lmout <- lm(rating ~ age+gender,data=u)
```

Here's the output:

```
> lmout
```

Call:
lm(formula $=$ rating \sim age + gender, data $=u)$
Coefficients:
(Intercept) age genderM
$3.359894 \quad 0.005311 \quad-0.006904$

Let's take a closer look at that genderM coefficient $]^{4}$ Take for instance 28 -year-old men and women; what are their mean ratings, according to this model?

```
> lmout$coef %*% c(1,28,1)
    [,1]
[1,] 3.50169
> lmout$coef %*% c(1,28,0)
    [,1]
[1,] 3.508593
```

(Note that the first ' 1 ' is needed to pick up the 3.359894.)

[^5]So, on average, 28-year-old women give ratings 3.508593-3.50169 $=0.006903$ higher than men of that age. And except for roundoff error, that is the -0.006904 value was see in the output above.

3.3.5 Details of Linear Regression Estimation

In the weight-height-age example, say, we form

$$
\begin{equation*}
r=\sum_{i=1}^{n}\left[W_{i}-\left(b_{0}+b_{1} H_{i}+b_{2} A_{i}\right)\right]^{2} \tag{3.5}
\end{equation*}
$$

where W_{i} is the weight of the $\mathrm{i}^{\text {th }}$ person in our sample data and so on. This is the sum of squared prediction errors. We take derivatives with respect to the b_{k} to minimize, then set $\widehat{\beta}_{k}$ to the minimizing b_{k}.

Though R will do the minimizing for us, it is worth having an idea how it works, especially as more practice in following matrix-centric derivations. To get a glimpse of this, we look at a matrix formulation, as follows. Let A denote the matrix of predictor values, with a 1 s column tacked on at the left. In the above example, row 12 , say, of A would consist of a 1 , followed by the height and age of the $12^{\text {th }}$ person in our sample. Let D denote the vector of weights, so that D_{12} is the weight of the $12^{\text {th }}$ person in our sample. Finally, let b denote the vector of the b_{k}. Say we have data on 100 people. Then A will have 100 rows, and D will have length 100 .

Use the above as a concrete guide to your thinking, but keep in mind the general case: If we have p predictors and n data points, then A and D will have sizes $n \times(p+1)$ and n

Then

$$
\begin{equation*}
r=(D-A b)^{\prime}(D-A b) \tag{3.6}
\end{equation*}
$$

(Write it out to see this. Doing so will be crucial to understanding the material below and many points in the rest of the book.)
Write the gradient of r with respect to b,

$$
\begin{equation*}
\frac{\partial r}{\partial b}=\left(\frac{\partial r}{\partial b_{0}}, \frac{\partial r}{\partial b_{1}}, \ldots, \frac{\partial r}{\partial b_{p}}\right)^{\prime} \tag{3.7}
\end{equation*}
$$

where $p+1$ is the number of predictor variables 5

[^6]It can be shown that for a vector u,

$$
\begin{equation*}
\frac{\partial u^{\prime} u}{\partial u}=2 u \tag{3.8}
\end{equation*}
$$

(analogous to the scalar relations $d\left(u^{2}\right) / d u=2 u$; again, this is seen by writing the expressions out). Setting $u=D-A b$ and applying the Chain Rule (adapted for gradients), we get

$$
\begin{equation*}
\frac{\partial r}{\partial b}=\frac{\partial r}{\partial u} \frac{\partial u}{\partial b}=2(D-A b) \frac{\partial(D-A b)}{\partial b}=2\left(-A^{\prime}\right)(D-A b) \tag{3.9}
\end{equation*}
$$

Setting the gradient to 0 and solving for b, we have

$$
\begin{equation*}
0=A^{\prime} D-A^{\prime} A b \tag{3.10}
\end{equation*}
$$

so that the minimizing b, giving us $\widehat{\beta}$, is

$$
\begin{equation*}
b=\left(A^{\prime} A\right)^{-1} A^{\prime} D \tag{3.11}
\end{equation*}
$$

This famous formula is what $\operatorname{lm}()$ computes in finding the $\widehat{\beta}_{k}$.
Note that we cannot simply multiply both sides of 3 by $\left(A^{\prime}\right)^{-1}$, as A^{\prime} is nonsquare and thus noninvertible.

Note too that in our age/gender MovieLens example above, we should not have variables for both male and female. If we did, we have

$$
A=\left(\begin{array}{rrrr}
1 & A_{1} & M_{1} & F_{1} \tag{3.12}\\
1 & A_{2} & M_{2} & F_{2} \\
\ldots & & & \\
1 & A_{100000} & M_{100000} & F_{100000}
\end{array}\right)
$$

where A_{i} is the age of the $i^{\text {th }}$ person in our data, and one of M_{i} and F_{i} is 1 and the other 0 , according to the gender of this person. (Recall that there are 100000 data points in tis dataset.) The problem is this: The third and fourth columns of A would then sum to a vector of all 1 s , the same as in the first column. So the columns of A will be linearly dependent, and the rank will be 3 instead of 4 . The same will then be true for $A^{\prime} A$, so that $\left(A^{\prime} A\right)^{-1}$ will not exist in 3.11).

In other words, not only would the F column be unnecessary, it would be prolematic.

3.3.5.1 Polynomial Terms

People tend to gain weight during middle age, but often they lose weight when they become elderly. So (3.2), which is linear in the age variable, may be rather unrealistic; we might believe a quadratic model for mean weight as a function of age is better:

$$
\begin{equation*}
\text { mean weight }=\beta_{0}+\beta_{1} \text { height }+\beta_{2} \text { age }+\beta_{3} \text { age }^{2} \tag{3.13}
\end{equation*}
$$

A key point is that this is still a linear model! When we speak of a linear model - the 'l' in " $\operatorname{lm}()$ " - we mean linear in the β_{i}. If in (3.13) we, say, multiply all the β_{i} by 3 , the entire sum grows by a factor of 3 , hence the linearity in the β_{i}.

Of course we may wish to add a quadratic term for height as well, and for that matter, a product term height \times age. And since any model is merely an approximation, we might consider using higher and higher order polynomials. We do have to worry about overfitting though; see Section 3.4

We'll have a long example in Section 3.5.

3.3.6 Categorical Variables (Predictor, Response)

A categorical variable is one that codes categories. In our RS context, for instance, a user's postal code - ZIP Code, in the US - may be a helpful predictor of a rating. Yet it cannot be treated in $\operatorname{lm}()$, say as a numeric variable. After all, the ZIP Code 90024, for example, is not "twice as good" as 45002; they are just ID codes.

3.3.6.1 Dummy Variables as Predictors

So, what do we do if we wish to use a categorical variable as a predictor? The answer is that we break the variable into a set of indicator variables, colloquially known as dummy variables. These have the values 1 and 0 , with 1 indicating the trait in question, 0 meaning not.

Say for instance in RS we have the categorical variable State for users in a US state. We would define 50 dummy variables, one for each state. For instance, the one for California would have the value 1 if the user lives in California, 0 otherwise.

Note carefully though that we would only use 49 of the dummies, not 50 . We could for instance exclude Wyoming. Why? Because if the other 49 dummies are all 0 , then we know this user must be in Wyoming. The Wyoming dummy would then be redundant. Not only do we want to avoid redundancy on dimension reduction grounds, but also that redundancy would result in the matrix A in (3.11) being less than full rank, so $\left(A^{\prime} A\right)^{-1}$ would not exist.

Categorical variables in R :

In R, categorical variables are stored as objects of the class 'factor'. The latter is a class designed specifically for representing categorical data. It consists of integer codes for the categories, with character-string names. The various categories are called levels.

For example, say we are dealing with eye color, and that the only colors are brown, blue and green, and have data on four people:

```
> s <- c('brown','blue','green','blue')
> class(s)
[1] "character"
> sf <- as.factor(s)
> levels(sf)
[1] "blue" "brown" "green"
> sf[2]
[1] blue
Levels: blue brown green
> as.numeric(sf)
[1] 2 1 3 1
```

In our MovieLens example above, let's take a look at the data frame demog:

```
> for (i in 1:5)
+ print(class(demog[,i]))
[1] "integer"
[1] "integer"
[1] "factor"
[1] "factor"
[1] "factor"
```

The last three columns are factors ${ }^{6}{ }^{6}$ Let's see how many occupations there are:

```
> levels(demog$occ)
[1] "administrator" "artist" "doctor" "educator"
[5] "engineer" "entertainment" "executive" "healthcare"
[9] "homemaker" "lawyer" "librarian" "marketing"
[13] "none" "other" "programmer" "retired"
[17] "salesman" "scientist" "student" "technician"
[21] "writer"
```

In a regression application, we'd form 21 dummies, but use only 20 of them (any 20).

[^7]However, the designers of R (and its predecessor S), in their wisdom, set things up to save us some time and trouble. We can just specify the factors we wish to use, and R will form the dummies for us, being careful to drop one of them.

This is what happened, for instance, in our example above in which we regressed rating against age and gender, with output

```
Coefficients:
(Intercept) age genderM
3.359894 0.005311 -0.006904
```

R noticed that gender was an R factor, with levels M and F. It created dummies for M and F, but just retained the former, as the first case in the data had gender as M .

So, the estimated coefficient -0.006904 meant that the "maleness" impact on mean rating has that value. Men give slightly lower ratings than women do, for fixed age.

In this manner, the estimated regression coefficient of a dummy variable is the effect, all other predictors fixed, of this trait relative to the excluded trait, say femaleness above.

3.3.6.2 Interaction Terms

Say we are in some RS context in which age and gender are substantial factors in predicting rating. Suppose also that we suspect men become more liberal raters as they age while women become more reserved in their ratings. Then a model like this might work well:

$$
\begin{equation*}
\text { mean rating }=\beta_{0}+\beta_{1} \text { age }+\beta_{2} \text { male }+\beta_{3} \text { age } \times \text { male } \tag{3.14}
\end{equation*}
$$

where male is a dummy variable. To see why this might be appropriate, consider what the above equation reduces to for men and women:
men:

$$
\begin{equation*}
\text { mean rating }=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) \text { age } \tag{3.15}
\end{equation*}
$$

women:

$$
\begin{equation*}
\text { mean rating }=\beta_{0}+\beta_{1} \text { age } \tag{3.16}
\end{equation*}
$$

So the male and female lines have different slopes (and different intercepts), allowing for the differential age effect we surmise. Of course, once we compute the $\widehat{\beta}_{i}$ from the data, it may well turn
out that our differential aging trends may not be confirmed .7
By the way, note how we would fit this model to our data. Our data frame has columns for rating, age and gender. We would then add a new column, computed as the product of the age and gender columns.

The term age \times male is called an interaction term. Note that interaction terms can be formed from any predictor, not just dummy variables. Also, one can form triple products for three-way interactions and so on, though this could greatly increase the complexity of the model and thus risk overfitting.

On the other hand, interaction terms don't make sense in some contexts. In the MovieLens data, we have a column for User 12 and one for User 39 (and many others). How about modeling the interaction between those two users?

On one level, one might immediately say No. Probably these two users don't even know each other. But even more, think of the mechanics. The product of the User 12 and User 39 columns will be all 0s! Intuitively, that would be useless, and mathematically the matrix inversion in (3.11) would be impossible.

3.3.6.3 Dummy Variables as Response Variables

In many cases, the response variable may be categorical. In the RS context, for instance, a rating may simply be binary, i.e. like/dislike. Or even click/not click - does a user click on a Web page location? Let's use this as our example.

We are generally interested in the probability of a click. That actually fits a regression context, as follows. Code a click as 1 and nonclick as 0 . Since the expected value of a variable of this type is the probability of a 1 , and since a regression function by definition is an expected value, taking Click as our response variables does involve a regression function.

So, if our predictors were age and gender, say, we might entertain formulating our regression model as

$$
\begin{equation*}
\text { probability of click }=\beta_{0}+\beta_{1} \text { age }+\beta_{2} \text { gender } \tag{3.17}
\end{equation*}
$$

One problem, though, is that a probability should be in [0,1] yet the right-hand side of (3.17) can conceivably be anywhere in $(-\infty, \infty)$. For this and other reasons the usual parametric model for a

[^8]binary response Y is the logistic: For p predictors X_{i}, our model is
\[

$$
\begin{equation*}
P\left(Y=1 \mid X_{1}=t_{1}, \ldots, X_{p}=t_{p}\right)=\frac{1}{1+\exp -\left(\beta_{0}+\beta_{1} t_{1}+\ldots+\beta_{p} t_{p}\right)} \tag{3.18}
\end{equation*}
$$

\]

This is called a generalized linear model, as it has the linear form $\beta_{0}+\beta_{1} t_{1}+\ldots+\beta_{p} t_{p}$ embedded inside another function, in this case the logistic function $g(s)=1 /\left(1+e^{-s}\right)$.

Note that the latter function, often called logit for short, has values only in [0,1], as desired, and is increasing in s, thus retaining the monotonic notion of linear models .8

The β_{i} are estimated by an R function $\operatorname{glm}()$, similar to $\operatorname{lm}() \cdot 9$ Let's model a user giving a movie a rating of 4 or higher:

```
> r45 <- as.integer(u$rating >= 4) # a binary value, 1 or 0
> u$r45 <- r45
> glmout <- glm(r45 ~ age+gender,data=u,family=binomial)
> glmout
Call: glm(formula = r45 ~ age + gender, data = u)
Coefficients:
(Intercept) age genderM
-0.002510 0.006886 -0.011189
```

The argument family $=$ binomial tells R that we want the logistic model, not some other generalized linear model, such a model known as Poisson regression. ${ }^{10}$

3.3.7 R's predict(), a Generic Function

A key aspect to R's object orientation is generic functions. Take plot(), for instance. Its action will depend on the class of object it is applied to. If we call the function on a vector, we get a histogram. But if we call it on a two-column matrix, we get a scatter diagram.

What happens is that when plot() is called, R will check what class of object the caller supplied as an argument. If the object is of class " x ", then the original call will be dispatched to plot.x(),

[^9]a plotting function tailored to that class. (Of course, that means one needs to have been written and available.)

R's predict() is another example of a generic function, used to predict new cases. In the MovieLens example above, say we want to predict the rating given by a 30 -year-old man. We could simply plug 30 and 1 into the estimated regression function, say using $\operatorname{coef}()$ to get the $\widehat{\beta}_{i}$:

```
> coef(lmout)
(Intercept) age genderM
3.359894442 0.005310673 -0.006903502
> coef(lmout) %*% c(1,30,1) # linear algebra-style matrix multiply
    [,1]
[1,] 3.512311
```

Alternatively (and in many settings, more conveniently):

```
> newdata <- data.frame(age=30,gender='M')
> predict(lmout,newdata)
    1
```

3.512311

Recall that we had assigned the output of $\operatorname{lm}()$ to lmout, which will have class ' $1 \mathbf{m}$ '. So, the call to predict() above was dispatched to predict. $\operatorname{lm}()$.

What about $\operatorname{glm}()$? There is a function predict.glm(), which normally should be called with the argument type $=$ 'response'. The latter means we want the return values to be the estimated values of the regression function, i.e. the conditional probabilities of response 1 , given the values of the predictors.

3.3.8 Full Example

```
> rats <- read.table('u.data')
> head(rats)
    V1 V2 V3 V4
1 196 242 3 881250949
2 186}3002 3 89171774
3 22 377 1 878887116
4 244 51 2 880606923
5}166 346 1 886397596
6498474 4 884182806
> class(rats$V1)
[1] "integer"
```

```
> rats$V1 <- as.factor(rats$V1)
> rats$V2 <- as.factor(rats$V2)
> lmout <- lm(V3 ~ V1+V2,data=rats) # runs about 10 mins
> coefs <- lmout$coefficients
> str(coefs)
    Named num [1:2624] 3.913 0.041 -0.529 0.88 -0.457 ...
    - attr(*, "names")= chr [1:2624] "(Intercept)" "V12" "V13" "V14" ...
# let's try predicting something
> newx <- rats[5,1:2]
> newx
        V1 V2
5 166 346
# how would user 166 like movie 8?
> newx$V2 <- '8' # character, due to factor
# R factors are essentially character vectors with named levels
> newx
        V1 V2
5 166 8
> predict(lmout,newx)
    5
```

4.399462

A few comments:

- The V1 and V2 columns were numbers, but those "numbers" were user and movie IDs. We need to convert them to dummy variables. R will do that for us, provided we change them to factors.
- With over 900 users and 1600 movies, that's over 2500 dummies; 2624, to be exact.
- The predict() function is really handy, but its second argument needs to be a data frame (even if only one row) of the same structure as what went into $\operatorname{lm}()$. The easiest way to do this is to start with one row of that data frame, then modify as needed.
- It's nice that we got a prediction for this user, but is it accurate? More on this later.

3.3.9 More Than Two Levels in Categorical Response

What if our response variable is categorical but with more than two levels? In the click/nonclick setting, suppose the user has a choice of five things to click, and must choose one. Then the response is categorical with five levels.

There are two major approaches. To explain, we'll use the following very simple example. Say there are dogs, cats and foxes on a field, and they sometimes step on a sensor, so we know their weights but do not see them. Say we have data on 10000 data points, in which we do know the species. Our data frame, df, has 10000 rows and 4 columns. In the columns, say the names are 'Weight', 'Dog', 'Cat' and 'Fox', with the last three being dummies. Say we have 5000 dogs, 2000 cats and 3000 foxes. Then for instance 2000 of the rows in df would be cats.

One-vs.All (OVA) Method
One would run run three logistic models:

```
gdog <- glm(Dog ~ ., data=df[,1:2]) # dog vs. all else
gcat <- glm(Cat ~ ., data=df[,c(1,3)]) # cat vs. all else
gfox <- glm(Fox ~ ., data=df[,c(1,4]) # fox vs. all else
```

Then for each new animal we encounter of unknown species, we call predict() three times, yielding three estimated conditional probabilities. If the one for cat, say, is largest, we guess Cat.

All vs. All (AVA) Method
Here again we'd run multiple logit models, in pairs as follows:

```
gdogcat <-
    glm(Dog ~ ., data=df[df$dog+df$cat==1,1:2]) # dog vs.cat
gdogfox <-
    glm(Dog ~ ., data=df[df$dog+df$fox==1,1:2]) # dog vs. fox
gcatfox <-
    glm(Cat ~ ., data=df[df$cat+df$fox==1,1:3]) # cat vs. fox
```

Then for each new animal we encounter of unknown species, we call predict() three times, again yielding three estimated conditional probabilities. Say in the first one, Cat "wins," i.e. the conditional probability is less than 0.5. Say Dog wins in the second, and Cat wins in the third. Since Cat had the most wins, we predict Cat.

Comparison

At first, OVA seems much better than AVA. If we have m levels, that means running $C(m, 2)=$ $O\left(m^{2}\right)$ parwise logit models, rather than m for OVA. However, that is somewhat compensated by the fact that each pairwise model will be based on less data, and some analysts contend that AVA can have better accuracy. It remains a bit of a controversy.

3.4 Bias, Variance, Overfitting and p-Hacking

By far the most vexing issue in statistics and machine learning is that of overfitting.

3.4.1 What Is Overfitting?

Suppose we have just one predictor, and n data points. If we fit a polynomial model of degree $n-1$, the resulting curve will pass through all n points, a "perfect" fit. For instance:

```
> x <- rnorm(6)
> y <- rnorm(6) # unrelated to x!
> df <- data.frame(x,y)
> df$x2 <- x^2
> df$x3 <- x^3
> df$x4 <- x^4
> df$x5 <- x^5
> df
\begin{tabular}{rrrrr} 
& x & y & x 2 & x \\
1 & -1.1855131 & 0.2881291 & 1.40544120 & -1.666168894 \\
2 & -1.7838769 & -2.0741740 & 3.18221664 & -5.676682627 \\
3 & -0.7124510 & -0.4253678 & 0.50758640 & -0.361630431 \\
4 & 0.1676111 & -0.1949265 & 0.02809348 & 0.004708779 \\
5 & 1.2462926 & -0.7348481 & 1.55324535 & 1.935798245 \\
6 & 0.3741604 & 1.9521667 & 0.13999601 & 0.052380963 \\
& x4 & \(x 5\) &
\end{tabular}
1 1.975265e+00 -2.341702414
2 1.012650e+01 -18.064433938
3 2.576440e-01 -0.183558689
4 7.892437e-04 0.000132286
5 2.412571e+00 3.006769615
6 1.959888e-02 0.007333126
> lmo <- lm(y ~ .,data=df)
> lmo
Call:
lm(formula = y ~ ., data = df)
```

Coefficients:
$\begin{array}{rrrr}(\text { Intercept }) & x & x 2 & x 3 \\ -1.3127 & 4.7632 & 11.4809 & 0.5781\end{array}$
$x 4$ x5
-6.9685 -2.4938
> lmo\$fitted.values

1	2	3	4	5
0.2881291	-2.0741740	-0.4253678	-0.1949265	-0.7348481

6

1.9521667
> y
[1] $0.2881291-2.0741740-0.4253678-0.1949265-0.7348481$
[6] 1.9521667

Yes, we "predicted" y perfectly, even though there was no relation between the response and predictor variables). Clearly that "perfect fit" is illusory, "noise fitting." Our ability to predict future cases would not be good. This is overfitting.

Let's take a closer look, in an RS context. Say we believe (3.14) is a good model for the setting described in that section, i.e. men becoming more liberal raters as they age but women becoming more conservative. If we omit the interaction term, than we will underpredict older men and overpredict older women. This biases our ratings.
On the other hand, we need to worry about sampling variance. Consider the case of opinion polls during an election campaign, in which the goal is to estimate p, the proportion of voters who will vote for Candidate Jones. If we use too small a sample size, say 50 , our results will probably be inaccurate. This is due to sampling instability: Two pollsters, each randomly sampling 50 people, will sample different sets of people, thus each having different values of \widehat{p}, their sample estimates of p. For a sample of size 50 , it is likely that their two values of \widehat{p} will be substantially different from each other, whereas if the sample size were 5000 , the two estimates would likely be close to each other. In other words, the variance of \widehat{p} is too high if the sample size is just 50.11

In a parametric regression setting, increasing the number of terms roughly means that the sampling variance of the $\widehat{\beta}_{i}$ will increase.

So we have the famous bias/variance tradeoff: As we use more and more terms in our regression model (predictors, polynomials, interaction terms), the bias decreases but the variance increases. This "tug of war" between these decreasing and increasing quantities typically yields a U-shaped curve: As we increase the number of terms from 1, mean absolute prediction error will at first decrease but eventually will increase. Once we get to the point at which it increases, we are overfitting.

This is particularly a problem when one has many dummy variables. For instance, there are more than 42,000 ZIP Codes in the US; to have a dummy for each would almost certainly be overfitting.

[^10]
3.4.2 Can Anything Be Done about It?

So, where is the "happy medium," the model that is rich enough to capture most of the dynamics of the variables at hand, but simple enough to avoid variance issues? Unfortunately, there is no good answer to this question.

Rough Rule of Thumb:

One quick rule, backed up by mathematical theory, is that one should have $p<\sqrt{n}$, where p is the number of predictors, including polynomial and interaction terms (not to be confused with the quantity of the same name in our polling example above), and n is the number of cases in our sample. But this is certainly not a firm rule by any means, and I find it tends to be overly conservative.

Cross-Validation:

From the polynomial-ftting example in Section 3.4.1, we see the following key point:

An assessment of predictive ability, based on predicting the same data on which our model is fit, tends to be overly optimistic and may be meaningless or close to it.

This motivates the most common approach to dealing with the bias/variance tradeoff, cross validation. In the simplest version, one randomly splits the data into a training set and a test set ${ }^{12}$ We fit the model to the training set and then, pretending we don't know the "Y" (i.e. response) values in the test set, predict those values from our fitted model and the "X" values (i.e. the predictors) in the test set. We then "unpretend," and check how well those predictions worked.

The test set is "fresh, new" data, since we called $\boldsymbol{\operatorname { l m } ()}$) or whatever only on the training set. Thus we are avoiding the "noise fitting" problem. We can try several candidate models, then choose the one that best predicts the test data.

For example, consider the analysis in Section 3.3.8. Say we are considering adding age and gender as predictors. Call the original model Model 1 and the one with predictors added Model 2. We would do the following:
(a) Randomly partition the 100,000 rows of the data frame into training and holdout tests of size 95,000 and 5000.
(b) Fit Model 1 to the training set, and use it on the predictor values in the holdout set to predict the ratings in that set. Compute some accuracy measure, say Mean Absolute Prediction Error (MAPE).

[^11](c) Do as in (a), but with Model 2 instead of Model 1.
(d) Compare the two MAPE values, and choose the better model.
(e) For all (user,movie) pairs with unknown ratings, use the model from (d) to predict.
(Note carefully that after fitting the model via cross-validation, we then use the full data for later prediction. Splitting the data for cross-validation was just a temporary device for model selection.)

Cross-validation is essentially the standard for model selection, and it works well if we only try a few models. Problems can occur if we try many models, as seen in the next section.

Regularization:

Suppose we are estimating a vector mean μ, using sample data on a vector X. For instance, we may have X equal to (height,weight,age,blood pressure). Following standard notation, let p denote the number of components of X, e.g. $p=4$ in the above example.
The standard estimate is of course the sample mean, \bar{X}. In the above example, this would be the 4 -vector consisting of the averages of height, weight, age and blood pressure in our sample.

Some years ago, mathematical statistician Charles Stein caused quite a stir by proving the following remarkable fact:

- If $p \leq 2$, then \bar{X} is the optimal estimator of $\mu{ }^{13}$
- If $p \geq 3$, then the optimal estimator is $c \bar{X}$ for some $0<c<1$.
h

So, in higher dimensions - remember, we are working with p in the dozens or even hundreds we should shrink down our estimator. The intuition here is this: Occasionally sample data will contain some really extreme data points, and these skew our \bar{X} estimator. By shrinking down the estimator, we reduce the influence of those extreme values. And with $p \geq 3$, extreme values happen often enough to make shrinkage (or regularization) a "win."

This was later applied to linear regression models, PCA and so on. Instead of finding b that minimizes (3.5), we minimize

$$
\begin{equation*}
r=\sum_{i=1}^{n}\left[W_{i}-\left(b_{0}+b_{1} H_{i}+b_{2} A_{i}\right)\right]^{2}+\lambda\|b\|_{1} \tag{3.19}
\end{equation*}
$$

[^12]where $\|b\|_{1}$ is the l_{1} vector norm of b :
\[

$$
\begin{equation*}
\|b\|=\sum_{i=1}^{p}\left|b_{i}\right| \tag{3.20}
\end{equation*}
$$

\]

This is not done directly out of concern for outliers so much as is as a remedy to overfitting. In the polynomial models we discussed earlier, higher-degree models at least have more components in b but also tend to be larger due to high variance. Of course, we have to choose λ, a tuning parameter (as s was for PCA); this is typically done by trying various values and assessing via cross-validation.

This technique in linear regression is called the $L A S S O$, the Least Absolute Shrinkage and Selection Operator. A popular implementation in R is the lars package.

3.4.3 The Problem of P-hacking

The (rather recent) term p-hacking refers to the following abuse of statistics ${ }^{14}$
Say we have 250 pennies, and we wish to determine whether any are unbalanced, i.e. have probability of heads different from 0.5 . We do so by tossing each coin 100 times. If we get fewer than 40 heads or more than 60 , we decide this coin is unbalanced ${ }^{[15}$ The problem is that, even if all the coins are perfectly balanced, we eventually will have one that has fewer than 40 or greater than 60 heads, just by accident. We will then falsely declare this coin to be unbalanced.

Or, to give a somewhat frivolous example that still will make the point, say we are investigating whether there is any genetic component to a person's sense of humor. Is there a Humor gene? There are many, many genes to consider. Testing each one for relation to sense of humor is like checking each penny for being unbalanced: Even if there is no Humor gene, then eventually, just by accident, we'll stumble upon one that seems to be related to humor ${ }^{16]}$

Though the above is not about prediction, it has big implications for the prediction realm. In ML there are various datasets on which analysts engage in contests, vying for the honor of developing the model with the highest prediction accuracy, say for classification of images. If there is a large number of analysts competing for the prize, then even if all the analysts have models of equal

[^13]accuracy, it is likely that one is substantially higher than the others, just due to an accident of sampling variation. This is true in spite of the fact that they all are using the same sample; it may be that the "winning" analyst' model happens to do especially well in the given data, and may not be so good on another sample from the same population. So, when some researcher sets a new record on a famous ML dataset, it may be that the research really has found a better prediction model - or it may be that it merely looks better, due to p-hacking.

The same is true for your own analyses. If you try a large number of models, the "winning" one may actually not be better than all the others.

This also implies that cross-validation is no panacea either. If we compare a large number of models, there is a danger that one looks really good when it is not.

3.5 Extended Example

Let's illustrate this on the dataset prgeng, assembled from the 2000 US census. It consists of wage and other information on 20090 programmers and engineers in Silicon Valley. This dataset is included in the R polyreg package, which fits polynomial models as we saw in Section 3.3.5.1 above ${ }^{17}$

As usual, let's take a glance at the data:
> head (prgeng)

	age	educ	occ	sex	wageinc	wkswrkd
1	50.30082	13	102	2	75000	52
2	41.10139	9	101	1	12300	20
3	24.67374	9	102	2	15400	52
4	50.19951	11	100	1	0	52
5	51.18112	11	100	2	160	1
6	57.70413	11	100	1	0	0

Note that age, education, occupation and sex are categorical variables, which R will convert to dummies for us. Here is the code:

```
library(regtools)
library(polyreg)
data(prgeng)
pe <- prgeng[,c(1:4,6,5)]
head(pe)
tstidxs <- sample(1: nrow(prgeng),1000)
```

[^14]```
petrn <- pe[-tstidxs,]
petst <- pe[tstidxs,]
for (i in 1:4) {
 pfout <- polyFit(petrn,deg=i)
 preds <- predict(pfout, petst)
 print(mean(abs(preds-petst$wageinc)))
 print(length(pfoutfitcoefficients))
}
```

And the resulting Mean Absolute Prediction Errors and p Values :

| degre | MAPE | p |
| ---: | ---: | ---: |
| 1 | 24248.43 | 24 |
| 2 | 23468.56 | 164 |
| 3 | 24367.16 | 496 |
| 4 | 818934.9 | 1020 |

Remember, $p$ is the number of predictors, including all the dummies. When we have a degree 2 model, we have all the squared terms (except for the dummies), and the cross-product terms, e.g. interaction between age and gender. So $p$ increase pretty rapidly with degree.

In any event, though, the effects of overfitting are clear.

## Chapter 4

## Matrix Factorization Methods

Recall the brief introduction in Chapter 11. Let $A$ denote the ratings matrix, with the element in row $i$, column $j$ storing the rating of item $j$ given by user $i$. Most of $A$ is unknown, i.e. NA values in $R$. We wish to estimate the unknown ones.

Say the dimension of $A$ is $u \times v$. We wish to find rank- $k$ matrices $W(u \times k)$ and $H(k \times v)$ such that

$$
\begin{equation*}
A \approx W H \tag{4.1}
\end{equation*}
$$

Again, most of the elements of $A$ are unknown. But because it is typically the case that similar users have similar ratings patterns, we hope to obtain good estimates of all of $A$ even though only a small part of it is known.

This is a form of dimension reduction, with the rank $k$ controlling the bias-variance tradeoff. Typically a good approximation can be achieved with

$$
\begin{equation*}
k \ll \operatorname{rank}(A) \tag{4.2}
\end{equation*}
$$

There are two main approaches to matrix factorization in recommender systems and general machine learning:

- Singular Value Decomposition (SVD): This is a "cousin" of PCA, kind of a "square root" of the latter. There is a function in base R for this, $\operatorname{svd}()$.
- Nonnegative Matrix Factorization (NMF): Here the matrix $A$ has nonnegative elements, and one desires the same property for $W$ and $H$. This may lead to sparsity in $W H$, and in some
cases a helpful intepretability. There are several R packages for this; see below.

Since most of the issues are the same for both methods, we'll mainly stick to one, NMF.

### 4.1 Notation

We'll use the following notation for a matrix $Q$

- $Q_{i j}$ : element in row $i$, column $j$
- $Q_{i}$ : row $i$
- $Q_{. j}$ : column $j$


### 4.2 Synthetic, Representative RS Users

Note the key relation, which we showed in Section 2.2.

$$
\begin{equation*}
(W H)_{i .}=\sum_{m=1}^{k} W_{i m} H_{m} . \tag{4.3}
\end{equation*}
$$

In other words, in (4.1), we have that:
(a) The entire vector of predicted ratings by user $i$ can be expressed as a linear combination of the rows of $H$.
(b) Thus the rows of $H$ can be thought of as an "approximate basis" for the rows of $A \cdot{ }^{1}$
(c) The rows of $H$ can thus be thought of as synthetic "users" who are representative of users in general. $H_{r s}$ is the rating that synthetic user $r$ gives item $s$.

In this manner, we can predict ratings for any user that is already in $A$. but what about an entirely new user? What we need is the coordinates of this new user with respect to the rows of $H$. We'll see how to get these later in the chapter ${ }^{2}$

[^15]Of course, interchanging the roles of rows and columns above, we have that the columns of $W$ serve as an approximate basis for the columns of $A$. In other words, the latter become synthetic, representative items, e.g. representative movies in the MovieLens data.

### 4.3 The Case of Entirely Known A

This notion of nonnegative matrix factorization has become widely used in a variety of ML applications in which the matrix $A$ entirely known.

### 4.3.1 Image Classification

Say we have $n$ image files, each of which has brightness data for $r$ rows and $c$ columns of pixels. We also know the class, i.e. the subject, of each image. The famous MNIST dataset, for instance, consists of $70,00028 \times 28$ images of hand-drawn digits. Thus the data for an image consists of $28^{2}=784$ pixel intensities, each in the range $0,1,2, \ldots, 255$. (255 is fully black, 0 is fully white and the others are shades of gray.) We have 10 classes, ' 0 ' through ' 9 '.

We wish to predict the classses of new images. Denote the class of image $j$ in our original data by $C_{j}$.
We form a matrix $A$ with $n$ rows and $w=r c$ columns, where the $i^{\text {th }}$ row, $A_{i}$. stores the data for the $i^{\text {th }}$ image, say in row-major order $]^{3} A_{i}$. would first store row 1 of that image, then store row 2 of the image, and so on $\square^{4}$

In the sense stated above, the rows of $H$ serve as synthetic, representative images. Row $i$ of $A$, i.e. the $i^{t h}$ image in our training data, is then approximately a linear combination of the rows of $H$, with the coordinates being the elements of row $i$ of $W$.

So, just as in the PCA case, we transform our training data, via $A \rightarrow W$. We apply our favorite classification method, say the logistic, to this new training data (together with the class vector for that data), then use it to classify new data vectors $S$.

To do the latter, we must find the coordinates of $S$ with respect to the rows of $H$. This means finding the linear combination of rows of $H$ that is closest to $S$, i.e.

$$
\begin{equation*}
\arg \min _{l}\left\|S-l^{\prime} H\right\| \tag{4.4}
\end{equation*}
$$

[^16]When then set $\lambda$ to the minimizing $l$ (we'll see how, shortly), and this is the coordinate vector for the new case.

Thus we are going from $r c$ variables to $r k$ of them, where $k$ is the chosen rank. If

$$
\begin{equation*}
k \ll \operatorname{rank}(A) \tag{4.5}
\end{equation*}
$$

we have a big dimension reduction.
Again, there is the issue of choosing $k$, as with choosing $s$ in PCA, and so on. More on this in Section 4.6.

### 4.3.2 Text classification

Here $A$ consists of, say, word counts. We have a list of $k$ keywords, and $d$ documents of known classes (politics, finance, sports etc.). Row $i$ of $A$ contains the counts of the various keywords (or maybe just a binary variable indicating presence or absence of the word). Otherwise, the situation is the same as for image recognition above.

### 4.3.3 Relation to Recommender Systems

Many RS methods are text-based or even image-based. Say there is a new movie, not user ratings yet at all. One might compare the movie studio's synopsis of the film with those of flims for which we have ratings data, and try to predict how well each user would like this film.

A more ambiitious approach would be to do the same for images in the film's ad trailer.

### 4.3.4 How Do We Minimize (4.4)?

To answer this question, it will be helpful to keep some concrete numbers in mind, say with the MNIST data. Say we wish a rank of 50 . Then

- $A$ is $70000 \times 784$;
- $W$ is 70000 x 0 ;
- $H$ is 50 x 784 ;
- $S$ is 1 x 784 ; and
- $l$ is 50 x 1 .

Keeping these numbers in mind as concrete examples, now note that in (4.4),

$$
\begin{equation*}
\left\|S-l^{\prime} H\right\|^{2}=\left(S-l^{\prime} H\right)\left(S-l^{\prime} H\right)^{\prime} \tag{4.6}
\end{equation*}
$$

This looks pretty close to (3.6). But recall that $S$ and $l^{\prime} H$ are row vectors, so (4.6) looks slightly different. Now, using the fact from linear algebra that $(U V)^{\prime}=V^{\prime} U^{\prime}$, 4.6) says

$$
\begin{equation*}
\left\|S-l^{\prime} H\right\|^{2}=\left(S^{\prime}-H^{\prime} l\right)\left(S^{\prime}-H^{\prime} l\right) \tag{4.7}
\end{equation*}
$$

Now it's in the form of (3.6), so our minimization problem is solved! In (3.11), just set $D, A$ and $b$ to $S^{\prime}, H^{\prime}$ and $l$, respectively. This gives us

$$
\begin{equation*}
\lambda=\left(H H^{\prime}\right)^{-1} H S^{\prime} \tag{4.8}
\end{equation*}
$$

We could compute this directly, using R's matrix operations (for matrix inversion, we can use solve(), or for better numerical accuracy, solve.qr()), but it's easier to send it to $\operatorname{lm}()$, e.g.
$\operatorname{lm}(s \sim t(h)-1) \$ c o e f$
The ' -1 " tells $\operatorname{lm}()$, "Don't add a column of 1 s to $H^{\prime}$."

### 4.4 The R Package NMF

The R package NMF is quite extensive, with many, many options. In its simplest form, though, it is quite easy to use. For a matrix a and desired rank $\mathbf{k}$, we simply run

```
> nout <- nmf(a,k)
```

Here the returned value nout is an object of class "NMF" defined in the package. It uses R's S4 class structure, with © as the delimiter denoting class membership, as opposed to $\$$ as in the S3 case.

As is the case in many R packages, "NMF" objects contain classes within classes. The computed factors are in nout@fit@W and nout@fit@H.

Let's illustrate it in an image context, using the following:


Here we have only one image, and we'll store it as a matrix $A$ (rows of the matrix corresponding to rows of $A$ ). we'll use NMF to compress it, not do classification. First obtain $A$ :

```
> library(pixmap)
read file
> mtr <- read.pnm('MtRush.pgm')
> class(mtr)
[1] "pixmapGrey"
attr(,"package")
[1] "pixmap"
#mtr is an R S4 object of class "pixmapGrey"
extract the pixels matrix
> a <- mtr@grey
```

Now, perform NMF with rank 50, find the approximation to $A$, and display it:

```
> aout <- nmf(a,50)
> w <- aout@fit@W
> h <- aout@fit@H
> approxa <- w %*% h
brightness values must be in [0,1]
> approxa <- pmin(approxa,1)
> mtrnew <- mtr
> mtrnew@grey <- approxa
> plot(mtrnew) # dispatched to plot.pixmapGrey()
```

Here is the result:


This is somewhat blurry. The original matrix has dimension $194 \times 259$, and thus presumably has rank 194.5 We've approximated the matrix by one of rank only 50 . We could use this for compression, and if we had millions of images and this amount of blurriness were acceptable, we could take this approach.

Actually, there are better ways to compress images, and this was just an illustration of the effect of the reduced rank. Getting back to our classification context, the point is:

- When we use the term low-rank approximation, it is indeed approximate, as can be seen by the blurriness.
- Applying NMF or PCA/SVD to a whole collection of images, e.g. MNIST, further heightens this approximate nature of the process.
- But we need to do something to avoid overfitting, i.e. some kind of dimension reduction, and finding a low-rank approximation does that.


### 4.5 Computation

How are the NMF solutions found? What is $\mathbf{n m f}()$ doing internally?

[^17]Needless to say, the methods are all iterative, with one approach being that of the Alternating Least Squares algorithm AltLS). It's quite intuitive, builds on our previous material and provides insight into NMF itself $]^{6}$

And most importantly - AltLS is easily adapted to the recommender systems setting. Remember, recommender systems differ fundamentally from, say, the image and text classification applications cited earlier, due to the fact that some, typically the vast majority, of elements of the $A$ matrix are unknown.

So let's take a look, still assuming for now that $A$ is competely known.

### 4.5.1 Objective Function

We need an objective function, a criterion to optimize, in this case a criterion for goodness of approximation. Here we will take that to be the Frobenius norm (Section 2.4),

$$
\begin{equation*}
\|Q\|_{2}=\sqrt{\sum_{i, j} Q_{i j}^{2}} \tag{4.9}
\end{equation*}
$$

So our criterion for error of approximation will be

$$
\begin{equation*}
\|A-W H\|_{2} \tag{4.10}
\end{equation*}
$$

This measure is specified in $\operatorname{nmf}()$ by setting objective $=$ ' ${ }^{\prime}$ uclidean'.

### 4.5.2 Alternating Least Squares

So, how does Alternating Least Squares work? Suppose just for a moment that we know the exact value of $W$, with $H$ unknown. Then for each $j$ we could minimize

$$
\begin{equation*}
\left\|A_{\cdot j}-W H_{\cdot j}\right\|_{2} \tag{4.11}
\end{equation*}
$$

We are seeking to find $H_{\cdot j}$ that minimizes (4.9), with $A_{\cdot j}$ and $W$ known. But since the Frobenius norm is just a sum of squares, that minimization is just a least-squares problem, i.e. linear regression, just as in Section 4.3.4. We are "predicting" $A_{\cdot j}$ from $W$,

So again in the notation of Section 3.3.5.

[^18]- The matrix $A$ there is our $W$ here, known.
- The vector $D$ there is our $A_{\cdot j}$ here, known.
- The vector $b$ there is our $H_{\cdot j}$ here, unknown and to be solved for.

So we compute
> $\mathrm{h}[, \mathrm{j}]$ <- $\operatorname{lm}(\mathrm{a}[, \mathrm{j}] \sim \mathrm{w}-1) \$ \operatorname{coef}$
for each $j, 7$
On the other hand, suppose we know $H$ but not $W$. We could take transposes,

$$
\begin{equation*}
A^{\prime}=H^{\prime} W^{\prime} \tag{4.12}
\end{equation*}
$$

and then just interchange the roles of $W$ and $H$ above. Here a call to $\operatorname{lm}()$ gives us a column of $W^{\prime}$, thus a row of $W$, and we do this for all rows.

Putting all this together, we first choose initial guesses, say random numbers, for $W$ and $H ; \mathbf{n m f}()$ gives us various choices as to how to do this. Then we alternate: Compute the new guess for $W$ assuming $H$ is correct, then choose the new guess for $H$ based on that new $W$, and so on.

During the above process, we may generate some negative values. If so, we simply truncate to 0 .

### 4.5.3 Back to Recommender Systems: Dealing with the Missing Values

In our recommender systems setting, of course, most of $A$ is missing. But we can easily adapt to that. In (4.11), simply replace $A_{. j}$ by the known elements of that vector, and replace $W$ by the corresponding rows. Then proceed as before.

### 4.5.4 Convergence and Uniqueness Issues

There are no panaceas for applications considered here. Every solution has potential problems. I like to call this the Pillow Theorem - pound down on one fluffy part and another part pops up.

Unlike the PCA case, one issue with NMF is uniqueness - there might not be a unique pair ( $W, H$ ) that minimizes (4.10) 8 In fact, one can see this immediately: Doubling $W$ while having $H$ leaves

[^19]the product $W H$ unchanged. Of course, the product is all that really counts, but in turn, this may result in convergence problems. The NMF documentation recommends running nmf() multiple times; it will use a different seed for the random initial values each time.

The Alternating Least Squares method used here is considered by some to have better convergence properties, since the solution at each iteration is unique. This may come at the expense of slower convergence.

### 4.6 How Do We Choose the Rank?

This is not an easy question. One approach would be to use prcomp, or for that matter svd(), to find the eigenvalues, then take our rank to be the number of "large" eigenvalues, as discussed in Chapter 2.

Of course, the typical way rank is chosen is cross validation.

### 4.7 Why Nonnegative?

In the applications we've mentioned here, we always have $A_{i j} \geq 0$. However, that doesn't necesarily mean that we need $W$ and $H$ to be nonnegative, and indeed if we were to use PCA, they may not so. (With PCA, even their product could have negative element, which we would truncate to 0 .) Why use NMF, i.e. why insist that the factors $W$ and $H$ themselves be nonnegative?

There are a couple of reasons NMF may be preferable. First, truncation may be questionable if we have a lot of negative values. But the second reason is that NMF may be more useful, as follows:

In a facial image recognition case, say, there is hope that the vectors $W_{\cdot j}$ will be sparse, i.e. mostly 0 s. Then we might have, say, the nonzero elements of $W_{\cdot 1}$ correspond to eyes, $W_{\cdot 2}$ correspond to nose and so on with other parts of the face. We are then "summing" to form a complete face. This may enable effective parts-based recognition, with helpful interpretations.

In our recommender systems setting, this parts-based effect, NMF would give us crisper distinction among the various synthetic users. This may reveal clusters of user behavior, which could be quite helpful to the analyst.

### 4.8 Functions in rectools

The recoSystem package by Chih-Jen Li et al has a good implementation of NMF for recommender systems (i.e. it handles the missing values). However, it uses R6 classes (and is complicated in other
ways), which are unfamiliar to many $R$ users, so the rectools package provides wrappers. Basic call forms are:

```
trainReco(ratingsIn,rnk=10,nmf=FALSE)
predict.RecoS3(recoObj,testSet)
```

Here ratingsIn is the usual three-column (userID,itemID,rating) (plus covariates, if any) data frame; $\mathbf{r n k}$ is the desired rank; $\mathbf{n m f}$ is false for SVD, true for NMF; recoObj is the return value from trainReco(); and testSet is the test set, in the same format as ratingsIn, minus the ratings column.

The return value from trainReco() is an R S3 object of class 'RecoS3', with components $P$ and $Q$, corresponding to $W$ and $H^{\prime}$ in our notation. In the case of covariates (see below), some R attributes are also included.

### 4.9 Dealing with Covariates

The easiest approach to handling covariates is to simply "subtract them out" for the data via linear regression, then run NMF/SVD on the resulting residuals ${ }^{9}$ component in the S 3 object returned by $\operatorname{lm}()$. and finally, at the prediction stage, add the regression values back in.

Here are relevant code excerpts:

```
trainReco():
hasCovs <- (ncol(ratingsIn) > 3)
if (hasCovs) {
 covs <- as.matrix(ratingsIn[, -(1:3)])
 lmout <- lm(ratingsIn[, 3] ~ covs)
 # now make fake ratings; for NMF, must be >= 0
 minResid <- min(lmout$residuals)
 ratingsIn[, 3] <- lmout$residuals - minResid
}
r$train(train_set, opts = list(dim = rnk, nmf = nmf))
result <- r$output(out_memory(), out_memory())
attr(result, "hasCovs") <- hasCovs
if (hasCovs) {
 attr(result, "covCoefs") <- coef(lmout)
 # add the residuals back in
```

[^20]```
    attr(result, "minResid") <- minResid
}
class(result) <- "RecoS3"
result
predict.RecoS3():
if (hasCovs) {
    tmp <- c(1, testCovs[i, ]) %*% covCoefs + minResid
}
pred[i] <- p[j, ] %*% q[k, ] + tmp
```

In the covariates case, $\operatorname{trainReco()}$ replaces the ratings by the residuals, so the product $W H$ approximates them rather than the original A. Then in predict.RecoS3(), after multiplying W_{i}. and $H_{\cdot j}$, the estimated regression function value for the given case is added back in.

The role of minResid is this: If we are using NMF, fitting to the residuals, which are both positive and negative, makes no sense. So, we subtract the (algebraically) smallest residual, resulting in only nonnegative values. Again, this is added back in later on.

4.10 Regularization

Recall Section 3.4.2, where we introduced the idea of shrinkage as a guard against overfitting.
For NMF (or SVD), we probably don't want to force some predicted ratings to 0 , the l_{2} norm is a popular choice. Thus, instead of choosing W and H to minimize 4.10, we minimize

$$
\begin{equation*}
\|A-W H\|_{2}+\gamma_{1}\|W\|_{2}^{2}+\gamma_{2}\|H\|_{2}^{2} \tag{4.13}
\end{equation*}
$$

Both γ_{1} and γ_{2} are tuning parameters.

4.11 "Bias" Removal

As noted in Chapter 5, some users tend to give more liberal ratings, while others tend to be more cautious. Similarly, some items tend to be rated more highly than others. One way of dealing with that is to adjust our ratings matrix A accordingly: For each user i, let R_{i} denote the average of all known ratings from that user. Also, for each item j let S_{j} denote the average of all known ratings
for that item. These are termed biases. Then do the replacement

$$
\begin{equation*}
A_{u v} \leftarrow A_{u v}-R_{u}-S_{v} \tag{4.14}
\end{equation*}
$$

and then form the matrix factorization as usual. In the end, after estimating the unknown entries in A, restore the subtracted quantities:

$$
\begin{equation*}
A_{u v} \leftarrow A_{u v}+R_{u}+S_{v} \tag{4.15}
\end{equation*}
$$

Chapter 5

Nearest-Neighbor Methods

Recall our preview in Chapter 1. Collaborative filtering RS methods are based on known user-item ratings, as opposed to, e.g., methods based on textual user evaluations. All of the methods in that chapter fall into this category. The most natural, and earliest, such method was user-based filtering, also known as memory-based filtering.

5.1 Notation

As before, let A denote the ratings matrix. The element $a_{i j}$ in row i, column j, is the rating that user i has given/would give to item j. In the latter case, $a_{i j}$ is unknown, and its predicted value will be denoted by $\widehat{a}_{i j}$. Following R notation, we will refer to the unknown values as NAs.

Note that for large applications, the matrix A is far too large to store in memory. One could resort to storage schemes for sparse matrices, e.g. Compresed Row Storage, but here we will simply use A to help explain concepts. In the rectools package, the input data is run through formUserData() and algorithms use that instead of A. This function orgamizes the data into an R list, one element per user. Each such element records the ratings made by that user.

Let's refer to a new case to be predicted as NC.

5.2 User-Based Filtering

In predicting how a given user would rate a given item, we first find all users that have rated the given item, then determine which of those users are most similar to the given user. Our prediction is then the average of the ratings of the given item among such "similar" users. A corresponding
approach based on items is used as well. We focus on such methods in this chapter.

5.2.1 Matrix View

In terms of the matrix A above, we first look at column j. We cull the rows having non-NA values in this column, and for each of those rows, find the distance of that row to the NC. Take the k closest rows, and finally, average the value of $a_{m j}$ to get $\widehat{a}_{i j}$ (with m ranging over the row numbers of the selected rows).

5.2.2 (One) Implementation

Below is code from rectools (somewhat simplified). The arguments are:

- origData: The original dataset, after having been run through formUserData().
- newData: The element of origData for NC T
- newItem: ID number of the item to be predicted for NC.
- k : The number(s) of nearest neighbors. Can be a vector.

```
predict.usrData <- function(origData, newData,newItem,k)
{
    # we first need to narrow origData down to the users who
    # have rated newItem
    # here oneUsr is one user record in origData; the function will look for a
    # j such that element j in the items list for this user matches the item
    # of interest, newItem; (j,rating) will be returned
    checkNewItem <- function(oneUsr) {
        whichOne <- which(oneUsr$itms == newItem)
        if (length(whichOne) == 0) {
            return(c(NA,NA))
        } else return(c(whichOne,oneUsr$ratings[whichOne]))
    }
```

[^21]```
found <- as.matrix(sapply(origData,checkNewItem))
description of 'found':
found is of dimensions 2 by number of users in training set
found[1,i] = j means origData[[i]]$itms[j] = newItem;
found[1,i] = NA means newItem wasn't rated by user i
found[2,i] = rating in the non-NA case
we need to get rid of the users who didn't rate newItem
whoHasIt <- which(!is.na(found[1,]))
origDataRatedNI <- origData[whoHasIt]
now origDataRatedNI only has the relevant users, the ones who
have rated newItem, so select only those columns of the found matrix
found <- found[,whoHasIt,drop=FALSE]
find the distance from newData to one user y of origData; defined for
use in sapply() below
onecos <- function(y) cosDist(newData,y,wtcovs,wtcats)
cosines <- sapply(origDataRatedNI, onecos)
the vector cosines contains the distances from newData to all the
original data points who rated newItem
action of findKnghbourRtng(): find the mean rating of newItem in
origDataRatedNI, for ki (= k[i]) neighbors
#
if ki > neighbours present in the dataset, then the
number of neighbours is used
findKnghbourRtng <- function(ki){
 ki <- min(ki, length(cosines))
 # nearby is a vector containing the indices of the ki closest neighbours
 nearby <- order(cosines,decreasing=FALSE)[1:ki]
 mean(as.numeric(found[2, nearby]))
}
sapply(k, findKnghbourRtng)
}
```

Note that the distances were computed by the function cosDist(), which computes a "cosine" similarity (not really a distance). It could be replaced by a function of the analyst's choice. More on this below.

### 5.3 Regression Analog

Recall the method of k-nearest neighbor (kNN) regression estimation from Chapter 3, involving prediction of weight from height and age:

To estimate $E(W \mid H=70, A=28)$, we could find, say, the 25 people in our sample for whom $(H, A)$ is closest to $(70,28)$, and average their weights to produce our estimate of $E(W \mid H=70, A=28)$.

So kNN RS is really the same as kNN regression

### 5.4 Choosing k

As we have already seen with RS, regression and machine learning methods, the typical way to choose a model is to use cross-validation. This is true for kNN RS as well; we can choose the value of $k$ via cross-validation. However, a curious property may streamline the process, as follows.

Note this line in predict.usrData():
ki <- min(ki, length(cosines))
What is happeing here? Say for a particular situation, there are 52 rows in $A$ having ratings for the item specified in NC. Then of course as we increase our number of nearest neighbors beyond 52 , we will get identical results. Such a situation will occur if the $A$ matrix is not too dense, i.e. does not have a high proportion of non-NA values.

### 5.5 Defining Distance

### 5.6 Item-Based Filtering

### 5.7 Covariates

### 5.8 Edge Bias

## Chapter 6

## Statistical Models

SHOW THE CODE FOR USING IT IN OUR 3 METHODS
GIVE A SIMPLE MATH DERIVATION OF VALUE OF IT, E.G. FOR SMALL N-I

## Chapter 7

## Use of Side Information

SHOW THE CODE FOR USING IT IN OUR 3 METHODS
GIVE A SIMPLE MATH DERIVATION OF VALUE OF IT, E.G. FOR SMALL N-I

## Appendix A

## R Quick Start

Here we present a quick introduction to the R data/statistical programming language. Further learning resources are listed at http://heather.cs.ucdavis.edu//r.html.
$R$ syntax is similar to that of C . It is object-oriented (in the sense of encapsulation, polymorphism and everything being an object) and is a functional language (i.e. almost no side effects, every action is a function call, etc.).

## A. 1 Correspondences

| aspect | $\mathrm{C} / \mathrm{C}++$ | R |
| :--- | :--- | :--- |
| assignment | $=$ | $<-($ or $=)$ |
| array terminology | array | vector, matrix, array |
| subscripts | start at 0 | start at 1 |
| array notation | $\mathrm{m}[2][3]$ | $\mathrm{m}[2,3]$ |
| 2-D array storage | row-major order | column-major order |
| mixed container | struct, members accessed by . | list, members acessed by $\$$ or $[[]]$ |
| return mechanism | return | return() or last value computed |
| primitive types | int, float, double, char, bool | integer, float, double, character, logical |
| logical values | true, false | TRUE, FALSE (abbreviated T, F) |
| mechanism for combining modules | include, link | library() |
| run method | batch | interactive, batch |
| comment symbol | $/ /$ | $\#$ |

## A. 2 Starting R

To invoke $R$, just type " $R$ " into a terminal window, e.g. xterm in Linux or Macs, CMD in Windows.

If you prefer to run from an IDE, you may wish to consider ESS for Emacs, StatET for Eclipse or RStudio, all open source. ESS is the favorite among the "hard core coder" types, while the colorful, easy-to-use, RStudio is a big general crowd pleaser. If you are already an Eclipse user, StatET will be just what you need ${ }^{\text {? }}$

R is normally run in interactive mode, with $>$ as the prompt. Among other things, that makes it easy to try little experiments to learn from; remember my slogan, "When in doubt, try it out!" For batch work, use Rscript, which is in the R package.

## A. 3 First Sample Programming Session

Below is a commented R session, to introduce the concepts. I had a text editor open in another window, constantly changing my code, then loading it via R's source() command. The original contents of the file odd.R were:

```
oddcount <- function(x) {
 k <- 0 # assign O to k
 for (n in x) {
 if (n %% 2 == 1) k <- k+1 # %% is the modulo operator
 }
 return(k)
}
```

By the way, we could have written that last statement as simply
k
because the last computed value of an $R$ function is returned automatically. This is actually preferred style in the R community.

The R session is shown below. You may wish to type it yourself as you go along, trying little experiments of your own along the way ${ }^{2}$

[^22]```
> source("odd.R") # load code from the given file
> ls() # what objects do we have?
[1] "oddcount"
> # what kind of object is oddcount (well, we already know)?
> class(oddcount)
[1] "function"
> # while in interactive mode, and not inside a function, can print
> # any object by typing its name; otherwise use print(), e.g. print (x+y)
> oddcount # a function is an object, so can print it
function(x) {
    k <- 0 # assign 0 to k
    for (n in x) {
        if (n %% 2 == 1) k <- k+1 # %% is the modulo operator
    }
    return(k)
}
> # let's test oddcount(), but look at some properties of vectors first
> y <-c(5,12,13,8,88) # c() is the concatenate function
> y
[1] 5 12 13 8 88
> y[2] # R subscripts begin at 1, not 0
[1] 12
> y[2:4] # extract elements 2, 3 and 4 of y
[1] 12 13 8
> y[c(1,3:5)] # elements 1, 3, 4 and 5
[1] 5 13 8 88
> oddcount(y) # should report 2 odd numbers
[1] 2
> # change code (in the other window) to vectorize the count operation,
> # for much faster execution
> source("odd.R")
> oddcount
function(x) {
    x1 <- (x %% 2 == 1) # x1 now a vector of TRUEs and FALSEs
    x2 <- x[x1] # x2 now has the elements of x that were TRUE in x1
    return(length(x2))
}
```

```
> # try it on subset of y, elements 2 through 3
> oddcount(y[2:3])
[1] 1
> # try it on subset of y, elements 2, 4 and 5
> oddcount(y[c(2,4,5)])
[1] 0
> # further compactify the code
> source("odd.R")
> oddcount
function(x) {
    length(x[x %% 2 == 1]) # last value computed is auto returned
}
> oddcount(y) # test it
[1] 2
# and even more compactification, making use of the fact that TRUE and
# FALSE are treated as 1 and 0
> oddcount <- function(x) sum(x %% 2 == 1)
# make sure you understand the steps that that involves: }x\mathrm{ is a vector,
# and thus x %% 2 is a new vector, the result of applying the mod 2
# operation to every element of x; then x %% 2 == 1 applies the == 1
# operation to each element of that result, yielding a new vector of TRUE
# and FALSE values; sum() then adds them (as 1s and 0s)
# we can also determine which elements are odd
> which(y %% 2 == 1)
[1] 1 3
```

Note that the function of the R function function() is to produce functions! Thus assignment is used. For example, here is what odd.R looked like at the end of the above session:

```
oddcount <- function(x) {
    x1 <- x[x %% 2 == 1]
    return(list(odds=x1, numodds=length(x1)))
}
```

We created some code, and then used function() to create a function object, which we assigned to oddcount.

A. 4 Vectorization

Note that we eventually vectorized our function oddcount(). This means taking advantage of the vector-based, functional language nature of R, exploiting R's built-in functions instead of loops. This changes the venue from interpreted R to C level, with a potentially large increase in speed. For example:

```
> x <- runif(1000000) # 1000000 random numbers from the interval (0,1)
> system.time(sum(x))
        user system elapsed
    0.008 0.000 0.006
> system.time({s <- 0; for (i in 1:1000000) s <- s + x[i]})
    user system elapsed
    2.776 0.004 2.859
```


A. 5 Second Sample Programming Session

A matrix is a special case of a vector, with added class attributes, the numbers of rows and columns.

```
> # "rowbind() function combines rows of matrices; there's a cbind() too
> m1 <- rbind(1:2,c(5,8))
> m1
    [,1] [,2]
[1,] 1 2
[2,] 5 8
> rbind(m1,c(6,-1))
    [,1] [,2]
[1,] 1 2
[2,] 5 8
[3,] 6 -1
> # form matrix from 1,2,3,4,5,6, in 2 rows; R uses column-major storage
> m2 <- matrix(1:6,nrow=2)
> m2
    [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> ncol(m2)
[1] 3
> nrow(m2)
```

22
23 24
$48>$ ifelse(m2 $\% \% 3==1,0, \mathrm{~m} 2$) \# (see below)
[1] 2
$>\mathrm{m} 2[2,3]$ \# extract element in row 2, col 3
[1] 6
\# get submatrix of m2, cols 2 and 3, any row
$>\mathrm{m} 3<-\mathrm{m} 2[, 2: 3]$
$>\mathrm{m} 3$
$[, 1] \quad[, 2]$
[1,] 3
$[2] \quad 4 \quad$,
$>\mathrm{m} 1$ * m3 \# elementwise multiplication
[, 1] [,2]
$[1] \quad 3 \quad$,
[2,] $20 \quad 48$
> $2.5 * \mathrm{~m} 3$ \# scalar multiplication (but see below)
$[, 1] \quad[, 2]$
$[1] \quad 7.5 \quad$,
$[2] \quad 10.0 \quad$,
$>\mathrm{m} 1 \% * \% \mathrm{~m} 3$ \# linear algebra matrix multiplication
$[, 1] \quad[, 2]$
[1,] 1117
[2,] 47 73
$>\operatorname{sum}(\mathrm{m} 1)$
[1] 16
> ifelse(m2 \%\%3 == $1,0, \mathrm{~m} 2$) \# (see below)
$[, 1] \quad[, 2] \quad[, 3]$
$\left[\begin{array}{llll}{[1,]} & 0 & 3 & 5\end{array}\right.$
$\left[\begin{array}{llll}{[2,]} & 2 & 0 & 6\end{array}\right.$
> matrices are special cases of vectors, so can treat them as vectors

A. 6 Recycling

The "scalar multiplication" above is not quite what you may think, even though the result may be. Here's why:

In R, scalars don't really exist; they are just one-element vectors. However, R usually uses recycling, i.e. replication, to make vector sizes match. In the example above in which we evaluated
the express $2.5 * \mathrm{~m} 3$, the number 2.5 was recycled to the matrix

$$
\left(\begin{array}{ll}
2.5 & 2.5 \tag{A.1}\\
2.5 & 2.5
\end{array}\right)
$$

in order to conform with $\mathbf{~ m} \mathbf{3}$ for (elementwise) multiplication.

A. 7 More on Vectorization

The ifelse() function is another example of vectorization. Its call has the form

```
ifelse(boolean vectorexpression1, vectorexpression2, vectorexpression3)
```

All three vector expressions must be the same length, though R will lengthen some via recycling. The action will be to return a vector of the same length (and if matrices are involved, then the result also has the same shape). Each element of the result will be set to its corresponding element in vectorexpression 2 or vectorexpression3, depending on whether the corresponding element in vectorexpression1 is TRUE or FALSE.

In our example above,

```
> ifelse(m2 %%3 == 1,0,m2) # (see below)
```

the expression $\mathrm{m} 2 \% \% 3$ == 1 evaluated to the boolean matrix

$$
\left(\begin{array}{lll}
T & F & F \tag{A.2}\\
F & T & F
\end{array}\right)
$$

(TRUE and FALSE may be abbreviated to T and F.)
The 0 was recycled to the matrix

$$
\left(\begin{array}{lll}
0 & 0 & 0 \tag{A.3}\\
0 & 0 & 0
\end{array}\right)
$$

while vectorexpression3, m2, evaluated to itself.

A. 8 Third Sample Programming Session

This time, we focus on vectors and matrices.

```
> m <- rbind(1:3,c(5,12,13)) # "row bind," combine rows
>m
    [,1] [, 2] [, 3]
[1,] 1 2 3
[2,] 5 12 13
> t(m) # transpose
    [,1] [,2]
[1,] 1 5
[2,] 2 12
[3,] 3 13
> ma <- m[,1:2]
> ma
    [,1] [, 2]
[1,] 1 2
[2,] 5 12
> rep(1,2) # "repeat," make multiple copies
[1] 1 1
> ma %*% rep(1,2) # matrix multiply
    [,1]
[1,] 3
[2,] 17
> solve(ma,c(3,17)) # solve linear system
[1] 1 1
> solve(ma) # matrix inverse
    [,1] [,2]
[1,] 6.0 -1.0
[2,] -2.5 0.5
```


A. 9 Default Argument Values

Consider the sort() function, which is built-in to R, though the following points hold for any function, including ones you write yourself.

The online help for this function, invoked by
> ?sort
shows that the call form (the simplest version) is

```
sort(x, decreasing = FALSE, ...)
```

Here is an example:
$>x<-c(12,5,13)$
$>$ sort (x)
[1] $5 \quad 12 \quad 13$
> sort(x,decreasing=FALSE)
[1] $1312 \quad 5$
So, the default is to sort in ascending order, i.e. the argument decreasing has TRUE as its default value. If we want the default, we need not specify this argument. If we want a descending-order sort, we must say so.

A. 10 The R List Type

The R list type is, after vectors, the most important R construct. A list is like a vector, except that the components are generally of mixed types.

A.10.1 The Basics

Here is example usage:

```
> g <- list(x = 4:6, s = "abc")
g
$x
[1] 4 5 6
$s
[1] "abc"
> g$x # can reference by component name
[1] 4 5 6
> g$s
[1] "abc"
> g[[1]] # can reference by index, but note double brackets
[1] 4 5 6
> g[[2]]
[1] "abc"
> for (i in 1:length(g)) print(g[[i]])
[1] 4 5 6
[1] "abc"
```

```
# now have ftn oddcount() return odd count AND the odd numbers themselves,
# using the R list type
> source("odd.R")
> oddcount
function(x) {
    x1 <- x[x %% 2 == 1]
    return(list(odds=x1, numodds=length(x1)))
}
# R's list type can contain any type; components delineated by $
> oddcount(y)
$odds
[1] 5 13
$numodds
[1] 2
```

```
> ocy <- oddcount(y) # save the output in ocy, which will be a list
```

> ocy <- oddcount(y) \# save the output in ocy, which will be a list
> ocy
> ocy
\$odds
\$odds
[1] 5 13
[1] 5 13
$numodds
[1] 2
> ocy$odds
[1] 5 13
> ocy[[1]] \# can get list elements using [[]] instead of \$
[1] 5 13
> ocy[[2]]
[1] 2

```

\section*{A.10.2 The Reduce() Function}

One often needs to combine elements of a list in some way. One approach to this is to use Reduce():
```

> x <- list (4:6,c(1,6,8))
> x
[[1]]
[1] 4 5 6

```
[[2]]
[1] 168
\(>\operatorname{sum}(x)\)
Error in sum(x) : invalid 'type' (list) of argument
> Reduce (sum, \(x\) )
[1] 30
Here Reduce() cumulatively applied R's sum() to \(\mathbf{x}\). Of course, you can use it with functions you write yourself too.

Continuing the above example:
```

> Reduce(c,x)
[1] 4 5 6 1 6 8

```

\section*{A.10.3 S3 Classes}
\(R\) is an object-oriented (and functional) language. It features two types of classes, S3 and S4. I'll introduce S3 here.

An S3 object is simply a list, with a class name added as an attribute:
```

> j <- list(name="Joe", salary=55000, union=T)
> class(j) <- "employee"
> m <- list(name="Joe", salary=55000, union=F)
> class(m) <- "employee"

```

So now we have two objects of a class we've chosen to name "employee". Note the quotation marks.

We can write class generic functions:
```

> print.employee <- function(wrkr) {

+ cat(wrkr\$name,"\n")
+ cat("salary",wrkr\$salary,"\n")
+ cat("union}mmember",wrkr\$union,"\n"
+ }
> print(j)
Joe
salary 55000
union member TRUE

```
```

> j
Joe
salary 55000
union member TRUE

```

What just happened? Well, print() in R is a generic function, meaning that it is just a placeholder for a function specific to a given class. When we printed \(\mathbf{j}\) above, the \(R\) interpreter searched for a function print.employee(), which we had indeed created, and that is what was executed. Lacking this, R would have used the print function for R lists, as before:
```

> rm(print.employee) \# remove the function, to see what happens with print
> j
\$name
[1] "Joe"
\$salary
[1] 55000
\$union
[1] TRUE
attr(,"class")
[1] "employee"

```

\section*{A. 11 Some Workhorse Functions}
```

> m <- matrix(sample(1:5,12,replace=TRUE),ncol=2)
> m
[,1] [,2]
[1,] 2 1
[2,] 2 5
[3,] 5 4
[4,] 5 1
[5,] 2 1
[6,] 1 3

call sum() on each row

> apply(m,1,sum)
[1] 3 7 9 6 3 4

call sum() on each column

> apply(m,2,sum)

```
[1] 1715
> f <- function(x) sum(x[x >= 4])
\# call f() on each row
> apply(m,1,f)
[1] 059500
> l <- list (x = 5, y = 12, z = 13)
\# apply the given funciton to each element of \(l\), producing a new list
> lapply(l,function(a) a+1)
\$x
[1] 6
\$y
[1] 13
\$
[1] 14
\# group the first column of \(m\) by the second
> sout <- split(m[,1],m[,2])
> sout
\$'1'
[1] 252
\$'3'
[1] 1
\$'4'
[1] 5
[1] 2
\# find the size of each group, by applying the length() function
> lapply(sout,length)
\$'1'
[1] 3
[1] 1
\$'4'
[1] 1
\$'5'
[1] 1
\# like lapply(), but sapply() attempts to make vector output
> sapply(sout, length)
```

1 3 4 5
3}111114

```

\section*{A. 12 Handy Utilities}

R functions written by others, e.g. in base R or in the CRAN repository for user-contributed code, often return values which are class objects. It is common, for instance, to have lists within lists. In many cases these objects are quite intricate, and not thoroughly documented. In order to explore the contents of an object - even one you write yourself-here are some handy utilities:
- names(): Returns the names of a list.
- \(\operatorname{str}()\) : Shows the first few elements of each component.
- summary (): General function. The author of a class \(\mathbf{x}\) can write a version specific to \(\mathbf{x}\), i.e. summary.x(), to print out the important parts; otherwise the default will print some bare-bones information.

For example:
```

> z <- list(a = runif(50), b = list(u=sample(1:100,25), v="blue\sqcupsky"))
> z
\$a
[1] 0.301676229 0.679918518 0.208713522 0.510032893 0.405027042
0.412388038
[7] 0.900498062 0.119936222 0.154996457 0.251126218 0.928304164
0.979945937
[13] 0.902377363 0.941813898 0.027964137 0.992137908 0.207571134
0.049504986
[19] 0.092011899 0.564024424 0.247162004 0.730086786 0.530251779
0.562163986
[25] 0.360718988 0.392522242 0.830468427 0.883086752 0.009853107
0.148819125
[31] 0.381143870 0.027740959 0.173798926 0.338813042 0.371025885
0.417984331
[37] 0.777219084 0.588650413 0.916212011 0.181104510 0.377617399
0.856198893
[43] 0.629269146 0.921698394 0.878412398 0.771662408 0.595483477
0.940457376
[49] 0.228829858 0.700500359

```
```

\$b
bu
[1] 33 67 32 76 29 3 42 54 97 41 57 87 36 92 81 31 78 12 85 73 26 44
864043
bv
[1] "blue\sqcupsky"
> names(z)
[1] "a" "b"
> str(z)
List of 2
\$ a: num [1:50] 0.302 0.68 0.209 0.51 0.405 ...
\$ b:List of 2
..\$ u: int [1:25] 33 67 32 76 29 3 42 54 97 41 ...
..\$ v: chr "blueьsky"
> names(z\$b)
[1] "u" "v"
> summary(z)
Length Class Mode
a 50 -none- numeric
b 2 -none- list

```

\section*{A. 13 Data Frames}

Another workhorse in R is the data frame. A data frame works in many ways like a matrix, but differs from a matrix in that it can mix data of different modes. One column may consist of integers, while another can consist of character strings and so on. Within a column, though, all elements must be of the same mode, and all columns must have the same length.

We might have a 4-column data frame on people, for instance, with columns for height, weight, age and name - 3 numeric columns and 1 character string column.

Technically, a data frame is an R list, with one list element per column; each column is a vector. Thus columns can be referred to by name, using the \(\$\) symbol as with all lists, or by column number, as with matrices. The matrix \(\mathbf{a}[\mathbf{i}, \mathbf{j}]\) notation for the element of \(\mathbf{a}\) in row \(\mathbf{i}\), column \(\mathbf{j}\), applies to data frames. So do the \(\mathbf{r b i n d}()\) and \(\mathbf{c b i n d}()\) functions, and various other matrix operations, such as filtering.

Here is an example using the dataset airquality, built in to R for illustration purposes. You can learn about the data through R's online help, i.e.
```

> ?airquality

```

Let's try a few operations:
```

> names(airquality)
[1] "Ozone" "Solar.R" "Wind" "Temp" "Month" "Day"
> head(airquality) \# look at the first few rows
Ozone Solar.R Wind Temp Month Day
1 41 4190
2 36 118
3 12 12 149 12.6 74 74

```

```

5 NA
> airquality[5,3] \# wind on the 5th day
[1] 14.3
> airquality$Wind[3] # same
[1] 12.6
> nrow(airquality) # number of days observed
[1] 153
> ncol(airquality) # number of variables
[1] 6
> airquality$Celsius <- (5/9) * (airquality[,4] - 32) \# new variable
> names(airquality)
[1] "Ozone" "Solar.R" "Wind" "Temp" "Month" "Day" "Celsius"
> ncol(airquality)
[1] 7
> airquality[1:3,]
Crrone
> aqjune <- airquality[airquality$Month == 6,] # filter op
> nrow(aqjune)
[1] 30
> mean(aqjune$Temp)
[1] 79.1
> write.table(aqjune,"AQJune") \# write data frame to file
> aqj <- read.table("AQJune",header=T) \# read it in

```

\section*{A. 14 Graphics}

R excels at graphics, offering a rich set of capabilities, from beginning to advanced. In addition to the functions in base R, extensive graphics packages are available, such as lattice and ggplot2.

One point of confusion for beginners involves saving an \(R\) graph that is currently displayed on the screen to a file. Here is a function for this, which I include in my R startup file, .Rprofile, in my home directory:
```

pr2file
function (filename)
{
origdev <- dev.cur()
parts <- strsplit(filename, ".", fixed = TRUE)
nparts <- length(parts[[1]])
suff <- parts[[1]][nparts]
if (suff == "pdf") {
pdf(filename)
}
else if (suff == "png") {
png(filename)
}
else jpeg(filename)
devnum <- dev.cur()
dev.set(origdev)
dev.copy(which = devnum)
dev.set(devnum)
dev.off()
dev.set(origdev)
}

```

The code, which I won't go into here, mostly involves manipulation of various R graphics devices. I've set it up so that you can save to a file of type either PDF, PNG or JPEG, implied by the file name you give.

\section*{A. 15 Packages}

The analog of a library in \(\mathrm{C} / \mathrm{C}++\) in R is called a package (and often loosely referred to as a library). Some are already included in base R , while others can be downloaded, or written by yourself.
```

> library(parallel) \# load the package named 'parallel'
> ls(package:parallel) \# let's see what functions it gave us
[1] "clusterApply" "clusterApplyLB" "clusterCall"
[4] "clusterEvalQ" "clusterExport" "clusterMap"
[7] "clusterSetRNGStream" "clusterSplit" "detectCores"
[10] "makeCluster" "makeForkCluster" "makePSOCKcluster"
[13] "mc.reset.stream" "mcaffinity" "mccollect"
[16] "mclapply" "mcMap" "mcmapply"
[19] "mcparallel" "nextRNGStream" "nextRNGSubStream"
[22] "parApply" "parCapply" "parLapply"
[25] "parLapplyLB" "parRapply" "parSapply"
[28] "parSapplyLB" "pvec" "setDefaultCluster"
[31] "splitIndices" "stopCluster"
> ?pvec \# let's see how one of them works

```

The CRAN repository of contributed R code has thousands of R packages available. It also includes a number of "tables of contents" for specific areas, say time series, in the form of CRAN Task Views. See the R home page, or simply Google "CRAN Task View."
```

> install.packages("cts","~/myr") \# download into desired directory
--- Please select a CRAN mirror for use in this session ---
downloaded 533 Kb
The downloaded binary packages are in
/var/folders/jk/dh9zkds97sj23kjcfkr5v6q00000gn/T//RtmplkKzOU/downloadeo
> ?library
> library(cts,lib.loc="~/myr")
Attaching package: c ts

```

\section*{A. 16 Other Sources for Learning R}

There are tons of resources for R on the Web. You may wish to start with the links at http: //heather.cs.ucdavis.edu/~matloff/r.html.

\section*{A. 17 Online Help}

R's help() function, which can be invoked also with a question mark, gives short descriptions of the R functions. For example, typing
> ?rep
will give you a description of R's rep() function.
An especially nice feature of \(R\) is its example() function, which gives nice examples of whatever function you wish to query. For instance, typing
> example(wireframe())
will show examples - R code and resulting pictures - of wireframe(), one of R's 3-dimensional graphics functions.

\section*{A. 18 Debugging in R}

The internal debugging tool in R , debug(), is usable but rather primitive. Here are some alternatives:
- The RStudio IDE has a built-in debugging tool.
- For Emacs users, there is ess-tracebug.
- The StatET IDE for R on Eclipse has a nice debugging tool. Works on all major platforms, but can be tricky to install.
- My own debugging tool, debugR, is extensive and easy to install, but for the time being is limited to Linux, Mac and other Unix-family systems. See http://heather.cs.ucdavis.edu/debugR.html.

\section*{A. 19 Complex Numbers}

If you have need for complex numbers, R does handle them. Here is a sample of use of the main functions of interest:
```

> za <- complex(real=2,imaginary=3.5)
> za

```
```

[1] 2+3.5i
> zb <- complex(real=1,imaginary=-5)
> zb
[1] 1-5i
> za * zb
[1] 19.5-6.5i
> Re(za)
[1] 2
> Im(za)
[1] 3.5
> za^2
[1] -8.25+14i
> abs(za)
[1] 4.031129
> exp(complex(real=0,imaginary=pi/4))
[1] 0.7071068+0.7071068i
> cos(pi/4)
[1] 0.7071068
> sin(pi/4)
[1] 0.7071068

```

Note that operations with complex-valued vectors and matrices work as usual; there are no special complex functions.

\section*{A. 20 Further Reading}

For further information about R as a programming language, there is my book, The Art of \(R\) Programming: a Tour of Statistical Software Design, NSP, 2011, as well as Hadley Wickham's Advanced R, Chapman and Hall, 2014.

For R's statistical functions, a plethora of excellent books is available. such as The R Book (2nd Ed.), Michael Crowley, Wiley, 2012. I also very much like \(R\) in a Nutshell (2nd Ed.), Joseph Adler, O'Reilly, 2012, and even Andrie de Vries' \(R\) for Dummies, 2012.```


[^0]:    ${ }^{1}$ I used to be mildy troubled by Amazon's suggestions, but with the general demise of browsable bricks-and-mortar bookstores, I now tend to view it as "a feature rather than a bug."

[^1]:    ${ }^{1}| | x \|_{\infty}=\max _{i}\left|x_{i}\right|$

[^2]:    ${ }^{1}$ The reader may wish to consult my open source book on probability and statistics, N. Matloff, From Algorithms to Z-Scores: Probability and Statistical Modeling in Computer Science, http://heather.cs.ucdavis.edu/ probstatbook.

[^3]:    ${ }^{2}$ For many, the term regression analysis connotes a linear parametric model. But actually the term is much more general, defined to be the conditional mean as discussed below. Most ML techniques are nonparametric, as explained below, but are still regression methods.

[^4]:    ${ }^{3}$ You may be familiar with the term statistically significant. It is generally recognized today that this term can

[^5]:    be quite misleading. This is beyond the scope of this book, but suffice it to say that although age and gender are statistically significant above (details available via adding the call summary (lmout) to the code below), their practical importance as predictors here is essentially nil. See R. Wasserstein and N. Lazar, The ASA's Statement on p-Values: Context, Process, and Purpose, The American Statistician, June 2016.
    ${ }^{4}$ The gender variable had been coded in the data as ' $M$ ' and ' $F$ ', and $R$ chose the first one that showed up in the data, ' M ', as its base.

[^6]:    ${ }^{5}$ Note the representation here of a column vector as the transpose of a row vector. We will often do this, in order to save space on the page. And, any reference to a vector will be to a column vector unless stated otherwise.

[^7]:    ${ }^{6}$ Even the first two could have been stored as factors, but were not coded as so.

[^8]:    ${ }^{7}$ One must take sampling variability into account, say by forming confidence intervals for the $\beta_{i}$. As noted earlier, do not use significance testing for this. At any rate, these aspects are beyond the scope of this book.

[^9]:    ${ }^{8}$ These properties form the intuitive motivation for using logit models. Another motivation is this: Let $X$ denote the vector of predictor variables, and let $Y$ be the response variable, with the two classes 0 and 1 . If within each class, $X$ has a multivariate normal distribution, with the same covariance matrix in each class.
    ${ }^{9}$ The class of the return value is ' $\mathbf{g l m}$ ', which is a subclass of ' $\mathbf{l m}$ '.
    ${ }^{10}$ By the way, the argument family must be an object of class 'function'. Inside $\operatorname{glm}()$, there will be a call family (). $R$ has a built-in function binomial(), which is called here.

[^10]:    ${ }^{11}$ The repeatable experiment here is randomly choosing 50 people. Each time we perform this experiment, we get a different set of 50 people, thus a different value of $\widehat{p}$. The latter is a random variable, and thus has a variance.

[^11]:    ${ }^{12}$ The latter is also called a holdout set or a validation set. Note that there are many variants of this, e.g. something called $K$-fold cross validation.

[^12]:    ${ }^{13}$ Under Mean Squared Error loss.

[^13]:    ${ }^{14}$ The term abuse here will not necessarily connote intent. It may occur out of ignorance of the problem.
    ${ }^{15}$ For those who know statistics: This gives us a Type I error rate of about 0.05 , the standard used by most people.
    ${ }^{16}$ For those with background in statistics, the reason this is called "p-hacking" is that the researcher may form a significance test for each gene, computing a p-value for each test. Since under the null hypothesis we have a $5 \%$ chance of getting a "significant" p-value for any given gene, the probability of having at least one significant result out of the thousands of tests is quite high, even if the null hypothesis is true in all cases. There are techniques called multiple inference or multiple comparison methods, to avoid p-hacking in performing statistical inference. See for example Multiple Comparisons: Theory and Methods, Jason Hsu, 1996, CRC.

[^14]:    ${ }^{17}$ Available from github.com/matloff.

[^15]:    ${ }^{1}$ Recall that the term basis in linear algebra means a linearly independent set of vectors that spans the given subspace, i.e. any vector in the subspace can be expressed as a linear combinations of the basis vectors.
    ${ }^{2}$ After accumlating enough new users, of course, we should update $A$, and thus $W$ and $H$.

[^16]:    ${ }^{3}$ Make sure not to confuse the rows of $A$ with the rows of an image.
    ${ }^{4}$ For simplicity here we will assume greyscale. For color, each row of $A$ will consist of three pixel vectors, one for each primary color.

[^17]:    ${ }^{5}$ One could check this by finding the number of nonzero eigenvalues of $A^{\prime} A$, say by running $\operatorname{prcomp}()$.

[^18]:    ${ }^{6}$ By the way, Alt. Least Squares is not the default for $\mathbf{n m f}()$. To select it, set method $=$ 'snmf $/ \mathbf{r}$ '.

[^19]:    ${ }^{7}$ The -1 specifies that we do not want a constant term in the model.
    ${ }^{8}$ See Donoho and Stodden, When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts?, https://web.stanford.edu/~vcs/papers/NMFCDP.pdf.

[^20]:    ${ }^{9}$ In regression modeling, the values of true Y minus the fitted model are called "residuals." They are often used to assess quality of model fit. There is a residuals

[^21]:    ${ }^{1}$ If NC is new, not in the database (called cold start), we synthesize a list element for it, assuming NC has rated at least one item.

[^22]:    ${ }^{1}$ I personally use vim, as I want to have the same text editor no matter what kind of work I am doing. But I have my own macros to help with R work.
    ${ }^{2}$ The source code for this file is at http://heather.cs.ucdavis.edu/~matloff/MiscPLN/R5MinIntro.tex. You can download the file, and copy/paste the text from there.

