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Chapter 1

Setting the Stage

Let’s first get an overview of the topic and the nature of this book. Keep in mind, this is just
an overview; many questions should come to your mind, hopefully whetting your appetite for the
succeeding chapters!

In this chapter, we will mainly describe collaborative filtering.

1.1 What Are Recommender Systems?

What is a recommender system (RS)? We’re all familiar with the obvious ones — Amazon suggesting
books for us to buy, Twitter suggesting whom we may wish to follow, even OK Cupid suggesting
potential dates.

But many applications are less obvious. The University of Minnesota, for instance, has developed
an RS to aid its students in selection of courses. The tool not only predicts whether a student
would like a certain course, but also even predicts the grade she would get!

In discussing RS systems, we use the terms users and items, with the numerical outcome being
termed the rating. In the famous MovieLens dataset, which we’ll use a lot, users provide their
ratings of films.

Systems that combine user and item data as above are said to perform collaborative filtering. The
first part of this book will focus on this type of RS. Content-based RS systems work by learning a
user’s tastes, say by text analysis.

Ratings can be on an ordinal scale, e.g. 1-5 in the movie case. Or they can be binary, such as a
user clicking a Like symbol in Twitter, 1 for a click, 0 for no click.

5
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But ratings in RSs are much more than just the question, “How much do you like it?” The
Minnesota grade prediction example above is an instance of this.

In another example, we may wish to try to predict bad reactions to presciption drugs among
patients in a medical organization. Here the user is a patient, the item is a drug, and the rating
may be 1 for reaction, 0 if not.

More generally, any setting suitable for what in statistics is called a crossed heirachical model fits
into RS. The word crossed here means that each user is paired with multiple items, and vice versa.
The hierarchy refers to the fact that we can group users within items or vice versa. There would
be two levels of hierarchy here, but there could be more.

Say we are looking at elementary school students rating story books. We could add more levels to
the analysis, e.g. kids within schools within school districts. It could be, for instance, that kids
in different schools like different books, and we should take that into account in our analysis. The
results may help a school select textbooks that are especially motivational for their students.

Note that in RS data, most users have not rated most items. If we form a matrix of ratings, with
rows representing users and columns indicating items, most of the elements of the matrix will be
unknown. We are trying to predict the missing values. Note carefully that these are not the same
as 0s.

1.2 How Is It Done?

Putting aside possible privacy issues that arise in some of the above RS applications,1 we ask here,
How do they do this? In this prologue, we’ll discuss a few of the major methods.

1.2.1 Nearest-Neighbor Methods

This is probably the oldest class of RS methodology, still popular today. It can be explained very
simply.

Say there is a movie spoofing superheroes called Batman Goes Batty (BGB). Maria hasn’t seen it,
and wonders whether she would like it. To form a predicted rating for her, we could search in our
dataset for the k users most similar to Maria in movie ratings and who have rated BGB. We would
then average their ratings in order to derive a predicted rating of BGB for Maria. We’ll treat the
issues of choosing the value of k and defining “similar” later, but this is the overview.

The above approach is called user-based, with a corresponding item-based method. In general, these

1I used to be mildy troubled by Amazon’s suggestions, but with the general demise of browsable bricks-and-mortar
bookstores, I now tend to view it as “a feature rather than a bug.”
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are called k-NN methods, for “k-nearest neighbor.” (We’ll shorten it to kNN.)

1.2.2 Latent Factor Approach: Matrix Factorization

Let A denote the matrix of ratings described earlier, with Aij denoting the rating user i gives to
item j. Keep in mind, as noted, that most of the entries in A are unknown; we’ll refer to them as
NA, the R-language notation for missing values. Matrix factorization (MF) methods then estimate
all of A as follows.

Let r and s denote the numbers of rows and colums of A, respectively. In the smallest version of the
MovieLens data, for example, r = 943 and s = 1682. The idea is to find a low-rank approximation
to A: We find matrices W and H, of dimensions r ×m and m× s, each of rank m, such that

A ≈WH (1.1)

Typically m << min(r, s). Software libraries typically take 10 as the default.

We will review the concept of matrix rank later, but for now the key is that W and H are known
matrices, no NA values. Thus we can form the product WH, thus obtaining estimates for all the
missing elements of A.

1.2.3 Latent Factor Approach: Statistical Models

As noted, collaborative-filtering RS applications form a special case of crossed random-effects mod-
els, a statistical methodology. In that way, a useful model for Yij , the rating user i gives item j,
is

Yij = µ+ αi + βj + εij (1.2)

a sum of an overall mean, an effect for user i, an effect for item j, and an “all other effects” term
(often called the “error term,” which is rather misleading).

In the MovieLens setting, µ would be the mean rating given to all movies (in the “population”
of all movies, past, present and future), αi would be a measure of the tendency of user i to give
ratings more liberal or harsher than the average user, and βj would a measure of the popularity of
movie j, relative to the average movie.

What assumptions are made here? First, µ is a fixed but unknown constant to be estimated. As to
αi and βj , one could on the one hand treat them as fixed constants to be estimated. On the other
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hand, there are some advantages to treating them as random variables, we will be seen in Chapter
6.

1.2.3.1 Comparison

Why so many methods? There is no perfect solution, and each has advantagages and disadvantages.

First, note that in the kNN and MF methods, the user must choose the value of a design parameter.
In kNN, we must choose k, the number of nearest neighbors, and while in MF, we must choose m,
the rank.

Parameters such as k and m are known as tuning parameters in statistics and hyperparameters in
machine learning (ML). Many ML methods have multiple hyperparameters, sometimes 10 or more.
This can be quite a drawback, as choosing their values is quite difficult. By contrast, the statistical
model described above has no tuning parameters.

A problem with both MF and the statistical models is that one is limited to prediction only of
ratings for users and items that are already in our dataset. We could not predict a new user, for
instance, without recomputing an updated fit. With kNN, there is no such restriction.

1.3 Covariates/Side Information

In predicting the rating for a given (user,item) pair, we may for example have demographic infor-
mation on the user, such as age and gender. Incorporating such information — called covariates in
statistics and side information in machine learning — may enhance our predictive ability, especially
if this user has not rated many items to date.

1.4 Prerequisites

What is background is needed for this book?

• A calculus-based probability course.

• Some facility in programming.

• Good mathematical intuition.

We will be using the R programming language. No prior experience with R is assumed. A Quickstart
in R is available in Appendix A.
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We will also use some machine learning techniques, but no prior background is assumed.

1.5 Software

A number of libraries are available for RS methods. We will use the R package rectools, available
in my GitHub repo, github.com/matloff.

1.6 What You Should Gain from This Book

• A solid understanding of RS fundamentals: You’ll be able to build simple but effective RS
systems, and will be able to read books and research on advanced RS methods.

• Greatly enhanced understanding of the basics of probability/statistics, machine learning and
linear algebra.
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Chapter 2

Some Infrastructure: Linear Algebra

There are some issues that will come up frequently. We’ll first cover them briefly here, more later as
the need arises. This chapter will review linear algebra, while the following one will review/extend
the reader’s knowledge of probability and statistics.

RS methods, as with other machine learning (ML) techniques, often make use of linear algebra,
well beyond mere matrix multiplication.

2.1 Matrix Rank and Vector Linear Independence

Consider the matrix

M =

 1 5 1 −2
8 3 2 8
9 8 3 6

 (2.1)

Note that the third row is the sum of the first two. In many contexts, this would imply that there
are really only two “independent” rows in M in some sense related to the application.

Denote the rows of M by ri, i = 1, 2, 3. Recall that we say they are linearly independent if it
is not possible to find scalars ai, at least one of them nonzero, such that the linear combination
a1r1 + a2r2 + a3r3 is equal to 0. In this case a1 = a2 = 1 and a3 = −1 gives us 0, so the rows of M
are linearly dependent.

Recall that the rank of a matrix is its maximal number of linearly independent rows and colums.
(It can be shown that the row rank and column rank are the same.) The rank of M above is 2.

11
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Recall too the notion of the basis of a vector space V. It is a linearly independent set of vectors
whose linear combinations collectively form all of V. Here r1 and r2 form a basis for the row space
of M . Alternatively, r1 and r3 also form a basis, as do r2 and r3.

The rank of an r × s matrix is thus at most min(r, s). In the case of equality, we say the matrix
has full rank. A ratings matrix, such as A in Section 1.2.2, should be of full rank, since there
presumably are no exact dependencies among users or items.

2.2 Partitioned Matrices

It is often helpful to partition a matrix into blocks (often called tiles in the parallel computation
community).

2.2.1 How It Works

Consider matrices A, B and C,

A =

 1 5 12
0 3 6
4 8 2

 (2.2)

and

B =

 0 2 5
0 9 10
1 1 2

 , (2.3)

so that

C = AB =

 12 59 79
6 33 42
2 82 104

 . (2.4)

We could partition A as, say,

A =

(
A11 A12

A21 A22

)
, (2.5)
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where

A11 =

(
1 5
0 3

)
, (2.6)

A12 =

(
12
6

)
, (2.7)

A21 =
(

4 8
)

(2.8)

and

A22 =
(

2
)
. (2.9)

Similarly we would partition B and C into blocks of a compatible size to A,

B =

(
B11 B12

B21 B22

)
(2.10)

C =

(
C11 C12

C21 C22

)
, (2.11)

so that for example

B21 =
(

1 1
)
. (2.12)

The key point is that multiplication still works if we pretend that those submatrices are numbers!
For example, pretending like that would give the relation

C11 = A11B11 +A12B21, (2.13)

which the reader should verify really is correct as matrices, i.e. the computation on the right side
really does yield a matrix equal to C11.
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2.2.2 Important Special Case

Recall the relation

A ≈WH (2.14)

in Section 1.2.2, where A is r× s, W is r×m and H is m× s. Partition the first and third matrices
into rows, i.e. write

A =

 a1
...
ar

 , (2.15)

and

H =

 h1
...
hm

 , (2.16)

Keep W unpartitiond:

W =

 w11 ... w1m

... ... ...
wr1 ... wrm

 , (2.17)

Using the partitioning idea, write WH as a “matrix-vector product”:

WH =

 w11 ... w1m

... ... ...
wr1 ... wrm

 h1
...
hm

 =

 w11h1 + ...+ w1mhm
...

wr1h1 + ...+ wrmhm

 (2.18)

Look at that! What it says is row i of WH, and thus approximately row i of A, is a linear
combination of the rows of H. And with a different partitioning, we’d find that each column
of WH is a linear combination of the columns of H. We’ll see in Chapter 5 that this has big
implications for the matrix factorization method of RS, a topic we lay the groundwork for next.
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2.3 The Notion of Approximate Rank: Principal Components
Analysis

Suppose the matrix in (2.1) had been

M =

 1 5 1 −2
8.02 2.99 2 8.2

9 8 3 6

 (2.19)

Intuitively, we still might say that the rank of M is “approximately” 2. Or better yet, row 3
still seems redundant, Let’s formalize that, leading to one of the most common techniques in
statistics/machine learning. By the way, this technique will also later provide a way to find W and
H in (2.14).

(Warning: This section will be somewhat long, but quite central to RS/ML.)

2.3.1 Dimension Reduction

One of the major themes in computer science is scale, as in the common question, “Does it scale?”
The concern is, does an algorithm, method or whatever work well in large-scale systems?

In the RS context, just think of, say, Amazon. The business has millions of users and millions of
items. In other words, the ratings matrix has millions of rows and millions of columns, and even one
million rows and columns would mean a total number of (106)2 = 1012 entries, about 8 terabytes
of data.

This is a core point in statistics/machine learning, the notion of dimension reduction. In complex
applications, there is a pressing need to reduce the number of variables down to a manageable
number — manageable not only in terms of computational time and space, but also the statistical
problem of overfitting (Chapter 3).

So we need methods to eliminate redundant or near-redundant data, such as row 3 in (2.19).

2.3.2 Exploiting Correlations

Statistically, the issue is one of correlation. In (2.19), the third row is highly correlated with (the
sum of) the first two rows. To explore the correlation idea further, here are two graphs of bivariate
normal densities:



16 CHAPTER 2. SOME INFRASTRUCTURE: LINEAR ALGEBRA

s

−10

−5

0

5

10

t

−10

−5

0

5

10

z

0.005

0.010

0.015

s

−10

−5

0

5

10

t

−10

−5

0

5

10

z

0.000
0.005
0.010
0.015
0.020
0.025

Let’s call the two variables X1 and X2, with the corresponding axes in the graphs to be referred
to as t1 and t2. The first graph was generated with a correlation of 0.2 between the two variables,
while in the second one, the correlation is 0.8.

Not surprisingly due to the high correlation in the second graph, the “two-dimensional bell” is
concentrated around a straight line, specifically the line t2 = −t1. In other words, there is high
probability that X2 ≈ −X1, so that:

To a large extent, there is only one variable here, X1 (or other choices, e.g. X2), not
two.

Note one more time, though, the approximate nature of the approach we are developing. There
really are two variables above. By using only one of them, we are relinquishing some infor-
mation. But with the need to avoid overfitting, use of the approximation may be a
net win for us.

Well then, how can we determine a set of near-redundant variables, so that we can consider omitting
them from our analysis? Let’s look at those graphs a little more closely.

Any level set in the above graphs, i.e. a curve one obtains by slicing the bells parallel to the
(t1, t2) plane can be shown to be an ellipse. As noted, the major axis of the ellipse will be the line
t1 + t2 = 0. The minor axis will be the line perpendicular to that, t1 − t2 = 0. In turn, that means
that standard probability methods can then be used to show that the variables

Y1 = X1 +X2 (2.20)
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and

Y2 = X1 −X2 (2.21)

have 0 correlation. Then we have a good case for using only Y1 in our data analysis, instead of
using X1 and X2.

But why not use just X1? As usual in statistics/ML, things get more complicated in higher
dimensions. In choosing variables to retain in our analysis, it makes sense to require that they be
uncorrelated, as Y1 and Y2 are above; if not, intuitively there is some redundancy among them,
which of course is what we are hoping to avoid.

With that in mind, now suppose we have p variables, X1, X2, ..., Xp, not just two. We can no longer
visualize in higher dimensions, but one can show that the level sets will be p-dimensional ellipsoids.
These now have p axes rather than just two, and we can define p new variables, Y1, Y2, ..., Yp from
the Xi, such that:

(a) The Yi are uncorrelated.

(b) We can order them in terms of variance:

V ar(Y1) > V ar(Y2) > ... > V ar(Yp) (2.22)

Now we have a promising solution to our dimension reduction problem. In [(b)] above, we can
choose to use just the first few of the Yi, omitting the ones with small variance. And again, since
the Yi will be uncorrelated, we are eliminating a source of possible redundancy among them.

PCA won’t be a perfect solution — there is no such thing — as might be the case if the relations
between variables is nonmonotonic. A common example is age, with mean income given age tending
to be a quadratic (or higher degree) polynomial relation. But PCA is a very common “go to” method
for dimension reduction, and may work well even in (mildly) nonmonotonic settings.

Now, how do we find these Yi?

2.3.3 Eigenanalysis

Say I have a sample of n observations on two variables, x = (x1, ..., xn) and y = (y1, ..., yn, say
height and weight on n = 100 people. Then, formally, the correlation between the variables is

1
n

∑n
i=1(xi − x)(yi − y)

s.d.(x) s.d.(y)
(2.23)
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where the denominator is the product of the sample standard deviations of the two variables, and
x) and y) are the sample means. The correlation is a number between -1 and 1.

The correlation matrix C of a set of p variables is p×p, i.e. square. Moreover, since corr(Xi, Xj) =
corr(Xj , Xi), C is symmetric:

C ′ = C (2.24)

where ′ denotes matrix transpose.

Recall that for any square matrix L, if there is a scalar λ and a nonzero vector x such that

Lx = λx (2.25)

then we say that x is an eigenvector of L, with eigenvalue λ. (Note that the above implies that x
is a column vector, p× 1, a convention we will use throughout the book.)

It can be shown that any symmetric matrix has real (not complex) eigenvalues, and that the
corresponding eigenvectors U1, ..., Up are orthogonal,

U ′iUj = 0, i 6= j (2.26)

We always take the Ui to have length 1.

2.3.4 PCA

Typically we have many cases in our data, say n, arranged in an n × p matrix Q, with row i
representing case i and column j representing the jth variable.

Say our data is about people, 1000 of them, and we have data on height, weight, age, gender, years
of schooling and income. Then n = 1000, p = 6.

So, finally, here is PCA:

1. Find the correlation matrix (or covariance matrix, a similar notion) from the data in Q. Note
that since there are p, the correlation matrix will be p× p.

2. Compute its eigenvalues and eigenvectors.

3. After ordering the eigenvalues from largest to smallest, let λi be the ith largest, and let Ui be
the corresponding eigenvector, scaled to have length 1.
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4. Let U be the matrix whose ith column is Ui. Its size will be p× s.

5. Choose the first few eigenvalues, say s of them, using some criterion (see below). Denote the
matrix of the first s columns of U by U (s). Note that U is

6. Form a new data matrix,

R = QU (s) (2.27)

R will be of size n × s. Column j of R is called the jth principal component of the original
data.

It will be shown below that the variance of the jth principal component is λj . The sum of all
p values is the same as the sum of the variances of the original variables, an important point.

From this point onward, any data analysis we do will be with R, not Q. In R, row i is still data
on the ith case, e.g. the ith person, but now with s new variables in place of the original p. Since
typically s << p, we have achieved considerable dimension reduction.

2.3.5 Matrix View

Using the approach of Section 2.2, write

R = QU (s) = Q(U1, ..., Us) = (QU1, ..., QUs) (2.28)

where as before the Ui are the eigenvectors

So, the ith column of R is QUi. The latter quantity, again by Section 2.2, is a linear combination of
the columns of Q, with the coefficients in that linear combination being the elements in Ui. Recall
that each column of Q is one variable; e.g. for people, there may be an age column, a height column,
a weight column and so on. Each column in R is one of our new variables. Therefore:

The ith new variable is equal to a linear combination of the old variables.

So, a new variable might be, say, 1.9 age + 0.3 height + 1.2 weight.

2.3.6 Why It Works

Recall that the new variables have the λi for variances and are uncorrelated. Here’s why:
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It is common to center and scale one’s data, meaning to subtract from each variable its mean, and
divide by its standard deviation. The new mean and standard deviation are 0 and 1. In that case,
(2.23) becomes

1

n

n∑
i=1

xiyi (2.29)

The reader should verify that with the matrices Q and R above (old and new data), their correlation
matrices are Q′Q and R′R. Let’s see how that works out:

R′R = (QU (s))′(QU (s)) (2.30)

= U (s)′Q′ QU (s) (2.31)

(2.32)

using the fact that (AB)′ = B′A′.

But remember that the Ui are eigenvectors of the correlation matrix, in this case Q′Q! So

Q′QU (s) = (λ1U1, ..., λsUs) (2.33)

Finally, recall that the Ui are orthogonal with length 1. Substituting (2.33) in rrqq, we then get

R′R = diag(λ1, ..., λs) (2.34)

the matrix having the λi on the diagonal and 0s elsewhere. The latter imply that the new variables
are uncorrelated, and the former fact says that the variances of the new variables are the λi, as
claimed.

2.3.7 Choosing the Number of Principal Components

So, how do we choose s? This is the hard part, and there is no universal good method. Typically
s is chosen so that

s∑
j=1

λj (2.35)
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is “most” of total variance (again, that total is the above expression with p instead of s), but even
this is usually done informally.

In ML/RS settings, though, s is typically chosen by a technique called cross validation, to be
discussed in Chapter 3.

2.3.8 Software and Example

The most commonly used R function for PCA is prcomp(). As with many R functions, it has
many optional arguments; we’ll take the default values here.

For our example, let’s use the Turkish Teaching Evaluation data, available from the UC Irvine
Machine Learning Data Repository. It consists of 5820 student evaluations of university instructors.
Each student evaluation consists of answers to 28 questions, each calling for a rating of 1-5, plus
some other variables we won’t consider here.

> turk <- read.csv(’turkiye -student -evaluation.csv’,header=T)

> head(turk)

instr class nb.repeat attendance difficulty Q1 Q2 Q3 Q4

1 1 2 1 0 4 3 3 3 3

2 1 2 1 1 3 3 3 3 3

3 1 2 1 2 4 5 5 5 5

4 1 2 1 1 3 3 3 3 3

5 1 2 1 0 1 1 1 1 1

6 1 2 1 3 3 4 4 4 4

Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19

1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28

1 3 3 3 3 3 3 3 3 3

2 3 3 3 3 3 3 3 3 3

3 5 5 5 5 5 5 5 5 5

4 3 3 3 3 3 3 3 3 3

5 1 1 1 1 1 1 1 1 1

6 4 4 4 4 4 4 4 4 4

> tpca <- prcomp(turk [, -(1:5)]

Let’s explore the output. First, the standard deviations of the new variables:
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> tpca$sdev

[1] 6.1294752 1.4366581 0.8169210 0.7663429 0.6881709

[6] 0.6528149 0.5776757 0.5460676 0.5270327 0.4827412

[11] 0.4776421 0.4714887 0.4449105 0.4364215 0.4327540

[16] 0.4236855 0.4182859 0.4053242 0.3937768 0.3895587

[21] 0.3707312 0.3674430 0.3618074 0.3527829 0.3379096

[26] 0.3312691 0.2979928 0.2888057

> tmp <- cumsum(tpca$sdev ^2)

> tmp / tmp [28]

[1] 0.8219815 0.8671382 0.8817389 0.8945877 0.9049489

[6] 0.9142727 0.9215737 0.9280977 0.9341747 0.9392732

[11] 0.9442646 0.9491282 0.9534589 0.9576259 0.9617232

[16] 0.9656506 0.9694785 0.9730729 0.9764653 0.9797855

[21] 0.9827925 0.9857464 0.9886104 0.9913333 0.9938314

[26] 0.9962324 0.9981752 1.0000000

This is striking, The first principal component (PC) already accounts for 82% of the total variance
among all 28 questions. The first five PCs cover over 90%. This suggests that the designer of the
evaluation survey could have written a much more concise survey instrument with almost the same
utility.

Now keep in mind that each PC here is essentially a “super-question” capturing student opinion
via a weighted sum of the original 28 questions. Let’s look at the first two PCs’ weights:

> tpca$rotation [,1]

Q1 Q2 Q3 Q4 Q5

-0.1787291 -0.1869604 -0.1821853 -0.1841701 -0.1902141

Q6 Q7 Q8 Q9 Q10

-0.1870812 -0.1878324 -0.1867865 -0.1823915 -0.1923626

Q11 Q12 Q13 Q14 Q15

-0.1866948 -0.1862382 -0.1922729 -0.1911814 -0.1902380

Q16 Q17 Q18 Q19 Q20

-0.1962885 -0.1808833 -0.1935788 -0.1927359 -0.1931985

Q21 Q22 Q23 Q24 Q25

-0.1911060 -0.1908591 -0.1948393 -0.1931334 -0.1888957

Q26 Q27 Q28

-0.1908694 -0.1897555 -0.1886699

> tpca$rotation [,2]

Q1 Q2 Q3 Q4 Q5

0.35645673 0.23223504 0.11551155 0.24533527 0.20717759
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Q6 Q7 Q8 Q9 Q10

0.20075314 0.24290761 0.24901577 0.12919618 0.18911720

Q11 Q12 Q13 Q14 Q15

0.11051480 0.21203229 -0.10616030 -0.15629705 -0.15533847

Q16 Q17 Q18 Q19 Q20

-0.04865706 -0.26259518 -0.12905840 -0.15363392 -0.19670071

Q21 Q22 Q23 Q24 Q25

-0.22007368 -0.22347198 -0.10278122 -0.06210583 -0.20787213

Q26 Q27 Q28

-0.12045026 -0.07204024 -0.21401477

The first PC turned out to place approximately equal weights on all 28 questions. The second PC,
though, placed its heaviest weight on Q1, with substantially varying weights on the other questions.

While we are here, let’s check that the columns of U are orthogonal.

> t(tpca$rotation [,1]) %*% tpca$rotation [,2]

[,1]

[1,] -2.012279e-16

Yes, 0 (with roundoff error). As an exercise in matrix partitioning, the reader should run

t(tpca$rotation) %*% tpca$rotation

then check that it produces the identity matrix I, then ponder why this should be the case.
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Chapter 3

Some Infrastructure: Probability and
Statistics

Many RS methods are probabilistic in nature, so we will lay out some infrastructure. It is assumed
the reader has a background in calculus-based probability structures, such as expected value and
density functions. Background in statistics (as opposed to probability) and machine learning is not
assumed.1

Note that while we will develop some statistical methods here, notably regression and classification
models, we will not cover inferential statistical methods such as confidence intervals and significance
tests. For readers familiar with such topics, occasional footnotes will be provided.

Other than laying some groundwork, e.g. introducing the term dummy variables, the primary goal
of this chapter will be to discuss the issue of overfitting.

3.1 Data as a Sample

In statistics, the data are usually considered a sample from a population. For instance, during an
election campaign pollsters will take a sample, typically of 1200 people, from the population of all
voters. Say they are interested in p, the population proportion of voters favoring Candidate Jones.
They calculate their estimate of p, denoted p̂, to be the proportion of voters in the sample who like
Jones.

1The reader may wish to consult my open source book on probability and statistics, N. Matloff, From Algo-
rithms to Z-Scores: Probability and Statistical Modeling in Computer Science, http://heather.cs.ucdavis.edu/

probstatbook.

25
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Sometimes the notion of sampling is merely conceptual. Say for instance we are studying hyper-
tension, on data involving 1000 patients. We think of them as a sample from the population of all
sufferers of hypertension, even though we did not go through an actual sampling process.

In RS contexts, this means that we treat the users in our dataset as a sample from the conceptual
population of all potential users. We may even treat the items as a sample from a conceptual
population of all possible items.

In machine learning circles, it is not customary to think explicitly in terms of populations, samples
and estimates. Nevertheless, it’s implied, as ML people do talk about predicting new data from
the model fitted on the original data. For the model to be useful, the new data needs to come from
the same source as the original — what statisticians call a population.

We will usually think in terms of sample data here.

3.2 Probability, Expected Value and Variance

We will speak in terms of a repeatable experiment, which again could be physical or conceptual.

We think of probability as the long-run proportion of the time some event occurs. Say we toss a
fair coin. What do we mean by P (heads = 0.5)? Here our repeatable experiment is tossing the
coin. If we were to perform that experiment many times — ideally, infinitely many times — then
in the long run, 50% of the repetitions would give us heads.

Now suppose our experiment, say a game, is to keep tossing a coin until we get three consecutive
heads. Let X denote the number of tosses needed. Then for instance P (X = 4) = 0.54 = 0.0625
(we get a tail then three heads). Imagine doing this experiment infinitely many times: We toss
the coin until we get three consecutive heads, and record X; we toss the coin until we get three
consecutive heads, and record X; we toss the coin until we get three consecutive heads, and record
X; and so on. This would result in infinitely many X values. Then in the long run, 6.25% of the
X values would be 4.

The expected value E(X) of a random variable X is its long-run average value over infinitely many
repetitions of the experiment. In that 3-consecutive heads game above, it can be shown that
E(X) = 14.7. In other words, if we were to play the game infinitely many times, yielding infinitely
X values, their long-run average would be 14.7.

If there is no danger of ambiguity, we usually omit the parentheses, writing EX instead of E(X).

The variance of a random variable is a measure of its dispersion, i.e. how much it varies from one
repetition to the next. It is defined as V ar(X) = E[(X − EX)2].

Say we have a population of people and our our experiment is to randomly draw one person from
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the population, denoting that person’s height by H. Then intuitively, EH will be the mean height
of all the people in the population, traditionally written as µ.

3.3 Regression Models

Regression models, both parametric and nonparametric, form the very core of statistics and
machine learning (ML). Their importance cannot be overemphasized.2

3.3.1 Definition

Suppose we are predicting a variable Y from a vector X of variables, say predicting human weight
from the vector (height,age). The regression function at t = (t1, t2) of Y on X is defined to be the
mean weight of all people in the subpopulation consisting of all people of height t1 and age t2.

Let W , H and A denote weight, height and age. We write the regression function as the conditional
expectation of W given H and A,

E(W |H = t1, A = t2) (3.1)

If, say E(W |H = 70, A = 28) = 162, it means that the mean weight of all people in the subpopu-
lation consisting of 28-year-olds of height 70 is 162.

Note that in (3.1), the expression has a different value for each (t1, t2) pair. So it is a function of
t1 and t2. This is why it is called the regression function of W on H and A.

Terminology: It is common to refer to W here at the response variable and H and A as the
predictor variables. The latter may also be called explanatory variables (in economics and other
social sciences) or features (in ML).

3.3.2 Prediction

Say we have a person whose height and age are 70 and 28, but with unknown weight. It can
be shown that the optimal (under a certain criterion) predictor of her weight is the value of the
regression function at (70,28), E(W | H = 70, A = 28) = 162. It is optimal in the sense of
minimizing expected squared prediction error.

2For many, the term regression analysis connotes a linear parametric model. But actually the term is much more
general, defined to be the conditional mean as discussed below. Most ML techniques are nonparametric, as explained
below, but are still regression methods.
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3.3.3 Estimation

The regression function is an attribute of the population. Yet all we have is sample data. How do
we estimate the regression function from our data?

3.3.3.1 Nonparametric

Intuitively, we could use a nearest-neighbor approach. To estimate E(W |H = 70, A = 28), we
could find, say, the 25 people in our sample for whom (H,A) is closest to (70,28), and average their
weights to produce our estimate of E(W |H = 70, A = 28).

This kind of approach is common in ML. The famous random forests method is basically a more
complex form of kNN, as we will see in Chapter 7.

Statisticians also use methods like kNN. In fact, kNN and random forests were invented by statis-
ticians. But more commonly, statistics uses parametric methods, as follows.

3.3.3.2 Parametric

The basic idea is to assume the regression function is linear in parameters βi, e.g.

mean weight = β0 + β1 height + β2 age (3.2)

for some unknown values of the βi.

Make sure to take careful note of the word “mean”! Clearly, the weights of individual people are
not linear functions of their height and age.

As noted, the βi are unknown, and need to be estimated from our sample data. The estimates
will be denoted β̂i. They are obtained by minimizing a certain sum of squares, to be discussed in
Section 3.3.5.

By the way, if the reader is familiar with the ML methodology known as neural networks, she may
be surprised that this technique is also parametric. Again, more in Chapter 7.

3.3.3.3 Comparison

Consider (3.2), our model for the function of t1 and t2

E(weight | height = t1, age = t2) (3.3)
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With the linear assumption (3.2), we will be estimating three quantities, the βi. But with a
nonparametric approach, we are estimating infinitely many quantities, one for each value of the
(t1, t2) pair.

In other words, parametric methods are a form of dimension reduction. On the other hand,
this reduction comes at the expense of relying on the assumption of linearity in (3.2). However,
this is not so restrictive as it may seem, because:

• There are ways to assess the validity of the assumption. This is covered in almost any book
on regression, such as mine (N. Matloff, Statistical Regression and Classification: from Linear
Models to Machine Learning, CRC, 2017).

• One can add polynomial terms, as seen in the next section.

• Assumptions tend to be less important in prediction contexts than in estimation. In the RS
context, for instance, a rough model may be fine if we wish to take into account gender in
predicting ratings, but might be insufficient if we want to estimate the actual magnitude of
gender effect.

3.3.4 The lm() Function in R

In R, the workhorse regression estimator is the lm() function. Let’s apply this to the MovieLens
data, predicting rating from age and gender. We’ll define the latter as 1 for male, 0 for female. We
find that our estimated regression function of rating on age and gender is

estimated mean rating = 3.3599 + 0.005311 age− 0.0069 gender (3.4)

(Note the word estimated ! These are not the true unknown population values, just estimates based
on sample data.)

Actually, this shows that age and gender are pretty weak predictors of movie rating, which you will
recall is on a scale of 1 to 5. A 10-year difference in age raises the predicted rating only by about
0.05! The effect of gender is small too. And while it is interesting to see that older people tend to
give slighly higher ratings, as do women, we must keep in mind that the magnitude of the effect
here is small.3 Of course, the gender effect may be large in other RS datasets.

Here is the annotated code:
3You may be familiar with the term statistically significant. It is generally recognized today that this term can

be quite misleading. This is beyond the scope of this book, but suffice it to say that although age and gender
are statistically significant above (details available via adding the call summary(lmout) to the code below), their
practical importance as predictors here is essentially nil. See R. Wasserstein and N. Lazar, The ASA’s Statement on
p-Values: Context, Process, and Purpose, The American Statistician, June 2016.
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# read (user ,item ,rating ,transID) data; name the columns

ratings <- read.table(’u.data’)

names(ratings) <- c(’usernum ’,’movienum ’,’rating ’,’transID ’)

# read demographic data

demog <- read.table(’u.user’,sep=’|’)

names(demog) <- c(’usernum ’,’age’,’gender ’,’occ’,’ZIP’)

# merge (database ’join ’ op)

u.big <- merge(ratings ,demog ,by.x=1,by.y=1)

u <- u.big[,c(1,2,3,5,6)]

# fit linear model

lmout <- lm(rating ∼ age+gender ,data=u)

Here’s the output:

> lmout

Call:

lm(formula = rating ∼ age + gender , data = u)

Coefficients:

(Intercept) age genderM

3.359894 0.005311 -0.006904

Let’s take a closer look at that genderM coefficient.4 Take for instance 28-year-old men and
women; what are their mean ratings, according to this model?

> lmout$coef %*% c(1,28,1)

[,1]

[1,] 3.50169

> lmout$coef %*% c(1,28,0)

[,1]

[1,] 3.508593

(Note that the first ’1’ is needed to pick up the 3.359894.)

So, on average, 28-year-old women give ratings 3.508593 - 3.50169 = 0.006903 higher than men of
that age. And except for roundoff error, that is the -0.006904 value was see in the output above.

4The gender variable had been coded in the data as ’M’ and ’F’, and R chose the first one that showed up in the
data, ’M’, as its base.
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3.3.5 Details of Linear Regression Estimation

In the weight-height-age example, say, we form

r =

n∑
i=1

[Wi − (b0 + b1Hi + b2Ai)]
2 (3.5)

where Wi is the weight of the ith person in our sample data and so on. This is the sum of squared
prediction errors. We take derivatives with respect to the bk to minimize, then set β̂k to the
minimizing bk.

Though R will do the minimizing for us, it is worth having an idea how it works, especially as
more practice in following matrix-centric derivations. To get a glimpse of this, we look at a matrix
formulation, as follows. Let A denote the matrix of predictor values, with a 1s column tacked on
at the left. In the above example, row 12, say, of A would consist of a 1, followed by the height and
age of the 12th person in our sample. Let D denote the vector of weights, so that D12 is the weight
of the 12th person in our sample. Finally, let b denote the vector of the bk. Say we have data on
100 people. Then A will have 100 rows, and D will have length 100.

Use the above as a concrete guide to your thinking, but keep in mind the general case: If we have
p predictors and n data points, then A and D will have sizes n× (p+ 1) and n

Then

r = (D −Ab)′(D −Ab) (3.6)

(Write it out to see this. Doing so will be crucial to understanding the material below and many
points in the rest of the book.)

Write the gradient of r with respect to b,

∂r

∂b
= (

∂r

∂b0
,
∂r

∂b1
, ...,

∂r

∂bp
)′ (3.7)

where p+ 1 is the number of predictor variables.5

It can be shown that for a vector u,

∂u′u

∂u
= 2u (3.8)

5Note the representation here of a column vector as the transpose of a row vector. We will often do this, in order
to save space on the page. And, any reference to a vector will be to a column vector unless stated otherwise.
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(analogous to the scalar relations d(u2)/du = 2u; again, this is seen by writing the expressions out).

Setting u = D −Ab and applying the Chain Rule (adapted for gradients), we get

∂r

∂b
=
∂r

∂u

∂u

∂b
= 2(D −Ab) ∂(D −Ab)

∂b
= 2(−A′)(D −Ab) (3.9)

Setting the gradient to 0 and solving for b, we have

0 = A′D −A′Ab (3.10)

so that the minimizing b, giving us β̂, is

b = (A′A)−1A′D (3.11)

This famous formula is what lm() computes in finding the β̂k.

Note that we cannot simply multiply both sides of (3.10) by (A′)−1, as A′ is nonsquare and thus
noninvertible.

Note too that in our age/gender MovieLens example above, we should not have variables for both
male and female. If we did, we have

A =


1 A1 M1 F1

1 A2 M2 F2

...
1 A100000 M100000 F100000

 (3.12)

where Ai is the age of the ith person in our data, and one of Mi and Fi is 1 and the other 0,
according to the gender of this person. (Recall that there are 100000 data points in tis dataset.)
The problem is this: The third and fourth columns of A would then sum to a vector of all 1s, the
same as in the first column. So the columns of A will be linearly dependent, and the rank will be
3 instead of 4. The same will then be true for A′A, so that (A′A)−1 will not exist in (3.11).

In other words, not only would the F column be unnecessary, it would be prolematic.

3.3.5.1 Polynomial Terms

People tend to gain weight during middle age, but often they lose weight when they become elderly.
So (3.2), which is linear in the age variable, may be rather unrealistic; we might believe a quadratic
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model for mean weight as a function of age is better:

mean weight = β0 + β1 height + β2 age + β3 age2 (3.13)

A key point is that this is still a linear model! When we speak of a linear model — the ’l’ in “lm()”
– we mean linear in the βi. If in (3.13) we, say, multiply all the βi by 3, the entire sum grows by a
factor of 3, hence the linearity in the βi.

Of course we may wish to add a quadratic term for height as well, and for that matter, a product
term height × age. And since any model is merely an approximation, we might consider using
higher and higher order polynomials. We do have to worry about overfitting though; see Section
3.4.

We’ll have a long example in Section 3.5.

3.3.6 Categorical Variables (Predictor, Response)

A categorical variable is one that codes categories. In our RS context, for instance, a user’s postal
code — ZIP Code, in the US — may be a helpful predictor of a rating. Yet it cannot be treated
in lm(), say as a numeric variable. After all, the ZIP Code 90024, for example, is not “twice as
good” as 45002; they are just ID codes.

3.3.6.1 Dummy Variables as Predictors

So, what do we do if we wish to use a categorical variable as a predictor? The answer is that we
break the variable into a set of indicator variables, colloquially known as dummy variables. These
have the values 1 and 0, with 1 indicating the trait in question, 0 meaning not.

Say for instance in RS we have the categorical variable State for users in a US state. We would
define 50 dummy variables, one for each state. For instance, the one for California would have the
value 1 if the user lives in California, 0 otherwise.

Note carefully though that we would only use 49 of the dummies, not 50. We could for instance
exclude Wyoming. Why? Because if the other 49 dummies are all 0, then we know this user must
be in Wyoming. The Wyoming dummy would then be redundant. Not only do we want to avoid
redundancy on dimension reduction grounds, but also that redundancy would result in the matrix
A in (3.11) being less than full rank, so (A′A)−1 would not exist.

Categorical variables in R:

In R, categorical variables are stored as objects of the class ’factor’. The latter is a class designed
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specifically for representing categorical data. It consists of integer codes for the categories, with
character-string names. The various categories are called levels.

For example, say we are dealing with eye color, and that the only colors are brown, blue and green,
and have data on four people:

> s <- c(’brown ’,’blue’,’green’,’blue’)

> class(s)

[1] "character"

> sf <- as.factor(s)

> levels(sf)

[1] "blue" "brown" "green"

> sf[2]

[1] blue

Levels: blue brown green

> as.numeric(sf)

[1] 2 1 3 1

In our MovieLens example above, let’s take a look at the data frame demog:

> for (i in 1:5)

+ print(class(demog[,i]))

[1] "integer"

[1] "integer"

[1] "factor"

[1] "factor"

[1] "factor"

The last three columns are factors.6 Let’s see how many occupations there are:

> levels(demog$occ)

[1] "administrator" "artist" "doctor" "educator"

[5] "engineer" "entertainment" "executive" "healthcare"

[9] "homemaker" "lawyer" "librarian" "marketing"

[13] "none" "other" "programmer" "retired"

[17] "salesman" "scientist" "student" "technician"

[21] "writer"

In a regression application, we’d form 21 dummies, but use only 20 of them (any 20).

However, the designers of R (and its predecessor S), in their wisdom, set things up to save us some
time and trouble. We can just specify the factors we wish to use, and R will form the dummies for
us, being careful to drop one of them.

6Even the first two could have been stored as factors, but were not coded as so.
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This is what happened, for instance, in our example above in which we regressed rating against age
and gender, with output

Coefficients:

(Intercept) age genderM

3.359894 0.005311 -0.006904

R noticed that gender was an R factor, with levels M and F. It created dummies for M and F, but
just retained the former, as the first case in the data had gender as M.

So, the estimated coefficient -0.006904 meant that the “maleness” impact on mean rating has that
value. Men give slightly lower ratings than women do, for fixed age.

In this manner, the estimated regression coefficient of a dummy variable is the effect, all other
predictors fixed, of this trait relative to the excluded trai, say femaleness above.

3.3.6.2 Interaction Terms

Say we are in some RS context in which age and gender are substantial factors in predicting rating.
Suppose also that we suspect men become more liberal raters as they age while women become
more reserved in their ratings. Then a model like this might work well:

mean rating = β0 + β1 age + β2 male + β3 age×male (3.14)

where male is a dummy variable. To see why this might be appropriate, consider what the above
equation reduces to for men and women:

men:

mean rating = (β0 + β2) + (β1 + β3) age (3.15)

women:M

mean rating = β0 + β1 age (3.16)

So the male and female lines have different slopes (and different intercepts), allowing for the dif-
ferential age effect we surmise. Of course, once we compute the β̂i from the data, it may well turn
out that our differential aging trends may not be confirmed.7

7One must take sampling variability into account, say by forming confidence intervals for the βi. As noted earlier,
do not use significance testing for this. At any rate, these aspects are beyond the scope of this book.
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The term age × male is called an interaction term. Note that interaction terms can be formed
from any predictor, not just dummy variables. Also, one can form triple products for three-way
interactions and so on, though this could greatly increase the complexity of the model and thus
risk overfitting.

3.3.6.3 Dummy Variables as Response Variables

In many cases, the response variable may be categorical. In the RS context, for instance, a rating
may simply be binary, i.e. like/dislike. Or even click/not click — does a user click on a Web page
location? Let’s use this as our example.

We are generally interested in the probability of a click. That actually fits a regression context, as
follows. Code a click as 1 and nonclick as 0. Since the expected value of a variable of this type
is the probability of a 1, and since a regression function by definition is an expected value, taking
Click as our response variables does involve a regression function.

So, if our predictors were age and gender, say, we might entertain formulating our regression model
as

probability of click = β0 + β1 age + β2 gender (3.17)

One problem, though, is that a probability should be in [0,1] yet the right-hand side of (3.17) can
conceivably be anywhere in (−∞,∞). For this and other reasons the usual parametric model for a
binary response Y is the logistic: For p predictors Xi, our model is

P (Y = 1 | X1 = t1, ..., Xp = tp) =
1

1 + exp−(β0 + β1t1 + ...+ βptp)
(3.18)

This is called a generalized linear model, as it has the linear form β0 + β1t1 + ...+ βptp embedded
inside another function, in this case the logistic function g(s) = 1/(1 + e−s).

Note that the latter function, often called logit for short, has values only in [0,1], as desired, and is
increasing in s, thus retaining the monotonic notion of linear models.8

The βi are estimated by an R function glm(), similar to lm().9 Let’s model a user giving a movie
a rating of 4 or higher:

> r45 <- as.integer(u$rating >= 4) # a binary value , 1 or 0

8These properties form the intuitive motivation for using logit models. Another motivation is this: Let X denote
the vector of predictor variables, and let Y be the response variable, with the two classes 0 and 1. If within each
class, X has a multivariate normal distribution, with the same covariance matrix in each class.

9The class of the return value is ’glm’, which is a subclass of ’lm’.
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> u$r45 <- r45

> glmout <- glm(r45 ∼ age+gender ,data=u,family=binomial)

> glmout

Call: glm(formula = r45 ∼ age + gender , data = u)

Coefficients:

(Intercept) age genderM

-0.002510 0.006886 -0.011189

...

The argument family = binomial tells R that we want the logistic model, not some other gener-
alized linear model, such a model known as Poisson regression.10

3.3.7 R’s predict(), a Generic Function

A key aspect to R’s object orientation is generic functions. Take plot(), for instance. Its action
will depend on the class of object it is applied to. If we call the function on a vector, we get a
histogram. But if we call it on a two-column matrix, we get a scatter diagram.

What happens is that when plot() is called, R will check what class of object the caller supplied
as an argument. If the object is of class ”x”, then the original call will be dispatched to plot.x(),
a plotting function tailored to that class. (Of course, that means one needs to have been written
and available.)

R’s predict() is another example of a generic function, used to predict new cases. In the MovieLens
example above, say we want to predict the rating given by a 30-year-old man. We could simply
plug 30 and 1 into the estimated regression function, say using coef() to get the β̂i:

> coef(lmout)

(Intercept) age genderM

3.359894442 0.005310673 -0.006903502

> coef(lmout) %*% c(1,30,1) # linear algebra -style matrix multiply

[,1]

[1,] 3.512311

Alternatively (and in many settings, more conveniently):

> newdata <- data.frame(age=30, gender=’M’)

> predict(lmout ,newdata)

10By the way, the argument family must be an object of class ’function’. Inside glm(), there will be a call
family(). R has a built-in function binomial(), which is called here.
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1

3.512311

Recall that we had assigned the output of lm() to lmout, which will have class ’lm’. So, the call
to predict() above was dispatched to predict.lm().

What about glm()? There is a function predict.glm(), which normally should be called with the
argument type = ’response’. The latter means we want the return values to be the estimated
values of the regression function, i.e. the conditional probabilities of response 1, given the values of
the predictors.

3.3.8 More Than Two Levels in Categorical Response

What if our response variable is categorical but with more than two levels? In the click/nonclick
setting, suppose the user has a choice of five things to click, and must choose one. Then the response
is categorical with five levels.

There are two major approaches. To explain, we’ll use the following very simple example. Say
there are dogs, cats and foxes on a field, and they sometimes step on a sensor, so we know their
weights but do not see them. Say we have data on 10000 data points, in which we do know the
species. Our data frame, df, has 10000 rows and 4 columns. In the columns, say the names are
’Weight’, ’Dog’, ’Cat’ and ’Fox’, with the last three being dummies. Say we have 5000 dogs, 2000
cats and 3000 foxes. Then for instance 2000 of the rows in df would be cats.

One-vs.All (OVA) Method

One would run run three logistic models:

gdog <- glm(Dog ∼ .,data=df[ ,1:2]) # dog vs. all else

gcat <- glm(Cat ∼ .,data=df[,c(1 ,3)]) # cat vs. all else

gfox <- glm(Fox ∼ .,data=df[,c(1 ,4]) # fox vs. all else

Then for each new animal we encounter of unknown species, we call predict() three times, yielding
three estimated conditional probabilities. If the one for cat, say, is largest, we guess Cat.

All vs. All (AVA) Method

Here again we’d run multiple logit models, in pairs as follows:

gdogcat <-

glm(Dog ∼ .,data=df[df$dog+df$cat ==1 ,1:2]) # dog vs. cat

gdogfox <-

glm(Dog ∼ .,data=df[df$dog+df$fox ==1 ,1:2]) # dog vs. fox

gcatfox <-
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glm(Cat ∼ .,data=df[df$cat+df$fox ==1 ,1:3]) # cat vs. fox

Then for each new animal we encounter of unknown species, we call predict() three times, again
yielding three estimated conditional probabilities. Say in the first one, Cat “wins,” i.e. the condi-
tional probability is less than 0.5. Say Dog wins in the second, and Cat wins in the third. Since
Cat had the most wins, we predict Cat.

Comparison

At first, OVA seems much better than AVA. If we have m levels, that means running C(m, 2) =
O(m2) parwise logit models, rather than m for OVA. However, that is somewhat compensated by
the fact that each pairwise model will be based on less data, and some analysts contend that AVA
can have better accuracy. It remains a bit of a controversy.

3.4 Bias, Variance, Overfitting and p-Hacking

By far the most vexing issue in statistics and machine learning is that of overfitting.

3.4.1 What Is Overfitting?

Suppose we have just one predictor, and n data points. If we fit a polynomial model of degree
n− 1, the resulting curve will pass through all n points, a “perfect” fit. For instance:

> x <- rnorm (6)

> y <- rnorm (6) # unrelated to x!

> df <- data.frame(x,y)

> df$x2 <- x^2

> df$x3 <- x^3

> df$x4 <- x^4

> df$x5 <- x^5

> df

x y x2 x3

1 -1.1855131 0.2881291 1.40544120 -1.666168894

2 -1.7838769 -2.0741740 3.18221664 -5.676682627

3 -0.7124510 -0.4253678 0.50758640 -0.361630431

4 0.1676111 -0.1949265 0.02809348 0.004708779

5 1.2462926 -0.7348481 1.55324535 1.935798245

6 0.3741604 1.9521667 0.13999601 0.052380963

x4 x5

1 1.975265e+00 -2.341702414
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2 1.012650e+01 -18.064433938

3 2.576440e-01 -0.183558689

4 7.892437e-04 0.000132286

5 2.412571e+00 3.006769615

6 1.959888e-02 0.007333126

> lmo <- lm(y ∼ .,data=df)

> lmo

Call:

lm(formula = y ∼ ., data = df)

Coefficients:

(Intercept) x x2 x3

-1.3127 4.7632 11.4809 0.5781

x4 x5

-6.9685 -2.4938

> lmo$fitted.values

1 2 3 4 5

0.2881291 -2.0741740 -0.4253678 -0.1949265 -0.7348481

6

1.9521667

> y

[1] 0.2881291 -2.0741740 -0.4253678 -0.1949265 -0.7348481

[6] 1.9521667

Yes, we “predicted” y perfectly, even though there was no relation between the response
and predictor variables). Clearly that “perfect fit” is illusory, “noise fitting.” Our ability to
predict future cases would not be good. This is overfitting.

Let’s take a closer look, in an RS context. Say we believe (3.14) is a good model for the setting
described in that section, i.e. men becoming more liberal raters as they age but women becoming
more conservative. If we omit the interaction term, than we will underpredict older men and
overpredict older women. This biases our ratings.

On the other hand, we need to worry about sampling variance. Consider the case of opinion polls
during an election campaign, in which the goal is to estimate p, the proportion of voters who will
vote for Candidate Jones. If we use too small a sample size, say 50, our results will probably be
inaccurate. This is due to sampling instability: Two pollsters, each randomly sampling 50 people,
will sample different sets of people, thus each having different values of p̂, their sample estimates
of p. For a sample of size 50, it is likely that their two values of p̂ will be substantially different
from each other, whereas if the sample size were 5000, the two estimates would likely be close to
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each other. In other words, the variance of p̂ is too high if the sample size is just 50.11

In a parametric regression setting, increasing the number of terms roughly means that the sampling
variance of the β̂i will increase.

So we have the famous bias/variance tradeoff : As we use more and more terms in our regression
model (predictors, polynomials, interaction terms), the bias decreases but the variance increases.
This “tug of war” between these decreasing and increasing quantities typically yields a U-shaped
curve: As we increase the number of terms from 1, mean absolute prediction error will at first
decrease but eventually will increase. Once we get to the point at which it increases, we are
overfitting.

This is particularly a problem when one has many dummy variables. For instance, there are more
than 42,000 ZIP Codes in the US; to have a dummy for each would almost certainly be overfitting.

3.4.2 Can Anything Be Done about It?

So, where is the “happy medium,” the model that is rich enough to capture most of the dynamics
of the variables at hand, but simple enough to avoid variance issues? Unfortunately, there is no
good answer to this question.

One quick rule of thumb is that one should have p <
√
n, where p is the number of predictors,

including polynomial and interaction terms (not to be confused with the quantity of the same name
in our polling example above), and n is the number of cases in our sample. But this is certainly
not a firm rule by any means. One may be able to get good prediction with a considerably larger
value of p, especially if regularization methods are used (Chapter 5).

From the polynomial-ftting example in Section 3.4.1, we see the following key point:

An assessment of predictive ability, based on predicting the same data on which our
model is fit, tends to be overly optimistic and may be meaningless or close to it.

This motivates the most common approach to dealing with the bias/variance tradeoff, cross valida-
tion. In the simplest version, one randomly splits the data into a training set and a test set.12 We
fit the model to the training set and then, pretending we don’t know the “Y” (i.e. response) values
in the test set, predict those values from our fitted model and the “X” values (i.e. the predictors)
in the test set. We then “unpretend,” and check how well those predictions worked.

11The repeatable experiment here is randomly choosing 50 people. Each time we perform this experiment, we get
a different set of 50 people, thus a different value of p̂. The latter is a random variable, and thus has a variance.

12The latter is also called a holdout set or a validation set.
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The test set is “fresh, new” data, since we called lm() or whatever only on the training set. Thus
we are avoiding the “noise fitting” problem. We can try several candidate models, then choose the
one that best predicts the test data.

(Note carefully that after fitting the model via cross-validation, we then use the full data for later
prediction. Splitting the data for cross-validation was just a temporary device for model selection.)

Cross-validation is essentially the standard for model selection, and it works well if we only try a
few models. Problems can occur if we try many models, as seen in the next section.

3.4.3 The Problem of P-hacking

The (rather recent) term p-hacking refers to the following abuse of statistics.13

Say we have 250 pennies, and we wish to determine whether any are unbalanced, i.e. have probability
of heads different from 0.5. We do so by tossing each coin 100 times. If we get fewer than 40 heads
or more than 60, we decide this coin is unbalanced.14 The problem is that, even if all the coins are
perfectly balanced, we eventually will have one that has fewer than 40 or greater than 60 heads,
just by accident. We will then falsely declare this coin to be unbalanced.

Or, to give a somewhat frivolous example that still will make the point, say we are investigating
whether there is any genetic component to a person’s sense of humor. Is there a Humor gene?
There are many, many genes to consider. Testing each one for relation to sense of humor is like
checking each penny for being unbalanced: Even if there is no Humor gene, then eventually, just
by accident, we’ll stumble upon one that seems to be related to humor.15

Though the above is not about prediction, it has big implications for the prediction realm. In ML
there are various datasets on which analysts engage in contests, vying for the honor of developing
the model with the highest prediction accuracy, say for classification of images. If there is a large
number of analysts competing for the prize, then even if all the analysts have models of equal
accuracy, it is likely that one is substantially higher than the others, just due to an accident of
sampling variation. This is true in spite of the fact that they all are using the same sample; it may
be that the “winning” analyst’ model happens to do especially well in the given data, and may
not be so good on another sample from the same population. So, when some researcher sets a new
record on a famous ML dataset, it may be that the research really has found a better prediction

13The term abuse here will not necessarily connote intent. It may occur out of ignorance of the problem.
14For those who know statistics: This gives us a Type I error rate of about 0.05, the standard used by most people.
15For those with background in statistics, the reason this is called “p-hacking” is that the researcher may form

a significance test for each gene, computing a p-value for each test. Since under the null hypothesis we have a 5%
chance of getting a “significant” p-value for any given gene, the probability of having at least one significant result
out of the thousands of tests is quite high, even if the null hypothesis is true in all cases. There are techniques called
multiple inference or multiple comparison methods, to avoid p-hacking in performing statistical inference. See for
example Multiple Comparisons: Theory and Methods, Jason Hsu, 1996, CRC.
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model — or it may be that it merely looks better, due to p-hacking.

The same is true for your own analyses. If you try a large number of models, the “winning” one
may actually not be better than all the others.

3.5 Extended Example

Let’s illustrate this on the dataset prgeng, assembled from the 2000 US census. It consists of wage
and other information on programmers and engineers in Silicon Valley. This dataset is included in
the R polyreg package, which fits polynomial models as we saw in Section 3.3.5.1 above.16

> getPE () # produces data frame pe

> pe1 <- pe[,c(1,2,4,6,7,12:16,3)] # choose some predictors

> head(pe1)

age sex wkswrkd ms phd occ1 occ2 occ3 occ4 occ5

1 50.30082 0 52 0 0 0 0 1 0 0

2 41.10139 1 20 0 0 0 1 0 0 0

3 24.67374 0 52 0 0 0 0 1 0 0

4 50.19951 1 52 0 0 1 0 0 0 0

5 51.18112 0 1 0 0 1 0 0 0 0

6 57.70413 1 0 0 0 1 0 0 0 0

wageinc

1 75000

2 12300

3 15400

4 0

5 160

6 0

By the way, note the dummy variables. We have just two levels for education, so anyone with just
a bachelor’s degree or less, or a professional degree, with be “other,” coded by ms and phd both
having the values 0. Similarly, there are actually six occupations, hence five dummies; the sixth
occupation is coded by having 0s for the five occupation dummies.

Well, then, let’s see how well we can predict wage income. First, split the data:

> set.seed (9999)

> testidxs <- sample (1: nrow(pe1 ) ,1000)

> testset <- pe1[testidxs ,]

> trainset <- pe1[-testidxs ,]

16Available from github.com/matloff.

github.com/matloff
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Then fit the model and predict:

> lmout <- lm(wageinc ∼ .,data=pe1) # predict wage from all others

> predvals <- predict(lmout ,testset [,-11])

> mean(abs(predvals - testset [ ,11]))

[1] 26494.62

An average, our prediction is off by more than $26,000, not so good, but not the main point here.

Let’s try a quadratic model. Again, we could form the squared terms ourselves, but polyreg makes
it convenient.

> pfout <- polyFit(pe1 ,deg =2)

> mean(abs(predict(pfout ,testset [,-11]) - testset [ ,11]))

[1] 25885.43

Ah, some improvement, with a second-degree model. Note that this includes the squares of all
predictors, and their products, e.g. age times weeks worked. Altogether there are now p = 46
predictors, up from our original 10:

> dim(pfout$poly.xy)

[1] 20090 47

How about a cubic model?

> pfout <- polyFit(pe1 ,deg =3)

> mean(abs(predict(pfout ,testset [,-11]) - testset [ ,11]))

[1] 25410.9

Even better, though it may be largely a difference due to sampling variation. We are now up to
p = 118.

> pfout <- polyFit(pe1 ,deg =4)

getPoly time: 1.12 0.056 1.177 0 0

lm() time: 0.88 0.024 0.906 0 0

> mean(abs(predict(pfout ,testset [,-11]) - testset [ ,11]))

[1] 25380.65

Warning message:

In predict.lm(object$fit , plm.newdata) :

prediction from a rank -deficient fit may be misleading

About the same, but with an ominous warning. R found that the matrix A′A in (3.11) was close
to nonfull-rank, thus nearly singular (noninvertible). Now p = 226.

Remarkably, this improvement continued:
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deg MAPE

6 25245.83

10 24679.86

15 24123.59

And at degree 15, p was a whopping 3791. By the way, in that last computation, it took more than
2 minutes to simply generate the polynomials — those 3791 columns — and almost 20 minutes to
process the call to lm().

Yet, even with this large model, we have not yet reached the point of overfitting. Eventually,
though, MAPE will begin to rise.
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Chapter 4

Nearest-Neighbor Methods

Recall our preview in Chapter 1. Collaborative filtering RS methods are based on known user-item
ratings, as opposed to, e.g., methods based on textual user evaluations. All of the methods in that
chapter fall into this category. The most natural, and earliest, such method was user-based filtering,
also known as memory-based filtering.

4.1 Notation

As before, let A denote the ratings matrix. The element aij in row i, column j, is the rating that
user i has given/would give to item j. In the latter case, aij is unknown, and its predicted value
will be denoted by âij . Following R notation, we will refer to the unknown values as NAs.

Note that for large applications, the matrix A is far too large to store in memory. One could resort
to storage schemes for sparse matrices, e.g. Compresed Row Storage, but here we will simply use A
to help explain concepts. In the rectools package, the input data is run through formUserData()
and algorithms use that instead of A. This function orgamizes the data into an R list, one element
per user. Each such element records the ratings made by that user.

Let’s refer to a new case to be predicted as NC.

4.2 User-Based Filtering

In predicting how a given user would rate a given item, we first find all users that have rated the
given item, then determine which of those users are most similar to the given user. Our prediction
is then the average of the ratings of the given item among such “similar” users. A corresponding
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approach based on items is used as well. We focus on such methods in this chapter.

4.2.1 Matrix View

In terms of the matrix A above, we first look at column j. We cull the rows having non-NA values
in this column, and for each of those rows, find the distance of that row to the NC. Take the k
closest rows, and finally, average the value of amj to get âij (with m ranging over the row numbers
of the selected rows).

4.2.2 (One) Implementation

Below is code from rectools (somewhat simplified). The arguments are:

• origData: The original dataset, after having been run through formUserData().

• newData: The element of origData for NC.1

• newItem: ID number of the item to be predicted for NC.

• k: The number(s) of nearest neighbors. Can be a vector.

1 predict.usrData <- function(origData ,newData ,newItem ,k)

2 {

3 # we first need to narrow origData down to the users who

4 # have rated newItem

5
6 # here oneUsr is one user record in origData; the function will look for a

7 # j such that element j in the items list for this user matches the item

8 # of interest , newItem; (j,rating) will be returned

9
10 checkNewItem <- function(oneUsr) {

11 whichOne <- which(oneUsr$itms == newItem)

12 if (length(whichOne) == 0) {

13 return(c(NA ,NA))

14 } else return(c(whichOne ,oneUsr$ratings[whichOne ]))

15 }

16

1If NC is new, not in the database (called cold start), we synthesize a list element for it, assuming NC has rated
at least one item.
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17 found <- as.matrix(sapply(origData ,checkNewItem ))

18 # description of ’found ’:

19 # found is of dimensions 2 by number of users in training set

20 # found[1,i] = j means origData [[i]]$itms[j] = newItem;

21 # found[1,i] = NA means newItem wasn ’t rated by user i

22 # found[2,i] = rating in the non -NA case

23
24 # we need to get rid of the users who didn ’t rate newItem

25 whoHasIt <- which(!is.na(found [1 ,]))

26 origDataRatedNI <- origData[whoHasIt]

27 # now origDataRatedNI only has the relevant users , the ones who

28 # have rated newItem , so select only those columns of the found matrix

29 found <- found[,whoHasIt ,drop=FALSE]

30
31 # find the distance from newData to one user y of origData; defined for

32 # use in sapply () below

33 onecos <- function(y) cosDist(newData ,y,wtcovs ,wtcats)

34 cosines <- sapply(origDataRatedNI ,onecos)

35 # the vector cosines contains the distances from newData to all the

36 # original data points who rated newItem

37
38 # action of findKnghbourRtng (): find the mean rating of newItem in

39 # origDataRatedNI , for ki (= k[i]) neighbors

40 #

41 # if ki > neighbours present in the dataset , then the

42 # number of neighbours is used

43 findKnghbourRtng <- function(ki){

44 ki <- min(ki , length(cosines ))

45 # nearby is a vector containing the indices of the ki closest neighbours

46 nearby <- order(cosines ,decreasing=FALSE )[1:ki]

47 mean(as.numeric(found[2, nearby ]))

48 }

49 sapply(k, findKnghbourRtng)

50 }

Note that the distances were computed by the function cosDist(), which computes a “cosine”
similarity (not really a distance). It could be replaced by a function of the analyst’s choice. More
on this below.
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4.3 Regression Analog

Recall the method of k-nearest neighbor (kNN) regression estimation from Chapter 3, involving
prediction of weight from height and age:

To estimate E(W |H = 70, A = 28), we could find, say, the 25 people in our sample for
whom (H,A) is closest to (70,28), and average their weights to produce our estimate of
E(W |H = 70, A = 28).

So kNN RS is really the same as kNN regression

4.4 Choosing k

As we have already seen with RS, regression and machine learning methods, the typical way to
choose a model is to use cross-validation. This is true for kNN RS as well; we can choose the value
of k via cross-validation. However, a curious property may streamline the process, as follows.

Note this line in predict.usrData():

ki <- min(ki, length(cosines ))

What is happeing here? Say for a particular situation, there are 52 rows in A having ratings for
the item specified in NC. Then of course as we increase our number of nearest neighbors beyond
52, we will get identical results. Such a situation will occur if the A matrix is not too dense, i.e.
does not have a high proportion of non-NA values.

4.5 Defining Distance

4.6 Item-Based Filtering

4.7 Covariates

4.8 Edge Bias



Chapter 5

Matrix Factorization Methods

SHOW THE CODE FOR USING IT IN OUR 3 METHODS

GIVE A SIMPLE MATH DERIVATION OF VALUE OF IT, E.G. FOR SMALL N-I
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Chapter 6

Statistical Models

SHOW THE CODE FOR USING IT IN OUR 3 METHODS

GIVE A SIMPLE MATH DERIVATION OF VALUE OF IT, E.G. FOR SMALL N-I
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Chapter 7

Use of Side Information

SHOW THE CODE FOR USING IT IN OUR 3 METHODS

GIVE A SIMPLE MATH DERIVATION OF VALUE OF IT, E.G. FOR SMALL N-I
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Chapter 8

Bias, Variance and Overfitting

GIVE EX FROM 132.TEX ON DENSITY ESTIMATION AT A POINT OF RISING DENSITY,
MAYBE AT ENDPOINT OF SUPPORT, SO HAVE A CLEAR BIAS; MATH DERIVATION

APPLY TO K IN KNN, RANK OF MATRIX, FIXED- VS. RANDOM-EFFECTS IN STAT
MODEL, VALUE OR NOT TO USING COVARS
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Appendix A

R Quick Start

Here we present a quick introduction to the R data/statistical programming language. Further
learning resources are listed at http://heather.cs.ucdavis.edu//r.html.

R syntax is similar to that of C. It is object-oriented (in the sense of encapsulation, polymorphism
and everything being an object) and is a functional language (i.e. almost no side effects, every
action is a function call, etc.).

A.1 Correspondences

aspect C/C++ R

assignment = <- (or =)

array terminology array vector, matrix, array

subscripts start at 0 start at 1

array notation m[2][3] m[2,3]

2-D array storage row-major order column-major order

mixed container struct, members accessed by . list, members acessed by $ or [[ ]]

return mechanism return return() or last value computed

primitive types int, float, double, char, bool integer, float, double, character, logical

logical values true, false TRUE, FALSE (abbreviated T, F)

mechanism for combining modules include, link library()

run method batch interactive, batch

comment symbol // #

59
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A.2 Starting R

To invoke R, just type “R” into a terminal window, e.g. xterm in Linux or Macs, CMD in
Windows.

If you prefer to run from an IDE, you may wish to consider ESS for Emacs, StatET for Eclipse or
RStudio, all open source. ESS is the favorite among the “hard core coder” types, while the colorful,
easy-to-use, RStudio is a big general crowd pleaser. If you are already an Eclipse user, StatET will
be just what you need.1

R is normally run in interactive mode, with > as the prompt. Among other things, that makes
it easy to try little experiments to learn from; remember my slogan, “When in doubt, try it out!”
For batch work, use Rscript, which is in the R package.

A.3 First Sample Programming Session

Below is a commented R session, to introduce the concepts. I had a text editor open in another
window, constantly changing my code, then loading it via R’s source() command. The original
contents of the file odd.R were:

1 oddcount <- function(x) {

2 k <- 0 # assign 0 to k

3 for (n in x) {

4 if (n %% 2 == 1) k <- k+1 # %% is the modulo operator

5 }

6 return(k)

7 }

By the way, we could have written that last statement as simply

1 k

because the last computed value of an R function is returned automatically. This is actually
preferred style in the R community.

The R session is shown below. You may wish to type it yourself as you go along, trying little
experiments of your own along the way.2

1I personally use vim, as I want to have the same text editor no matter what kind of work I am doing. But I
have my own macros to help with R work.

2The source code for this file is at http://heather.cs.ucdavis.edu/~matloff/MiscPLN/R5MinIntro.tex. You
can download the file, and copy/paste the text from there.

http://heather.cs.ucdavis.edu/~matloff/MiscPLN/R5MinIntro.tex
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1 > source("odd.R") # load code from the given file

2 > ls() # what objects do we have?

3 [1] "oddcount"

4 > # what kind of object is oddcount (well , we already know)?

5 > class(oddcount)

6 [1] "function"

7 > # while in interactive mode , and not inside a function , can print

8 > # any object by typing its name; otherwise use print(), e.g. print(x+y)

9 > oddcount # a function is an object , so can print it

10 function(x) {

11 k <- 0 # assign 0 to k

12 for (n in x) {

13 if (n %% 2 == 1) k <- k+1 # %% is the modulo operator

14 }

15 return(k)

16 }

17
18 > # let ’s test oddcount(), but look at some properties of vectors first

19 > y <- c(5,12,13,8,88) # c() is the concatenate function

20 > y

21 [1] 5 12 13 8 88

22 > y[2] # R subscripts begin at 1, not 0

23 [1] 12

24 > y[2:4] # extract elements 2, 3 and 4 of y

25 [1] 12 13 8

26 > y[c(1 ,3:5)] # elements 1, 3, 4 and 5

27 [1] 5 13 8 88

28 > oddcount(y) # should report 2 odd numbers

29 [1] 2

30
31 > # change code (in the other window) to vectorize the count operation ,

32 > # for much faster execution

33 > source("odd.R")

34 > oddcount

35 function(x) {

36 x1 <- (x %% 2 == 1) # x1 now a vector of TRUEs and FALSEs

37 x2 <- x[x1] # x2 now has the elements of x that were TRUE in x1

38 return(length(x2))

39 }

40
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41 > # try it on subset of y, elements 2 through 3

42 > oddcount(y[2:3])

43 [1] 1

44 > # try it on subset of y, elements 2, 4 and 5

45 > oddcount(y[c(2 ,4,5)])

46 [1] 0

47
48 > # further compactify the code

49 > source("odd.R")

50 > oddcount

51 function(x) {

52 length(x[x %% 2 == 1]) # last value computed is auto returned

53 }

54 > oddcount(y) # test it

55 [1] 2

56
57 # and even more compactification , making use of the fact that TRUE and

58 # FALSE are treated as 1 and 0

59 > oddcount <- function(x) sum(x %% 2 == 1)

60 # make sure you understand the steps that that involves: x is a vector ,

61 # and thus x %% 2 is a new vector , the result of applying the mod 2

62 # operation to every element of x; then x %% 2 == 1 applies the == 1

63 # operation to each element of that result , yielding a new vector of TRUE

64 # and FALSE values; sum() then adds them (as 1s and 0s)

65
66 # we can also determine which elements are odd

67 > which(y %% 2 == 1)

68 [1] 1 3

Note that the function of the R function function() is to produce functions! Thus assignment is
used. For example, here is what odd.R looked like at the end of the above session:

1 oddcount <- function(x) {

2 x1 <- x[x %% 2 == 1]

3 return(list(odds=x1 , numodds=length(x1)))

4 }

We created some code, and then used function() to create a function object, which we assigned
to oddcount.
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A.4 Vectorization

Note that we eventually vectorized our function oddcount(). This means taking advantage of
the vector-based, functional language nature of R, exploiting R’s built-in functions instead of loops.
This changes the venue from interpreted R to C level, with a potentially large increase in speed.
For example:

1 > x <- runif (1000000) # 1000000 random numbers from the interval (0,1)

2 > system.time(sum(x))

3 user system elapsed

4 0.008 0.000 0.006

5 > system.time({s <- 0; for (i in 1:1000000) s <- s + x[i]})

6 user system elapsed

7 2.776 0.004 2.859

A.5 Second Sample Programming Session

A matrix is a special case of a vector, with added class attributes, the numbers of rows and columns.

1 > # "rowbind () function combines rows of matrices; there ’s a cbind () too

2 > m1 <- rbind (1:2,c(5,8))

3 > m1

4 [,1] [,2]

5 [1,] 1 2

6 [2,] 5 8

7 > rbind(m1 ,c(6,-1))

8 [,1] [,2]

9 [1,] 1 2

10 [2,] 5 8

11 [3,] 6 -1

12
13 > # form matrix from 1,2,3,4,5,6, in 2 rows; R uses column -major storage

14 > m2 <- matrix (1:6, nrow =2)

15 > m2

16 [,1] [,2] [,3]

17 [1,] 1 3 5

18 [2,] 2 4 6

19 > ncol(m2)

20 [1] 3

21 > nrow(m2)
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22 [1] 2

23 > m2[2,3] # extract element in row 2, col 3

24 [1] 6

25 # get submatrix of m2 , cols 2 and 3, any row

26 > m3 <- m2[,2:3]

27 > m3

28 [,1] [,2]

29 [1,] 3 5

30 [2,] 4 6

31
32 > m1 * m3 # elementwise multiplication

33 [,1] [,2]

34 [1,] 3 10

35 [2,] 20 48

36 > 2.5 * m3 # scalar multiplication (but see below)

37 [,1] [,2]

38 [1,] 7.5 12.5

39 [2,] 10.0 15.0

40 > m1 %*% m3 # linear algebra matrix multiplication

41 [,1] [,2]

42 [1,] 11 17

43 [2,] 47 73

44
45 > # matrices are special cases of vectors , so can treat them as vectors

46 > sum(m1)

47 [1] 16

48 > ifelse(m2 %%3 == 1,0,m2) # (see below)

49 [,1] [,2] [,3]

50 [1,] 0 3 5

51 [2,] 2 0 6

A.6 Recycling

The “scalar multiplication” above is not quite what you may think, even though the result may
be. Here’s why:

In R, scalars don’t really exist; they are just one-element vectors. However, R usually uses recy-
cling, i.e. replication, to make vector sizes match. In the example above in which we evaluated
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the express 2.5 * m3, the number 2.5 was recycled to the matrix

(
2.5 2.5
2.5 2.5

)
(A.1)

in order to conform with m3 for (elementwise) multiplication.

A.7 More on Vectorization

The ifelse() function is another example of vectorization. Its call has the form

ifelse(boolean vectorexpression1 , vectorexpression2 , vectorexpression3)

All three vector expressions must be the same length, though R will lengthen some via recycling.
The action will be to return a vector of the same length (and if matrices are involved, then the
result also has the same shape). Each element of the result will be set to its corresponding element
in vectorexpression2 or vectorexpression3, depending on whether the corresponding element
in vectorexpression1 is TRUE or FALSE.

In our example above,

> ifelse(m2 %%3 == 1,0,m2) # (see below)

the expression m2 %%3 == 1 evaluated to the boolean matrix

(
T F F
F T F

)
(A.2)

(TRUE and FALSE may be abbreviated to T and F.)

The 0 was recycled to the matrix

(
0 0 0
0 0 0

)
(A.3)

while vectorexpression3, m2, evaluated to itself.

A.8 Third Sample Programming Session

This time, we focus on vectors and matrices.
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> m <- rbind (1:3,c(5 ,12 ,13)) # "row bind ," combine rows

> m

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 5 12 13

> t(m) # transpose

[,1] [,2]

[1,] 1 5

[2,] 2 12

[3,] 3 13

> ma <- m[,1:2]

> ma

[,1] [,2]

[1,] 1 2

[2,] 5 12

> rep(1,2) # "repeat ," make multiple copies

[1] 1 1

> ma %*% rep(1,2) # matrix multiply

[,1]

[1,] 3

[2,] 17

> solve(ma,c(3 ,17)) # solve linear system

[1] 1 1

> solve(ma) # matrix inverse

[,1] [,2]

[1,] 6.0 -1.0

[2,] -2.5 0.5

A.9 Default Argument Values

Consider the sort() function, which is built-in to R, though the following points hold for any
function, including ones you write yourself.

The online help for this function, invoked by

> ?sort

shows that the call form (the simplest version) is

sort(x, decreasing = FALSE , ...)
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Here is an example:

> x <- c(12 ,5 ,13)

> sort(x)

[1] 5 12 13

> sort(x,decreasing=FALSE)

[1] 13 12 5

So, the default is to sort in ascending order, i.e. the argument decreasing has TRUE as its default
value. If we want the default, we need not specify this argument. If we want a descending-order
sort, we must say so.

A.10 The R List Type

The R list type is, after vectors, the most important R construct. A list is like a vector, except
that the components are generally of mixed types.

A.10.1 The Basics

Here is example usage:

> g <- list(x = 4:6, s = "abc")

> g

$x

[1] 4 5 6

$s

[1] "abc"

> g$x # can reference by component name

[1] 4 5 6

> g$s

[1] "abc"

> g[[1]] # can reference by index , but note double brackets

[1] 4 5 6

> g[[2]]

[1] "abc"

> for (i in 1: length(g)) print(g[[i]])

[1] 4 5 6

[1] "abc"
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# now have ftn oddcount () return odd count AND the odd numbers themselves ,

# using the R list type

> source("odd.R")

> oddcount

function(x) {

x1 <- x[x %% 2 == 1]

return(list(odds=x1 , numodds=length(x1)))

}

> # R’s list type can contain any type; components delineated by $

> oddcount(y)

$odds

[1] 5 13

$numodds

[1] 2

> ocy <- oddcount(y) # save the output in ocy , which will be a list

> ocy

$odds

[1] 5 13

$numodds

[1] 2

> ocy$odds

[1] 5 13

> ocy [[1]] # can get list elements using [[ ]] instead of $

[1] 5 13

> ocy [[2]]

[1] 2

A.10.2 The Reduce() Function

One often needs to combine elements of a list in some way. One approach to this is to use Reduce():

> x <- list (4:6,c(1,6,8))

> x

[[1]]

[1] 4 5 6
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[[2]]

[1] 1 6 8

> sum(x)

Error in sum(x) : invalid ’type’ (list) of argument

> Reduce(sum ,x)

[1] 30

Here Reduce() cumulatively applied R’s sum() to x. Of course, you can use it with functions you
write yourself too.

Continuing the above example:

> Reduce(c,x)

[1] 4 5 6 1 6 8

A.10.3 S3 Classes

R is an object-oriented (and functional) language. It features two types of classes, S3 and S4. I’ll
introduce S3 here.

An S3 object is simply a list, with a class name added as an attribute:

> j <- list(name="Joe", salary =55000 , union=T)

> class(j) <- "employee"

> m <- list(name="Joe", salary =55000 , union=F)

> class(m) <- "employee"

So now we have two objects of a class we’ve chosen to name ”employee”. Note the quotation
marks.

We can write class generic functions:

> print.employee <- function(wrkr) {

+ cat(wrkr$name ,"\n")

+ cat("salary",wrkr$salary ,"\n")

+ cat("union member",wrkr$union ,"\n")

+ }

> print(j)

Joe

salary 55000

union member TRUE
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> j

Joe

salary 55000

union member TRUE

What just happened? Well, print() in R is a generic function, meaning that it is just a placeholder
for a function specific to a given class. When we printed j above, the R interpreter searched for a
function print.employee(), which we had indeed created, and that is what was executed. Lacking
this, R would have used the print function for R lists, as before:

> rm(print.employee) # remove the function , to see what happens with print

> j

$name

[1] "Joe"

$salary

[1] 55000

$union

[1] TRUE

attr(,"class")

[1] "employee"

A.11 Some Workhorse Functions

> m <- matrix(sample (1:5,12, replace=TRUE),ncol =2)

> m

[,1] [,2]

[1,] 2 1

[2,] 2 5

[3,] 5 4

[4,] 5 1

[5,] 2 1

[6,] 1 3

# call sum() on each row

> apply(m,1,sum)

[1] 3 7 9 6 3 4

# call sum() on each column

> apply(m,2,sum)
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[1] 17 15

> f <- function(x) sum(x[x >= 4])

# call f() on each row

> apply(m,1,f)

[1] 0 5 9 5 0 0

> l <- list(x = 5, y = 12, z = 13)

# apply the given funciton to each element of l, producing a new list

> lapply(l,function(a) a+1)

$x

[1] 6

$y

[1] 13

$z

[1] 14

# group the first column of m by the second

> sout <- split(m[,1],m[,2])

> sout

$‘1‘

[1] 2 5 2

$‘3‘

[1] 1

$‘4‘

[1] 5

$‘5‘

[1] 2

# find the size of each group , by applying the length () function

> lapply(sout ,length)

$‘1‘

[1] 3

$‘3‘

[1] 1

$‘4‘

[1] 1

$‘5‘

[1] 1

# like lapply(), but sapply () attempts to make vector output

> sapply(sout ,length)
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1 3 4 5

3 1 1 1

A.12 Handy Utilities

R functions written by others, e.g. in base R or in the CRAN repository for user-contributed code,
often return values which are class objects. It is common, for instance, to have lists within lists. In
many cases these objects are quite intricate, and not thoroughly documented. In order to explore
the contents of an object—even one you write yourself—here are some handy utilities:

• names(): Returns the names of a list.

• str(): Shows the first few elements of each component.

• summary(): General function. The author of a class x can write a version specific to x,
i.e. summary.x(), to print out the important parts; otherwise the default will print some
bare-bones information.

For example:

> z <- list(a = runif (50), b = list(u=sample (1:100 ,25) , v="blue sky"))

> z

$a

[1] 0.301676229 0.679918518 0.208713522 0.510032893 0.405027042

0.412388038

[7] 0.900498062 0.119936222 0.154996457 0.251126218 0.928304164

0.979945937

[13] 0.902377363 0.941813898 0.027964137 0.992137908 0.207571134

0.049504986

[19] 0.092011899 0.564024424 0.247162004 0.730086786 0.530251779

0.562163986

[25] 0.360718988 0.392522242 0.830468427 0.883086752 0.009853107

0.148819125

[31] 0.381143870 0.027740959 0.173798926 0.338813042 0.371025885

0.417984331

[37] 0.777219084 0.588650413 0.916212011 0.181104510 0.377617399

0.856198893

[43] 0.629269146 0.921698394 0.878412398 0.771662408 0.595483477

0.940457376

[49] 0.228829858 0.700500359
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$b

$b$u

[1] 33 67 32 76 29 3 42 54 97 41 57 87 36 92 81 31 78 12 85 73 26 44

86 40 43

$b$v

[1] "blue sky"

> names(z)

[1] "a" "b"

> str(z)

List of 2

$ a: num [1:50] 0.302 0.68 0.209 0.51 0.405 ...

$ b:List of 2

..$ u: int [1:25] 33 67 32 76 29 3 42 54 97 41 ...

..$ v: chr "blue sky"

> names(z$b)

[1] "u" "v"

> summary(z)

Length Class Mode

a 50 -none - numeric

b 2 -none - list

A.13 Data Frames

Another workhorse in R is the data frame. A data frame works in many ways like a matrix, but
differs from a matrix in that it can mix data of different modes. One column may consist of integers,
while another can consist of character strings and so on. Within a column, though, all elements
must be of the same mode, and all columns must have the same length.

We might have a 4-column data frame on people, for instance, with columns for height, weight, age
and name—3 numeric columns and 1 character string column.

Technically, a data frame is an R list, with one list element per column; each column is a vector.
Thus columns can be referred to by name, using the $ symbol as with all lists, or by column number,
as with matrices. The matrix a[i,j] notation for the element of a in row i, column j, applies to
data frames. So do the rbind() and cbind() functions, and various other matrix operations, such
as filtering.

Here is an example using the dataset airquality, built in to R for illustration purposes. You can
learn about the data through R’s online help, i.e.
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> ?airquality

Let’s try a few operations:

> names(airquality)

[1] "Ozone" "Solar.R" "Wind" "Temp" "Month" "Day"

> head(airquality) # look at the first few rows

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

> airquality [5,3] # wind on the 5th day

[1] 14.3

> airquality$Wind [3] # same

[1] 12.6

> nrow(airquality) # number of days observed

[1] 153

> ncol(airquality) # number of variables

[1] 6

> airquality$Celsius <- (5/9) * (airquality [,4] - 32) # new variable

> names(airquality)

[1] "Ozone" "Solar.R" "Wind" "Temp" "Month" "Day" "Celsius"

> ncol(airquality)

[1] 7

> airquality [1:3,]

Ozone Solar.R Wind Temp Month Day Celsius

1 41 190 7.4 67 5 1 19.44444

2 36 118 8.0 72 5 2 22.22222

3 12 149 12.6 74 5 3 23.33333

> aqjune <- airquality[airquality$Month == 6,] # filter op

> nrow(aqjune)

[1] 30

> mean(aqjune$Temp)

[1] 79.1

> write.table(aqjune ,"AQJune") # write data frame to file

> aqj <- read.table("AQJune",header=T) # read it in
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A.14 Graphics

R excels at graphics, offering a rich set of capabilities, from beginning to advanced. In addition to
the functions in base R, extensive graphics packages are available, such as lattice and ggplot2.

One point of confusion for beginners involves saving an R graph that is currently displayed on the
screen to a file. Here is a function for this, which I include in my R startup file, .Rprofile, in my
home directory:

pr2file

function (filename)

{

origdev <- dev.cur()

parts <- strsplit(filename , ".", fixed = TRUE)

nparts <- length(parts [[1]])

suff <- parts [[1]][ nparts]

if (suff == "pdf") {

pdf(filename)

}

else if (suff == "png") {

png(filename)

}

else jpeg(filename)

devnum <- dev.cur()

dev.set(origdev)

dev.copy(which = devnum)

dev.set(devnum)

dev.off()

dev.set(origdev)

}

The code, which I won’t go into here, mostly involves manipulation of various R graphics devices.
I’ve set it up so that you can save to a file of type either PDF, PNG or JPEG, implied by the file
name you give.

A.15 Packages

The analog of a library in C/C++ in R is called a package (and often loosely referred to as a
library). Some are already included in base R, while others can be downloaded, or written by
yourself.
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> library(parallel) # load the package named ’parallel ’

> ls(package:parallel) # let ’s see what functions it gave us

[1] "clusterApply" "clusterApplyLB" "clusterCall"

[4] "clusterEvalQ" "clusterExport" "clusterMap"

[7] "clusterSetRNGStream" "clusterSplit" "detectCores"

[10] "makeCluster" "makeForkCluster" "makePSOCKcluster"

[13] "mc.reset.stream" "mcaffinity" "mccollect"

[16] "mclapply" "mcMap" "mcmapply"

[19] "mcparallel" "nextRNGStream" "nextRNGSubStream"

[22] "parApply" "parCapply" "parLapply"

[25] "parLapplyLB" "parRapply" "parSapply"

[28] "parSapplyLB" "pvec" "setDefaultCluster"

[31] "splitIndices" "stopCluster"

> ?pvec # let ’s see how one of them works

The CRAN repository of contributed R code has thousands of R packages available. It also includes
a number of “tables of contents” for specific areas, say time series, in the form of CRAN Task Views.
See the R home page, or simply Google “CRAN Task View.”

> install.packages("cts","∼/myr") # download into desired directory

--- Please select a CRAN mirror for use in this session ---

...

downloaded 533 Kb

The downloaded binary packages are in

/var/folders/jk/dh9zkds97sj23kjcfkr5v6q00000gn/T//RtmplkKzOU/downloaded_packages

> ?library

> library(cts ,lib.loc="∼/myr")

Attaching package: c t s

...

A.16 Other Sources for Learning R

There are tons of resources for R on the Web. You may wish to start with the links at http:

//heather.cs.ucdavis.edu/~matloff/r.html.

http://heather.cs.ucdavis.edu/~matloff/r.html
http://heather.cs.ucdavis.edu/~matloff/r.html
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A.17 Online Help

R’s help() function, which can be invoked also with a question mark, gives short descriptions of
the R functions. For example, typing

> ?rep

will give you a description of R’s rep() function.

An especially nice feature of R is its example() function, which gives nice examples of whatever
function you wish to query. For instance, typing

> example(wireframe ())

will show examples—R code and resulting pictures—of wireframe(), one of R’s 3-dimensional
graphics functions.

A.18 Debugging in R

The internal debugging tool in R, debug(), is usable but rather primitive. Here are some alterna-
tives:

• The RStudio IDE has a built-in debugging tool.

• For Emacs users, there is ess-tracebug.

• The StatET IDE for R on Eclipse has a nice debugging tool. Works on all major platforms,
but can be tricky to install.

• My own debugging tool, debugR, is extensive and easy to install, but for the time being is lim-
ited to Linux, Mac and other Unix-family systems. See http://heather.cs.ucdavis.edu/debugR.html.

A.19 Complex Numbers

If you have need for complex numbers, R does handle them. Here is a sample of use of the main
functions of interest:

> za <- complex(real=2, imaginary =3.5)

> za
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[1] 2+3.5i

> zb <- complex(real=1, imaginary =-5)

> zb

[1] 1-5i

> za * zb

[1] 19.5 -6.5i

> Re(za)

[1] 2

> Im(za)

[1] 3.5

> za^2

[1] -8.25+14i

> abs(za)

[1] 4.031129

> exp(complex(real=0, imaginary=pi/4))

[1] 0.7071068+0.7071068i

> cos(pi/4)

[1] 0.7071068

> sin(pi/4)

[1] 0.7071068

Note that operations with complex-valued vectors and matrices work as usual; there are no special
complex functions.

A.20 Further Reading

For further information about R as a programming language, there is my book, The Art of R
Programming: a Tour of Statistical Software Design, NSP, 2011, as well as Hadley Wickham’s
Advanced R, Chapman and Hall, 2014.

For R’s statistical functions, a plethora of excellent books is available. such as The R Book (2nd
Ed.), Michael Crowley, Wiley, 2012. I also very much like R in a Nutshell (2nd Ed.), Joseph Adler,
O’Reilly, 2012, and even Andrie de Vries’ R for Dummies, 2012.
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