Chapter 6

Matrix Factorization Methods

Note: The reader may find it useful to review Section 3.2 before continuing.

This chapter covers one of the more popular RS methods, matrix factorization. The overall theme
will be low-rank approrimation: given a matrix Mi, find a matrix Ms for which

rk(Ma) << rk(M) (6.1)
and

M2 ~ M1 (62)

This is important for dimension reduction. In RS, our ratings matrix may have hundreds of millions
of rows and millions of columns, which presents both computational and overfitting problems.

To set the stage, we start with a more basic matrix operation, PCA.

6.1 An Approach to Approximate Rank: Principal Components
Analysis

Suppose the matrix in (3.1) had been

1 51 -2
M=/ 802 299 2 82 (6.3)
9 83 6

69

70 CHAPTER 6. MATRIX FACTORIZATION METHODS

Intuitively, we still might say that the rank of M is “approximately” 2. So row 3 still seems
redundant, Let’s formalize that, leading to one of the most common techniques in statistics/machine
learning.

The reason this is of interest is dimension reduction. We would like to reduce our feature set from
p variables to s, with s << p, with the goal of avoiding overfitting.

6.1.1 Exploiting Correlations

Statistically, the issue is one of correlation. In (6.3), the third row is highly correlated with (the
sum of) the first two rows. To explore the correlation idea further, recall our two graphs of bivariate
normal densities from Section 4.4.2:

The two plots were for a low-correlation (0.2) distribution and a high-correlation (0.8) one. As we
said at the time about the latter:

The probability that Xo &~ X7 is high. So, to a large extent, there is only one variable
here, X; (or other choices, e.g. X3), not two.

In the case of correlation 0.2, the two variables are more separate. The probability that Xo ~ — X3
is lower here.

Note one more time, though, the approximate nature of the approach we are developing. There

6.1. AN APPROACH TO APPROXIMATE RANK: PRINCIPAL COMPONENTS ANALYSIS71

really are two variables even in that correlation 0.8 example. By using only one of them, we are
relinquishing some information. But with the need to avoid overfitting, use of the
approximation may be a net win for us.

Well then, how can we determine a set of near-redundant variables, so that we can consider omitting
them from our analysis? Let’s look at those graphs a little more closely.

Any level set in the above graphs, i.e. a curve one obtains by slicing the bells parallel to the (¢1,t2)
plane, can be shown to be an ellipse. As noted, the major axis of the ellipse will be the line
t1 +t3 = 0. The minor axis will be the line perpendicular to that, t71 — to = 0. That suggests
forming new variables,

Wi, =X1+ Xo (6.4)

and

W= X1 — X (6.5)

In fact, taking

a=(1) (6.6)

in (4.21) shows that p(Wy, Ws) = 0.

Here is the point so far:

e The high value of p(X7, X2) suggests that for this dataset, “one variable is enough.” Thus
we might consider using just X rather than X; and Xs.

e Or, we might consider using W; for our one variable.

Now suppose we have p variables, X1, X, ..., X,, not just two. If our data is on people, these
variables may be height, weight, age, blood glucose level, and so on, i.e. X = (height, weight, age,
blood glucose level,...) .

X is different for each person, so it is a random vector. Let C denote the p X p covariance matrix
of X.

Note: In our data, we will have n people, each of which has a different value of the vector X. Our
data is then a matrix (or data frame) of p columns, with the value of X for person ¢ in column 4.
If we call the R function cov() on that matrix, we get C, the estimate of C.

72 CHAPTER 6. MATRIX FACTORIZATION METHODS

We want to create a new 4-dimensional random vector W = (Wq, Wy, W3, Wy)’, with each W; being
some linear combination of X7, Xo, X3 and Xj.

We can no longer visualize in higher dimensions, but one can show that the level sets will be p-
dimensional ellipsoids. These now have p axes rather than just two, and we can define our W; is
such a way that

(a) The W; are uncorrelated.

(b) They are ordered in terms of variance:
Var(Wy) > Var(Wa) > ... > Var(W)) (6.7)

Now we have a promising solution to our dimension reduction problem. In (b) above, we can choose
to use just the first few of the W;, omitting the ones with small variance since they are essentially
constants, uninformative. And again, since the W; will be uncorrelated, we are eliminating a source
of possible redundancy among them; after all, we are doing dimension reduction, i.e. we wish to
reduce the number of variables, so we don’t want any redundant ones.

PCA won’t be a perfect solution — there is no such thing — as might be the case if the relations
between variables is nonmonotonic. A common example is age and income, with mean income given
age tending to be a quadratic (or higher degree) polynomial relation. But PCA is a very common
“go t0” method for dimension reduction, and may work well even in (mildly) nonmonotonic settings.

Note too that although we’ve motivated things here with multivariate normal distributions, we
haven’t assumed it. We are merely talking about finding a set of uncorrelated variables that are
linear functions of our original ones.

Now, how do we find these W;?

6.1.2 Eigenanalysis

So, we are interested in finding new variables that are linear combinations of our original ones.
Let’s look at the first one. We want to choose u to maximize

Var(v'X) =u'Cu (6.8)

where we have used (4.21) with A = /.

Of course, this maximization problem doesn’t make sense in the form stated, since we can just
make u larger and larger to make Var(u'X) large. We need a constraint, say norm 1, v'u = 1.

6.1. AN APPROACH TO APPROXIMATE RANK: PRINCIPAL COMPONENTS ANALYSIS73

This calls for the method of Lagrange multipliers. We redefine that problem as maximizing

W Cu— wu'u—1) (6.9)

where w is an artificial variable that enforces the constraint. Then

%[u'Cu —w('u—1)] =2Cu + 2wu (6.10)
Setting this to 0, we have
0=(C—wl)u (6.11)
In other words,
Cu=wu (6.12)

Aha! The vector u would have to be an eigenvector of C.

Let’s call that vector u;. Then what about the second linear combination, us? Again we would
find u to maximize

Var(u'X) = u/'Cu (6.13)

with the constraintt

wu=1 (6.14)

but now with the additional constraint that we want uz to be uncorrelated with u;. Using (4.21),
that means

wup =0 (6.15)

Using two-variable Lagrange, we would find that us is also an eigenvector of C.

Say we have a sample of n observations on p variables, say p measurements on each of n people.
The measurements are X7, ..., X,. For example, we might have p = 3, with X, X», and X3 being
height, weight and age.

74 CHAPTER 6. MATRIX FACTORIZATION METHODS

Let C denote the covariance matrix of X1, ..., X;,. Note that since Cov(X;, X;) = Cov(X}, X;), the
matrix C' is symmetric,

C'=C (6.16)

Another way of looking at the above derivation:

It can be shown! that any symmetric matrix has real (not complex) eigenvalues, and that the
corresponding eigenvectors Uy, ..., U, are orthogonal,

UlUj =0, i#j (6.17)

We always take the U; to have length 1: Just divide the vector by its length, so it now has length
1, and is still an eigenvector.

Let U denote the p x p matrix whose " column is U;. Then from the orthogonality of the
eigenvectors, we have

Uv=1I (6.18)
SO
ut=uv’ (6.19)

where Iis the p X p identity matrix. We also refer to U as orthogonal, for this property.

It also can be shown that

UcU’' =D (6.20)

where D is a diagonal matrix with the eigenvalues of C' on the diagonal.

X = (Xi,...,X,) is arandom vector, i.e. different for each person or other entity in the population.
Now, form a new random vector from X:

W =UX (6.21)

'Here and below, “can be shown” means that the assertion is proved in any standard textbook on linear algebra.

6.1. AN APPROACH TO APPROXIMATE RANK: PRINCIPAL COMPONENTS ANALYSIS75

Let’s find its covariance matrix, again using (4.21):

Cov(W)=UCU" =D (6.22)

Aha! The components of this new random vector are uncorrelated! Just what we need. And that
gives us PCA:

6.1.3 PCA

e Find the (sample) covariance matrix of X in our data.
e Diagonalize as above, yielding U and D.

e Reorder D so that the eigenvalues are in nonincreasing order. Reorder the rows of U accord-
ingly.

e We are doing dimension reduction, reducing from p. Decide the new dimension s.
e Replace U by its first s rows.

e We've created a new random vector W = UX, with the new U. W will have length s, thus
achieving dimension reduction.

So for example, denote the k" value of X in our original dataset, i.e. column k, by X¥). The
corresponding new vector is W®*) = UX®*) When dealing with a new case X@%) in the future,
premultiply by U to get the W value.

6.1.4 Choosing the Number of Principal Components

The number of components we use, s, is a hyperparameter. So, how do we choose s?

First one must ask what the goal of PCA is in the given application. It might be simply descriptive;
if we can reduce some complex set of variables down to a few while losing only a small amount
of information, those remaining variables may give us insight into the underlying workings of the
process being studied.

For this goal, the (rather) standard approach is “proportion of total variance”; s is chosen so that

ZS: A (6.23)
j=1

76 CHAPTER 6. MATRIX FACTORIZATION METHODS

is “most” of total variance (that total is the above expression with p instead of s), but even this is
usually done informally.

In ML/RS settings, though, s is typically chosen by cross validation. Say we are predicting Y from
X = (Xy,..., X)), using a linear model. We fit such a model, predicting Y from W; alone; then
we predict Y from only Wy and Ws, use then s = 3, then 4 and so on. In each case, we look at
our prediction accuracy in our holdout set. In the end, we use the value of s that gives the best
accuracy. The qePCA/() function does this.

6.1.5 Software and UCI Repository Example

The most commonly used R function for PCA is prcomp(). As with many R functions, it has
many optional arguments; we’ll take the default values here.

For our example, let’s use the Turkish Teaching Evaluation data, available from the UC Irvine
Machine Learning Data Repository. It consists of 5820 student evaluations of university instructors.
Fach student evaluation consists of answers to 28 questions, each calling for a rating of 1-5, plus
some other variables we won’t consider here.

> turk <- read.csv(’turkiye-student-evaluation.csv’,header=T)
> head (turk)
instr class nb.repeat attendance difficulty Q1 Q2 Q3 Q4
1 1 2 1 0 4 3 3 3 3
2 1 2 1 1 3 3 3 3 3
3 1 2 1 2 4 5 5 5 b
4 1 2 1 1 3 3 3 3 3
5 1 2 1 0 1 1 1 1 1
6 1 2 1 3 3 4 4 4 4
Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19
1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 5§ 5 &5 5 b 5 5 5 5 5 5 5 5 5 5
4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28
1 3 3 3 3 3 3 3 3 3
2 3 3 3 3 3 3 3 3 3
3 5 5 5 5 5 5 5 5 5
4 3 3 3 3 3 3 3 3 3
5 1 1 1 1 1 1 1 1 1

6.1. AN APPROACH TO APPROXIMATE RANK: PRINCIPAL COMPONENTS ANALYSIST7

6 4 4 4 4 4 4 4 4 4
> tpca <- prcomp(turk[,-(1:5)]

Let’s explore the output. First, the standard deviations of the new variables:

> tpca$sdev

[1] 6.1294752 1.4366581 0.8169210 0.7663429 0.6881709
[6] 0.6528149 0.5776757 0.5460676 0.5270327 0.4827412
[11] 0.4776421 0.4714887 0.4449105 0.4364215 0.4327540
[16] 0.4236855 0.4182859 0.4053242 0.3937768 0.3895587
[21] 0.3707312 0.3674430 0.3618074 0.3527829 0.3379096
[26] 0.3312691 0.2979928 0.2888057
> tmp <- cumsum(tpca$sdev”2)
> tmp / tmp[28]
[1] 0.8219815 0.8671382 0.8817389 0.8945877 0.9049489
[6] 0.9142727 0.9215737 0.9280977 0.9341747 0.9392732
[11] 0.9442646 0.9491282 0.9534589 0.9576259 0.9617232
[16] 0.9656506 0.9694785 0.9730729 0.9764653 0.9797855
[21] 0.9827925 0.9857464 0.9886104 0.9913333 0.9938314
[26] 0.9962324 0.9981752 1.0000000

This is striking. The first principal component (PC) already accounts for 82% of the total variance
among all 28 questions. The first five PCs cover over 90%. This suggests that the designer of the
evaluation survey could have written a much more concise survey instrument with almost the same
utility.

Now keep in mind that each PC here is essentially a “super-question” capturing student opinion
via a weighted sum of the original 28 questions. Let’s look at the first two PCs’ weights:

> tpca$rotation[,1]

Q1 Q2 Q3 Q4 Q5
-0.1787291 -0.1869604 -0.1821853 -0.1841701 -0.1902141
Q6 Q7 Q8 Q9 Q10
-0.1870812 -0.1878324 -0.1867865 -0.1823915 -0.1923626
Q11 Q12 Q13 Q14 Q15
-0.1866948 -0.1862382 -0.1922729 -0.1911814 -0.1902380
Q16 Q17 Q18 Q19 Q20
-0.1962885 -0.1808833 -0.1935788 -0.1927359 -0.1931985
Q21 Q22 Q23 Q24 Q25
-0.1911060 -0.1908591 -0.1948393 -0.1931334 -0.1888957
Q26 Q27 Q28

-0.1908694 -0.1897555 -0.1886699

78

> tpca$rotation[,2]

CHAPTER 6. MATRIX FACTORIZATION METHODS

Q1 Q2 Q3 Q4 Q5
0.35645673 0.23223504 0.11551155 0.24533527 0.20717759
Q6 Q7 Q8 Q9 Q10
0.20075314 0.24290761 0.24901577 0.12919618 0.18911720
Q11 Q12 Q13 Q14 Q15
0.11051480 0.21203229 -0.10616030 -0.15629705 -0.15533847
Q16 Q17 Q18 Q19 Q20
-0.04865706 -0.26259518 -0.12905840 -0.15363392 -0.19670071
Q21 Q22 Q23 Q24 Q25
-0.22007368 -0.22347198 -0.10278122 -0.06210583 -0.20787213
Q26 Q27 Q28
-0.12045026 -0.07204024 -0.21401477

The first PC turned out to place approximately equal weights on all 28 questions. The second PC,
though, placed its heaviest weight on Q1, with substantially varying weights on the other questions.

While we are here, let’s check that the columns of U are orthogonal.

> t(tpca$rotation[,1])
[,1]
-2.012279e-16

%*% tpca$rotationl[,2]
[1,]

Yes, 0 (with roundoff error). As an exercise in matrix partitioning, the reader should run

t(tpca$rotation) ¥%*’ tpca$rotation

then check that it produces the identity matrix I, then ponder why this should be the case.

6.1.6 More on the PC Coefficients

There is more to consider.

Do the PC coefficients have any interpretation? The answer is probably no for ordinary people, but
for the domain experts, very possibly yes. In the teaching evaluation example above, a specialist in
survey design or teaching methods may well be able to interpret the dominance of Q1 in the second
PC. A method called factor analysis, an extension of PCA, is popular in social science research.

For the rest of us, PCA is just a handy way to do dimension reduction.

But there is geometric terminology that will be helpful, as follows. Let’s look at the mlb dataset
from the regtools package. This is data on Major League baseball players.

6.1. AN APPROACH TO APPROXIMATE RANK: PRINCIPAL COMPONENTS ANALYSIST79

Name Team Position Height Weight Age
1 Adam_Donachie BAL Catcher 74 180 22.99
2 Paul_Bako BAL Catcher 74 215 34.69
3 Ramon_Hernandez BAL Catcher 72 210 30.78
4 Kevin_Millar BAL First_Baseman 72 210 35.43
5 Chris_Gomez BAL First_Baseman 73 188 35.71
6 Brian_Roberts BAL Second_Baseman 69 176 29.39
PosCategory
1 Catcher
2 Catcher
3 Catcher
4 Infielder
5 Infielder
6 Infielder

Let’s apply PCA:

> hw <- as.matrix(mlb[,4:5])
> pcout <- prcomp (hw)
> pcout$rotation

PC1 PC2
Height -0.05948695 0.99822908
Weight -0.99822908 -0.05948695

If we were to plot hw, we would put hw[1,] at the point (74,180) on our graph. Recall from high
school math that 74 and 180 are called the coordinates of hw2[1,], with respect to our “H axis”
and “W axis.”

But in doing PCA, we are creating new axes, PC1 and PC2, which are rotated versions of the H
and W axes. (Hence the naming of the U matrix as “rotation” in the prcomp() return value.)
Let’s find the coordinates of hw[1,] with respect to the new axes:

> hwl[1l,] %*% pcout$rotation
PC1 PC2
[1,] -184.0833 63.1613

So (74,180) has become (-184.1,63.2) under the new coordinate system. Let’s see what the angle
of rotation is. We can do that by seeing where a point on the H axis rotates to.

> pcl0 <- ¢c(1,0) %*% pcout$rotation
> pcl0

PC1 PC2
[1,] -0.05948695 0.9982291

80 CHAPTER 6. MATRIX FACTORIZATION METHODS

> (atan(pc10[2] / pc10[1])) =* 180/pi
[1] -86.58964

Almost 90 degrees clockwise.

6.1.7 Scaling

Some analysts prefer to scale the data before applying PCA. For each column, we would subtract
the column mean and divide by the column standard deviation. The column would now have mean
0.0 and variance 1.0.

The rationale for doing this is that if PCA is applied to the original data, variables with large
variance will dominate. And then units would play a role; e.g. a distance variable would have more
impact if it were measured in kilometers than miles.

Scaling does solve this problem, but its propriety is questionable. Consider a setting with two
features, A and B, independent, with variances 500 and 2, respectively, and with mean 100 for
both. Let A’ and B’ denote these features after centering and scaling.

As noted, PCA is all about removing features with small variance, as they are essentially constant.
If we work with A and B, we would of course use only A. But if we work with A" and B’, we would
use both of them, as they both have variance 1.0.

So, dealing with the disparate-variance problem (e.g. miles vs. kilometers) shouldn’t generally be
solved by ordinary scaling, i.e. by dividing by the standard deviation. An alternative is to divide
each column by its mean. This addresses the miles-vs.-kilometers problem, and makes sense in that
a variance is large or small in relation to its mean.

6.2 SVD

The Singular Value Decomposition (SVD) is a generalization of PCA. It has many applications,
but will be especially valuable for us in RS, as it can factor our ratings matrix into the product of
a user matrix and an item matrix.

6.2.1 The Decomposition

Let A be any matrix, not necesarily square. In fact, it is nonsquare in typical applications, RS
being a case in point. Let n and m denote the numbers of rows and columns of A. Then there

6.2. SVD 81
exist matrices U, D and V such that

A=UDV' (6.24)

where:

e The dimensions of U, D and V are n X n, n x m and m X m.
e U and V are orthogonal matrices, so that UU’ = I and V'V = 1.

e D is a diagonal matrix in the sense that D;; = 0 whenever i # j. The diagonal elements are
the singular values. Let d; denote the i*" diagonal element in D, i = 1,2,...,min(n, m). One
can construct the matrices so that the singular values are nonnegative.

By permuting the rows and columns of A, e.g. in MovieLens, permuting the order of the users, and
that of the movies, we can arrange things so that the singular values appear in descending order.
We’ll assume that here.

Let u; and v; denote the i row in U and V, respectively. By expanding the multiplication in
(6.24), we have

min(n,m)

A= > duw] (6.25)
=1

6.2.2 Low-Rank Approximation

Equation (6.25) then suggests how to accomplish dimension reduction. Remember, the d; are
decreasing.? The last few may be really tiny, so we can delete those terms, just as we deleted the
principal components with small variances.

Say we retain the first r terms, with » < min(n,m). That is equivalent to

e Retaining the r» x r “northwest corner” of D.
e Retaining the first r columns of U.

e Retaining the first 7 columns of V.

2Technically, nonincreasing, but typically there are no cases of equality.

82 CHAPTER 6. MATRIX FACTORIZATION METHODS

Result:

e The new U, D and V will now be of dimensions n x r, r X r and m X r.

e The new product UDV’ will still have dimensions n x m, the same as A. But, whereas we
had

A=UDV' (6.26)

before, we now have

A~UDV' (6.27)

e The new UDV’ will have rank r, hence the term low-rank approximation. In fact, it can
be shown to be the best rank-r approximation to A, in the sense that the Frobenius norm
(Section 3.3) of the difference is minimized:

UDV' = argmqi)nHA—QHF (6.28)

over all n x m matrices) having rank r.

6.2.3 Back to RS

Since D is a diagonal matrix with nonnegative diagonal entries, it has a square root, which we will
denote as D%%—to obtain the square root matrix, take the square of each diagonal value. Then

A~ (UD)(D**V) (6.29)

So to obtain our desired factorization A ~ W H, we simply set

W =UD"® H = D%V’ (6.30)

In our RS context, the ratings matrix A has missing values. How can we find U, D and V7

If the proportion of missing values is low, as in our House Voting data, we can apply SVD to the
intact rows of A, then treat the remaining rows as new cases to be predicted (Section 6.3.5 below).

Otherwise, the answer is that numeric methods exist to find the approximate SVD, based on
the non-NA elements of A. They involve optimization of certain complicated quantities, using a

6.3. GENERAL ISSUES WITH MATRIX FACTORIZATION METHODS 83

nonlinear optimization technique. One such technique is Stochastic Gradient Descent (SGD), an
iterative workhorse method in machine learning. It essentially sets derivatives to 0 and solves, but
with various refinements. Of course, U, D and V will then turn out to be different from what they
would be if A were intact.

6.3 General Issues with Matrix Factorization Methods

There are many refinements of the SVD approach described above, and indeed many other ways
to achieve approximate factorization. We’ll discuss other methods, later in this chapter.

In all methods, we have

A~WH (6.31)

where W is of dimensions n x r, H is of dimensions r X m, and both matrices are of rank r. There
are several issues to discuss.

6.3.1 Bias, Variance and Overfitting

There are nr numbers in W, and rm in H. Treating our data as a sample from a conceptual
population—e.g. all moviegoers and all movies—estimating only r(n + m) values is much better
than estimating the much larger nm ones.

But this depends on r, which is our tuning parameter/hyperparameter for this method. We have
a classical tradeoft:

As r grows, the variance increases, due to estimating more parameters, but the bias decrases. As
usual, typically r is chosen by cross-validation.

6.3.2 Regularization

To some analysts, “If it’s random, then shrink it.” Matrix factorization is no exception. In the
context here, that means shrinking both W and H, and we choose them to minimize

1A= WH|F + 7 |WIlE + 2l H|E (6.32)

84 CHAPTER 6. MATRIX FACTORIZATION METHODS

6.3.3 “Bias” Removal

In machine learning circles, the term bias as a second, unrelated meaning beyond the “bias-variance
tradeoff” context. This second meaning refers to the 5y term in (5.4). Recall that if we have no
covariates, i.e. p = 0 in that equation, By reduces to EY, the unconditional mean of Y.

We will discuss covariates shortly, but for now the point is that it is customary to center the A
ratings matrix by subtracting means. Let m, m;., and m.; denote the overall mean rating, the
mean for user 7 and the mean for item j, respectively. Then the recommended approach is to first
make the adjustment

Aij — Aij — (ml +m.; — m) (6.33)
Then the factorizaiton is performed, and finally the adjustment is “undone”:

Aij — Aij + (mz +m.; — m) (6.34)
What is going on here? First, the expression

mi. +m. —m (6.35)

is motivated by the equivalent

m + (m;. —m) + (m.; —m) (6.36)

which models the ratings as
overall mean + effect due to user i + effect due to item j

(Readers who are familiar with the analysis of variance should recognize this.) The idea is then to
do our matrix factorization on the residual, i.e. what is “left over” after prediction by the model
(6.36).

6.3.4 Dealing with Covariates

Why stop with just removing “biases”?” We can go a step further and account for user or item
covariates.

6.4. INTERPRETATION OF W AND H 85

The easiest approach to handling covariates is again to subtract (and later add back) residuals, in
this case those arising from a linear or other regression model. One would first put the data in
(user ID, iterm ID, rating) format, then run Im() or whatever. Each element of A is then adjusted
by subtracting the predicted value for that element. One would then perform matrix factorization
to fill in the ratings matrix, then finally add the predicted values back to the result.

Another way would be to append user covariates as new columns in the A matrix, or item covariates
as New rows.

6.3.5 Predicting New Cases

One drawback of matrix factorization methods is that there generally is no direct method to handle
new users or new items not in the original data. One must compute the entire factorization all over
again. This may not be too problematic, though, as most numerical methods are easy to update,
rather than fitting from scratch.

One solution is to use a k-Nearest Neighbors analysis on the completed matrix. For a new case
with ratings for a set of items, find the k rows closest to the new case, and average their ratings.

6.4 Interpretation of W and H

One of the big advantages of matrix factorization methods is interpretability.

For any matrix @, let @Q;., Q.;, and Q;; denote row 7, column j, and element (4, j), respectively.
Note the key relation, using the material in Section 3.2:

k
(WH)i. = WimHp, (6.37)

m=1
In other words, in (6.37), we see that:
e The entire vector of predicted ratings by user ¢ can be expressed as a linear combination of
the rows of H.
e The rows of H can thus be thought of as synthetic “users” who are representative of users in

general. H,, is the rating that synthetic user r gives item s.

Of course, interchanging the roles of rows and columns above, we have that the columns of W
serve as an approximate basis for the columns of A. In other words, the latter become synthetic,
representative items, e.g. representative movies in the MovieLens data.

86 CHAPTER 6. MATRIX FACTORIZATION METHODS

6.5 Alternating Least Squares (ALS)

Again, a general approach to finding W and H is to minimize the Frobenius norm of the approxi-
mation error:

W.H = argmi}r&HA—whHF (6.38)
w,

Of course, minimizing that quantity is equivalent to minimizing its square, setting up a leasts-
squares approach that we’ll describe here. So, we wish to minimize

W,H = argmi}rLlHA—whH% (6.39)
w7

As noted, we could use SGD for this. But the old saying, “Easier said than done” applies. SGD
works really well for minimization of conver functions. Roughly, convexity means that a function is
concave-up in one dimension (i.e. the function has one argument), “bowl-shaped” in two dimensions
(two arguments), and the un-visualizable equivalent in multiple dimensions. Unfortunately, the
function

flw,h) = | A = wh|% (6.40)

which has nr + rm arguments, is not convex. It generally will have multiple local minima, causing
possible convergence problems.

6.5.1 A Non-SGD Approach, ALS

For fixed h, the function f(w,h) is convex. In fact, we will see below that it’s our old friend from
the linear model, which not only has a unique minimum but in fact has a close-form solution for
the minimum! Indeed, we can use R’s Im() function to obtain the solution. The same is true if we
fix w and allow h to vary.

The alternating least squares approach to minimizing (6.40) exploits the fact that f(w, h) is sepa-
rately convex in w and h, holding one of them fixed. The algorithm is then

(1) Set an initial guess wp for the solution. (We won’t need an initial guess for h.)

(2) Minimize f(wq,h) with respect to h, yielding our next guess, h;.

(3) Minimize f(w, h1) with respect to w, yielding our next guess, wj.

6.5. ALTERNATING LEAST SQUARES (ALS) 87

(4) Minimize f(wy,h) with respect to h, yielding our next guess, hs.

(5) Repeat until convergence.

Here is more detail: In step (2) above, first write

flwo,h) = Ay —wo bl (6.41)
j=1

where hg.; means column j of hg. If we can find h to minimize the j term in (6.41) for each j, then
we will have minimized (6.41), achieving our goal.

But luckily this is exactly the structure we had in minimizing (5.11):

e The matrix A there is our wq here, known.
e The vector D there is our A.; here, known.

e The vector b there is our h.; here, unknown and to be solved for.

So we have

(h1).j = (wowo) ™ wpA, (6.42)

And again, via matrix partitioning,

(h1) = (wywo) ™ MwpA (6.43)

for each j. In R code,
> h[,j] <- Im(al,j] ~ w0 - 1)$coef

The -1 specifies that we do not want a constant term in the model, i.e. no 1s column..

On the other hand, what about step (3)?. We could take transposes,

A = W (6.44)

and then just interchange the roles of w and h above. Here a call to Im() gives us a column of w’,
thus a row of w, and we do this for all rows.

88 CHAPTER 6. MATRIX FACTORIZATION METHODS

6.5.2 Back to Recommender Systems: Dealing with the Missing Values

In our recommender systems setting, of course, much of A is missing. But we can easily adapt to
that. Roughly speaking, in (6.41), do these replacements:

e replace A ; by the known portion of A ;

e replace wy by the corresponding rows of wy

Then proceed as before.

6.5.3 Convergence and Uniqueness Issues

There are no panaceas for applications considered here. Every solution has potential problems. I
like to call this the Pillow Theorem — pound down on one fluffy part and another part pops up.

One issue with finding W and H by minimizing (6.38) is uniqueness — there might not be a unique
pair (W, H) that minimizes (6.38). In fact, one can see this immediately: Doubling W while halving
H leaves the product W H unchanged. Of course, the product is all that really counts, but in turn,
this may result in convergence problems. Software documentation (see below) recommends running
the computation multiple times; it will use a different seed for the random initial values each time.

Actually, the Alternating Least Squares method used here is considered by some to have better
convergence properties, since the solution at each iteration is unique. This may come at the expense
of slower convergence.

6.6 Nonnegative Matrix Factorization (NMF)

In most RS applications, the ratings are nonnegative. So, we might require that W and H be
nonnegative.

6.6.1 Computation

In ALS, for instance, we might just truncate to 0 any elements in w; and h; that stray into negative
territory.

Another popular approach is multiplicative update, due to Lee and Seung. Here are the update

6.7. SOFTWARE 89

formulas for W given H and vice versa:

AH'
W+ Wo WHE (6.45)
W'A

where @ o R and % represent elementwise multiplication and division with conformable matrices
@ and R, and the juxtaposition QR means ordinary matrix multiplication.

6.6.2 Why Nonnegative?

NMF makes sense since the ratings are nonnegative, and also there is hope that the resulting W
and H are more likely to be sparse.

A second motivation is as follows: Matrix factorization methods have also been applied to image
and text classification. Consider a facial image recognition case, say. There is hope that the nonzero
elements of W.1, say, correspond to eyes, W.o correspond to noses, and so on with other parts of
the face. We are then “summing” to form a complete face. This may enable effective parts-based
recognition, with helpful interpretations.

In our recommender systems setting, this parts-based effect, NMF would give us crisper distinction
among the various synthetic users. This may reveal clusters of user behavior, which could be quite
helpful to the analyst.

6.7 Software

Given that matrix factorization plays a major role in RS and many other applications, it’s not
surprising that many libraries have been developed for it.

6.7.1 The svd() Function

This is a general (i.e. not RS-specific) function to perform SVD. The function is part of base-R,
and does not handle missing values. Here is an example:

> m
[,11 [,2]1 [,3]1 [,4]
[1,] 15 18 5 11

90

CHAPTER 6. MATRIX FACTORIZATION METHODS

26 4
13 5

18.1306964 0.3134599

[,2] [,3]
0.80414164 -0.2566818
-0.59380206 -0.3885637
-0.02748343 0.8849478

[,2] [,3]
0.6249570 0.5932112
0.2561355 -0.6952051

-0.6494748 0.3772584
0.3492934 0.1498884

> z$u %xY diag(z$d) %=*% t(z$v)

[2,] 1 16
(3,1 5 12
> z <- svd(m)
> z
$4d
[1] 40.9655903
$u

[,1]
[1,] 0.5361629
[2,] 0.7045689
[3,] 0.4648785
$v

[,1]
[1,] 0.2702611
[2,] 0.6469473
[3,] 0.6601400
[4,] 0.2695057

[,11 [,2]

(1,1 15 18
[2,] 1 16
(3,1 5 12

[,31 [,4]
5 11

26 4
13 5

6.7.2 The recosystem Package

The recosystem package does matrix factorization specifically for recommender systems, i.e.
specifically for settings in which the matrix A has many missing values. It’s written by experts in
numerical matrix factorization, and features a number of useful options.

The recosystem authors recognized that RS systems tend to be large, with many rows and columns
in a ratings matrix. Accordingly, the package does the following:

e It takes its input in the usual (user ID, item ID, rating) format, not the ratings matrix, which
could be huge.

e As an option, it will stores the resulting W and H matrices as disk files, rather than writing
them to memory.

6.7. SOFTWARE 91

The package uses R’s R6 class system. This is transparent if one uses the wrapper rectools::trainReco(),
but let’s take a close look, calling the function directly.

Below is a recosystem session using the small MovieLens data, in the ml100 data frame we’ve
analyzed before.

Let’s suppose we’ve decided on rank k = 20.

> library(recosystem)

> r <- Reco()

> class (r)

[1] "RecoSys"

attr (,"package")

[1] "recosystem"

all action will take place within this R6 class instance; typically the
output of a fumction will be stored back as a new compoment in T

need to create an object of class ’DataSource’, specifying which
columns are user IDs, item IDs and ratings; here we will have the data
in memory; see below

ml.dm <- data_memory(ml1100[,1],m1100[,2],m1100[,3],index1=TRUE)

Vo oH B R

do the factorization, with rank 20; use NMF not SGD
> r$train(ml.dm,opts=1ist(dim=20,nmf=TRUE))

iter tr_rmse obj
0 2.0381 5.0056e+05
1 1.0296 1.7402e+05
2 0.9529 1.6028e+05
3 0.9449 1.5868e+05
4 0.9418 1.56811e+05
5 0.9397 1.5774e+05
6 0.9382 1.5749e+05
7 0.9371 1.5729e+05
8 0.9362 1.5713e+05
9 0.9355 1.5701e+05
10 0.9348 1.5690e+05
11 0.9343 1.5681e+05
12 0.9338 1.5673e+05
13 0.9334 1.5666e+05
14 0.9330 1.5660e+05
15 0.9327 1.5654e+05

92 CHAPTER 6. MATRIX FACTORIZATION METHODS

16 0.9324 1.5649e+05
17 0.9321 1.5645e+05
18 0.9318 1.5641e+05
19 0.9316 1.5637e+05

training went for 20 iterations; RMSE is the square root
of MSPE
for large data, write to disk; here we store in memory
> result <- r$output(out_memory(),out_memory ())
> str(result)
List of 2
$ P: num [1:943, 1:20] 0.676 0.677 0.574 0.836 0.574
$ Q: num [1:1682, 1:20] 0.712 0.614 0.568 0.645 0.612
P and {0 are W and H’
w <- result$P
h <- t(result$Q)
let’s try a prediction, with a known rating; we can do the
matriz multiply ourselves <if we wish
head (ml)
vi V2 V3 V4
196 242 3 881250949
186 302 3 891717742
3 22 377 1 878887116

V % % V V

N =

> wl22,] %=*% h([,377]
[,1]
[1,] 2.196976
there i1s a predict () method, not shown here

Various options are available, such as regularization parameters.

6.8 The softImpute Package

In the literature on missing values, we often sees the term impute, which is a fancy form of “guess.”
Hence the name of this package.

The package works directly on the ratings matrix A. If that matrix is too large for memory, there
is an option to use the Spark system, which has an R interface sparkr. Spark is a highly complex
system which may be difficult to install. We do not pursue that here.

The user has a choice of ALS or SVD, default value of ALS, though in both cases the algorithms

6.8. THE SOFTIMPUTE PACKAGE

used are refinements of what we see here.
Again, let’s use MovieLens as an example:

mlm <- rectools::buildMatrix(ml100[,-4],NAval=NA)
library(softImpute)
z <- softImpute(mlm,rank.max=10) # rank 10
mlmest <- z$u %x*Y diag(z$d) %*% t(z$v)
try a known rating
head (m1100)
Vi V2 V3 V4
196 242 881250949
186 302 891717742
22 377 878887116
244 51 880606923
166 346 886397596
298 474 4 884182806
> mlm [22,377]
(11 1
> mlmest [22,377]
[1] 1.156759

V % V V V V

o O W
N~ WwWw

94

CHAPTER 6. MATRIX FACTORIZATION METHODS

