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New York Times, Feb. 11, 2012

NEWS AMNALYSIS

The Age of Big Data

By STEVE LOHR

Published: February 11, 2012 | B 82 Comments

GOOD with numbers? Fascinated by data? The sound you hear is
opportunity knocking.

Enlarge This Image Mo Zhou was snapped up by L.LB.M. last
i i A . summer, as a freshly minted Yale
"-‘1[“.u . + M.B.A, to join the tthnulugy
e company’s fast-growing ranks of data
] . Pa consultants. They help businesses make
9 *H sense of an explosion of data — Web
traffic and social network comments, as
M

. --. well as software and sensors that monitor
a' @
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NEWS / sascom MAGAZINE

Newsroom

@ Press Releases

@ Media Coverage

@ Analyst Viewpoints
2 About SAS

© Awards

© News: SAS Companies

Big data: big challenges, big opportunities

An expert panel di how organizati can capitalize on big
data to generate new ideas, build new markets and expand existing
ones

Participating in a panel discussion at the recent Ideas Economy
conference put on by The Economist, SAS Chief Executive Officer Jim
Goodnight and other high-tech execs discussed so-called "big data” and
the challenges and opportunities companies face in dealing with the
ever-growing data deluge.
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Oracle and Big Data

Big Data for the Enterprise

The term big data draws a lot of attention, but behind the hype there's a simple story. For decades, companies have been making
business decisions based on transactional data stored in relational databases. Beyond that critical data, however, is a potential
treasure trove of less structured data: weblogs, social media, email, sensors, and photographs that can be mined for useful
information.
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But Oracle rocks! :-)
Oracle R Enterprise

Integrates the Open-Source Statistical Environment R with Oracle Database 11g

Oracle R Enterprise allows analysts and statisticians to run existing R applications and use the R client directly a
Oracle Database 11g—uvastly increasing scalability, performance and security. The combination of Oracle Datab:
delivers an enterprise-ready, deeply integrated environment for advanced analytics. Users can also use analytic
where they can analyze data and develop R scripts for deployment while results stay managed inside Oracle Da
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e Tons of packages: CRAN Task View: High-Performance
and Parallel Computing with R

e Base R now incorporates snow (cluster, multicore) and
multicore (multicore).

e Mainly useful on “embarrassingly parallel” (EP)
problems—those dividable into subproblems that need
little or no intercommunication.

e What about non-EP apps?
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e Multiplatform desirable:

multicore

cluster

GPU (and other coming accelerators?)

foreach() multiplatform, but for R code, not C, and does
not work on GPU

e R not threaded

e Very hard, no plans to do it to my knowledge (7).
e Rdsm, bigmemory threads-like, but not good for parallel
computation.

e Copy-on-write: Writing to one vector element sometimes
causes copying entire vector.
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“When you come to a fork in the road, take it"—famous
baseball player and malapropist Yogi Berra

e Parallel technology in a state of flux:

NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

Intel Knight's Ferry accelerator: out “next year"—every
year

CUDA (extension of C) currently GPU dominant software;
same in future?

OpenCL (for GPU and multicore) growth currently stalled?
OpenACC; for GPUs; might become more popular, due to
announced connection with OpenMP

uncertainty abounds—so which way should R go?
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e An algorithmic approach:

Software alchemy: Change non-embarrassingly parallel to
EP.
Statistics-specific: Assumes i.i.d. data.

e My new package: Rth:

Assuming parallel R will mainly consist of C/C++
interface.

But need some multiplatform capability.

Rth: R interface to Thrust.

Thrust is C++ package for high-level operations, e.g. sort,
search, prefix scan.

Thrust builds to multiple backends, including GPU and
multicore.

So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.
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Call it NEP2EP.

Old, old idea in parallel processing: Break data into
chunks, work on each chunk, then combine results.

e But this requires EP to be worthwhile.

e New approach: Exploit the statistical properties.

Key point: Calculate a statistically equivalent quantity
that lends itself to EP computation.
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Works on R level; no need to resort to C/C++.

Fine on either multicore or cluster.

Simple to use—e.g. from snow.

e Has a surprising benefit even on unicore.

Bonus: Automatic generation of standard errors (that you
didn’t have before).
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How NEP2EP Works

Suppose we wish to calculate an estimator 6, say
regression coefficients.

Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

Break into r chunks of n/r data points each.
For i = 1,...,r calculate 6 on chunk i, yielding 6;.

Average all those chunked values:
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if (!is.matrix(z)) z <— matrix(z, ncol=1)
n <— probpars$n
if (rndmz) z <— z[sample(l:n,n,replace=F),]
nnodes <— length(cls) obslist <— list ()
chunksize <— n / nnodes
for (i in 1l:nnodes) {
firstobs <— 1 + (i—1) % chunksize
lastobs <— firstobs + chunksize — 1
if (lastobs = n) lastobs <— n
obslist [[i]] <— z[firstobs:lastobs ,]
}
thts <— clusterApply(cls,obslist ,sf)
tht <— do.call("+",thts)
tht / nnodes
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e The result, # can be proven to have the same asymp.
statistical accuracy as the original 6.

e But the computation of 8 is EP even if 9 is non-EP.
e Alchemy! Non-EP — EP.
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e Say n obs., r processes (e.g. r = 2 for dual core).
e Say basic alg. takes O(n€) time.
e So, NEP2EP speedup is (roughly) O(n€/r¢), speedup of

re.

e For algs. having ¢ > 1, speedup is superlinear (par. proc.
term).Not the usual small stuff like cache effects!

e Uniprocessing case: Run time is rO(n°/r€), i.e.
O(n°/r¢71). So, if ¢ > 1 NEP2EP gives a speedup with
no parallelism!
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e NEP2EP in Snow

e multicore machine, 32 threads (2 CPUs x 8 cores x
hyperthreading of 2)

e num. cores = 2,4,8,16,24,32; sometimes better beyond 32,
probably due to cache/VM effects

e procedures tried:

Kendall's 7

quantile regression

nonparametric hazard function est.
log-concave density est.

linear regression (random x)
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n = 10000

3.92X speedup
at 2 threads
93.97X speedup
at 24 threads

speedup
5
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50

Kendall's 7, cont'd.

20

3.36X speedup
at 2 threads
255.67X
speedup at 32
threads
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0.86X speedup
at 2 threads
1.16X speedup
at 8 threads

50

speedup

00
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n = 25000, p = 0.2 (proportion missing); estimate quantiles
0.2,0.4,0.6,0.8

1.87X speedup
at 2 threads
9.43X speedup
at 16 threads

speedup
T
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n = 50000, p = 0.02 (proportion missing)

speedup

Hazard Function Estimation

1.87X speedup
at 2 threads
11.69X speedup
at 32 threads
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n = 200000

2.17X speedup
at 2 threads
12.43X speedup
at 32 threads

speedup
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n = 50000, p = 50; should expect less here, O(n, p%)

0.90X speedup
at 2 threads
1.97X speedup
at 32 threads

°
T

speedup
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n = 50000, p = 100

1.08X speedup
at 2 threads
2.50X speedup
at 24 threads

speedup

Put in context: Seligman (2010) found GPU provides speedup
only if r > 1000.
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e One can prove that NEP2EP works asymptotically, i.e.
gives the same statistical accuracy as the original
estimatator. Is that large-n requirement an issue?

e No, not an issue: Since we're talking about settings where
parallel computing is needed, we're working with large
samples by definition—the large n is the reason we need
parallel computing!

e NEP2EP gives essentially the same values as the original.
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Accuracy
Absolute differences, r = 16:

app. prob. size rel. diff.
Kendall n = 1000 | 0.005849463
quant. reg. n = 10000, p = 10 0.001274819
haz. ftn. | n = 25000, p = 0.2 | 0.007422595
log conc. dens. n = 25000 | 0.0003593208
lin. reg. | n = 50000, p = 100 | 0.0001207394
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Motivations:

e Parallelizing R will need to rely in part on C/C++ code.

e Nice to have the same parallel code work on multicore and
GPU systems. PGP—Pretty Good Parallelism.

e Nice to have code for high-level operations available (sort,
search, prefix scan, etc.).

e Hopefully make it (somewhat) easy for users to write their
own parallel code.
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Some Existing Possibilities

These work on both multicore and GPUs:

e OpenCL: Extension of C.
e Magma: Matrix routines.
e OpenACC: Like OpenMP for GPUs.

But OpenCL and OpenACC do not provide high-level ops, and
Magma is narrow.
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@A NVIDIA.

| CUDA |
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Provide parallel Thrust code called from R,

Thrust transparent to the ordinary user.

Parallelize a number of R operations in Thrust.
e Facilitate sophisticated user writing own parallel code.

e Currently just at very early stage of project.
What is Thrust?
e C+-+ package, modeled on STL.

e Can compile to either GPU or multicore backend.

e Provides high-level operations, e.g. sort, search, prefix
scan, foreach, reduction, etc.
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rthsort <— function(x) {
dyn.load (" rthsort.so")
n <— length(x)
tmp <— .C(" rthsort”,as.double(x),
as.integer(n),tmpres=double(n))
return (tmp$tmpres)
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R interface code:

rthsort <— function(x) {
dyn.load (" rthsort.so")
n <— length(x)
tmp <— .C(" rthsort”,as.double(x),
as.integer(n),tmpres=double(n))
return (tmp$tmpres)

¥
Sorting 10000000 numbers: R 4.78 sec, Rth 1.52sec.
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sorting, cont'd.

Thrust code:

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>

void rthsort(double *x, int xnx, double xxout)
{ int n = xnx;
// set up device vector and copy x to it
thrust:: device_vector<double> dx(x,x+n);
// sort, then copy back to x
thrust ::sort(dx.begin(), dx.end());
thrust ::copy(dx.begin(), dx.end(),xout);
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General Pattern

Sort example was straight wrapper. What about other cases?

e Put together the appropriate Thrust ops.

e For most Thrust ops, write app-specific function to be
called.
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void rthconv(double *x, int x*nx,
double xy, int xny, double xz)
{ int nxx = %nx, nyy = xny, nzz = nxx + nyy —

thrust:: device_vector<double> dx(x,x+nxx);

thrust :: counting_iterator<int> seqb(0);

thrust :: counting_iterator<int> seqe = seqgb -

thrust :: for_each(seqb,seqe,doli(dx.begin(),
dy.begin(),dz.begin(),nxx,nyy));

thrust ::copy(dz.begin(), dz.end(),z);

}
Key line:
thrust :: for_each (seqb,seqe,doli(dx.begin(),...
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«O>r «Fr «=>»

«E)»

nae



Parallel R,
Revisited

i e convolution, cont'd.

University of
California at
Davis

User supplies “foreach” function, in the form of a

struct doli { // "do 1 i"

__device__
void operator()(const int i)
{ int j; // handle 1 i in i,j loop
int rpi = rndperm|[i];
double xdi = xd[rpi];
for (j = 0; j < ny; j++)
zd[rpi+j] += xdi * yd[ny—j —1];
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convolution, cont'd.

User supplies “foreach” function, in the form of a

struct doli { // "do 1 i"

__device__
void operator()(const int i)
{ int j; // handle 1 i in i,j loop
int rpi = rndperm|[i];
double xdi = xd[rpi];
for (j = 0; j < ny; j++)
zd[rpi+j] += xdi * yd[ny—j —1];

I

A callable struct.
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e Rth’s rthconv() orders of magnitude faster than R's
convolve().

¢ Not fair to R's convolve(); latter written in C, but works
via FFTs, slow.

e Also: R's convolve() runs out of space on problems than
rthconv() can handle (multcore).
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void rthkendall(float *xy,int xnxy, float xtau)
{ int i,n = %nxy, n2 = 2xn,totcount;
thrust:: counting_iterator<int> seqa (0);
thrust:: counting_iterator<int>
seqb = seqa + n — 1;
doubvec dxy(xy,xy+n2);
intvec tmp(n—1);
thrust::transform (seqa,hseqb,tmp.begin(),
calcgti(dxy,n));
totcount=thrust :: reduce(tmp.begin (), tmp.end(
xtau = totcount / (0.5%xnx(n—1));

}

Key calls: transform(), reduce(); can combine using
transform iterator
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Example: submatrix ops, select()

e Not implemented yet.
e Easy version: Specific numerical indices.

e More elaborate: Dynamic parse of user R expression, sent
off to Thrust code.
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Some Thrust Ops

sort, search

reduce, min/max

permute (e.g. for matrix transpose)
partition, prefix scan

foreach, transform, copyif

set ops

more are being added
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Summary

e “Software alchemy” parallelizes i.i.d. stat apps, any
platform. Often get superlinear speedup.

e Rth provides a way to easily parallelize many other opps.
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http://heather.cs.ucdavis.edu/user2012.pdf
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
http://heather.cs.ucdavis.edu/~matloff/rth.html
http://heather.cs.ucdavis.edu/~matloff/rth.html
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URLs:
e these slides:
http://heather.cs.ucdavis.edu/user2012.pdf

e my online book on parallel programming:
http://heather.cs.ucdavis.edu/~matloff/158/
PLN/ParProcBook.pdf

e Rth: http:
//heather.cs.ucdavis.edu/~matloff/rth.html

thanks to:

e Prof. Hao Chen (use of large multcore machine)
e Prof. Bill Hsu (use of fast GPUs)
e the audience :-)
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