
Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Parallel R, Revisited

Norm Matloff
University of California at Davis

UseR! 2012
Vanderbilt University, June, 2012

URL for these slides:
http://heather.cs.ucdavis.edu/user2012.pdf (repeated
on final slide)

http://heather.cs.ucdavis.edu/user2012.pdf

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

The Need

• Data sets getting larger and larger.

• Algorithms becoming more and more complex,e.g.
clustering, machine learning, high-dim methods.

• “Big data” the latest buzzword in the tech world.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

The Need

• Data sets getting larger and larger.

• Algorithms becoming more and more complex,e.g.
clustering, machine learning, high-dim methods.

• “Big data” the latest buzzword in the tech world.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

The Need

• Data sets getting larger and larger.

• Algorithms becoming more and more complex,

e.g.
clustering, machine learning, high-dim methods.

• “Big data” the latest buzzword in the tech world.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

The Need

• Data sets getting larger and larger.

• Algorithms becoming more and more complex,e.g.
clustering, machine learning, high-dim methods.

• “Big data” the latest buzzword in the tech world.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

The Need

• Data sets getting larger and larger.

• Algorithms becoming more and more complex,e.g.
clustering, machine learning, high-dim methods.

• “Big data” the latest buzzword in the tech world.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

The Need

• Data sets getting larger and larger.

• Algorithms becoming more and more complex,e.g.
clustering, machine learning, high-dim methods.

• “Big data” the latest buzzword in the tech world.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

New York Times, Feb. 11, 2012

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

New York Times, Feb. 11, 2012

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

SAS Web page

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

SAS Web page

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Oracle Web page

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Oracle Web page

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Oracle, cont’d.

But Oracle rocks! :-)

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Oracle, cont’d.

But Oracle rocks! :-)

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Oracle, cont’d.

But Oracle rocks! :-)

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Where Is Parallel R Today?

• Tons of packages: CRAN Task View: High-Performance
and Parallel Computing with R

• Base R now incorporates snow (cluster, multicore) and
multicore (multicore).

• Mainly useful on “embarrassingly parallel” (EP)
problems—those dividable into subproblems that need
little or no intercommunication.

• What about non-EP apps?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Where Is Parallel R Today?

• Tons of packages:

CRAN Task View: High-Performance
and Parallel Computing with R

• Base R now incorporates snow (cluster, multicore) and
multicore (multicore).

• Mainly useful on “embarrassingly parallel” (EP)
problems—those dividable into subproblems that need
little or no intercommunication.

• What about non-EP apps?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Where Is Parallel R Today?

• Tons of packages: CRAN Task View: High-Performance
and Parallel Computing with R

• Base R now incorporates snow (cluster, multicore) and
multicore (multicore).

• Mainly useful on “embarrassingly parallel” (EP)
problems—those dividable into subproblems that need
little or no intercommunication.

• What about non-EP apps?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Where Is Parallel R Today?

• Tons of packages: CRAN Task View: High-Performance
and Parallel Computing with R

• Base R now incorporates snow (cluster, multicore)

and
multicore (multicore).

• Mainly useful on “embarrassingly parallel” (EP)
problems—those dividable into subproblems that need
little or no intercommunication.

• What about non-EP apps?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Where Is Parallel R Today?

• Tons of packages: CRAN Task View: High-Performance
and Parallel Computing with R

• Base R now incorporates snow (cluster, multicore) and
multicore (multicore).

• Mainly useful on “embarrassingly parallel” (EP)
problems—those dividable into subproblems that need
little or no intercommunication.

• What about non-EP apps?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Where Is Parallel R Today?

• Tons of packages: CRAN Task View: High-Performance
and Parallel Computing with R

• Base R now incorporates snow (cluster, multicore) and
multicore (multicore).

• Mainly useful on “embarrassingly parallel” (EP)
problems

—those dividable into subproblems that need
little or no intercommunication.

• What about non-EP apps?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Where Is Parallel R Today?

• Tons of packages: CRAN Task View: High-Performance
and Parallel Computing with R

• Base R now incorporates snow (cluster, multicore) and
multicore (multicore).

• Mainly useful on “embarrassingly parallel” (EP)
problems—those dividable into subproblems that need
little or no intercommunication.

• What about non-EP apps?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Where Is Parallel R Today?

• Tons of packages: CRAN Task View: High-Performance
and Parallel Computing with R

• Base R now incorporates snow (cluster, multicore) and
multicore (multicore).

• Mainly useful on “embarrassingly parallel” (EP)
problems—those dividable into subproblems that need
little or no intercommunication.

• What about non-EP apps?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges

• Multiplatform desirable:

• multicore
• cluster
• GPU (and other coming accelerators?)
• foreach() multiplatform, but for R code, not C, and does

not work on GPU

• R not threaded

• Very hard, no plans to do it to my knowledge (?).
• Rdsm, bigmemory threads-like, but not good for parallel

computation.

• Copy-on-write: Writing to one vector element sometimes
causes copying entire vector.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges

• Multiplatform desirable:

• multicore
• cluster
• GPU (and other coming accelerators?)
• foreach() multiplatform, but for R code, not C, and does

not work on GPU

• R not threaded

• Very hard, no plans to do it to my knowledge (?).
• Rdsm, bigmemory threads-like, but not good for parallel

computation.

• Copy-on-write: Writing to one vector element sometimes
causes copying entire vector.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges

• Multiplatform desirable:

• multicore

• cluster
• GPU (and other coming accelerators?)
• foreach() multiplatform, but for R code, not C, and does

not work on GPU

• R not threaded

• Very hard, no plans to do it to my knowledge (?).
• Rdsm, bigmemory threads-like, but not good for parallel

computation.

• Copy-on-write: Writing to one vector element sometimes
causes copying entire vector.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges

• Multiplatform desirable:

• multicore
• cluster

• GPU (and other coming accelerators?)
• foreach() multiplatform, but for R code, not C, and does

not work on GPU

• R not threaded

• Very hard, no plans to do it to my knowledge (?).
• Rdsm, bigmemory threads-like, but not good for parallel

computation.

• Copy-on-write: Writing to one vector element sometimes
causes copying entire vector.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges

• Multiplatform desirable:

• multicore
• cluster
• GPU

(and other coming accelerators?)
• foreach() multiplatform, but for R code, not C, and does

not work on GPU

• R not threaded

• Very hard, no plans to do it to my knowledge (?).
• Rdsm, bigmemory threads-like, but not good for parallel

computation.

• Copy-on-write: Writing to one vector element sometimes
causes copying entire vector.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges

• Multiplatform desirable:

• multicore
• cluster
• GPU (and other coming accelerators?)

• foreach() multiplatform, but for R code, not C, and does
not work on GPU

• R not threaded

• Very hard, no plans to do it to my knowledge (?).
• Rdsm, bigmemory threads-like, but not good for parallel

computation.

• Copy-on-write: Writing to one vector element sometimes
causes copying entire vector.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges

• Multiplatform desirable:

• multicore
• cluster
• GPU (and other coming accelerators?)
• foreach() multiplatform, but for R code, not C, and does

not work on GPU

• R not threaded

• Very hard, no plans to do it to my knowledge (?).
• Rdsm, bigmemory threads-like, but not good for parallel

computation.

• Copy-on-write: Writing to one vector element sometimes
causes copying entire vector.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges

• Multiplatform desirable:

• multicore
• cluster
• GPU (and other coming accelerators?)
• foreach() multiplatform, but for R code, not C, and does

not work on GPU

• R not threaded

• Very hard, no plans to do it to my knowledge (?).

• Rdsm, bigmemory threads-like, but not good for parallel
computation.

• Copy-on-write: Writing to one vector element sometimes
causes copying entire vector.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges

• Multiplatform desirable:

• multicore
• cluster
• GPU (and other coming accelerators?)
• foreach() multiplatform, but for R code, not C, and does

not work on GPU

• R not threaded

• Very hard, no plans to do it to my knowledge (?).
• Rdsm, bigmemory threads-like, but not good for parallel

computation.

• Copy-on-write: Writing to one vector element sometimes
causes copying entire vector.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges

• Multiplatform desirable:

• multicore
• cluster
• GPU (and other coming accelerators?)
• foreach() multiplatform, but for R code, not C, and does

not work on GPU

• R not threaded

• Very hard, no plans to do it to my knowledge (?).
• Rdsm, bigmemory threads-like, but not good for parallel

computation.

• Copy-on-write:

Writing to one vector element sometimes
causes copying entire vector.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges

• Multiplatform desirable:

• multicore
• cluster
• GPU (and other coming accelerators?)
• foreach() multiplatform, but for R code, not C, and does

not work on GPU

• R not threaded

• Very hard, no plans to do it to my knowledge (?).
• Rdsm, bigmemory threads-like, but not good for parallel

computation.

• Copy-on-write: Writing to one vector element sometimes
causes copying entire vector.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;

true in future?
• Intel Knight’s Ferry accelerator: out “next year”—every

year
• CUDA (extension of C) currently GPU dominant software;

same in future?
• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator:

out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”

—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;

same in future?
• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?

• OpenACC; for GPUs; might become more popular, due to
announced connection with OpenMP

• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC;

for GPUs; might become more popular, due to
announced connection with OpenMP

• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs;

might become more popular, due to
announced connection with OpenMP

• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP

• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds

—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.
• Thrust builds to multiple backends, including GPU and

multicore.
• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.
• Thrust builds to multiple backends, including GPU and

multicore.
• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy:

Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.
• Thrust builds to multiple backends, including GPU and

multicore.
• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.
• Thrust builds to multiple backends, including GPU and

multicore.
• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific:

Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.
• Thrust builds to multiple backends, including GPU and

multicore.
• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.
• Thrust builds to multiple backends, including GPU and

multicore.
• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.
• Thrust builds to multiple backends, including GPU and

multicore.
• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.
• Thrust builds to multiple backends, including GPU and

multicore.
• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.

• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.
• Thrust builds to multiple backends, including GPU and

multicore.
• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.

• Thrust is C++ package for high-level operations, e.g. sort,
search, prefix scan.

• Thrust builds to multiple backends, including GPU and
multicore.

• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.

• Thrust builds to multiple backends, including GPU and
multicore.

• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.
• Thrust builds to multiple backends, including GPU and

multicore.

• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.
• Thrust builds to multiple backends, including GPU and

multicore.
• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

• Old, old idea in parallel processing: Break data into
chunks, work on each chunk, then combine results.

• But this requires EP to be worthwhile.

• New approach: Exploit the statistical properties.

• Key point: Calculate a statistically equivalent quantity
that lends itself to EP computation.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

• Old, old idea in parallel processing: Break data into
chunks, work on each chunk, then combine results.

• But this requires EP to be worthwhile.

• New approach: Exploit the statistical properties.

• Key point: Calculate a statistically equivalent quantity
that lends itself to EP computation.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

• Old, old idea in parallel processing: Break data into
chunks, work on each chunk, then combine results.

• But this requires EP to be worthwhile.

• New approach: Exploit the statistical properties.

• Key point: Calculate a statistically equivalent quantity
that lends itself to EP computation.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

• Old, old idea in parallel processing: Break data into
chunks, work on each chunk, then combine results.

• But this requires EP to be worthwhile.

• New approach: Exploit the statistical properties.

• Key point: Calculate a statistically equivalent quantity
that lends itself to EP computation.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

• Old, old idea in parallel processing: Break data into
chunks, work on each chunk, then combine results.

• But this requires EP to be worthwhile.

• New approach: Exploit the statistical properties.

• Key point: Calculate a statistically equivalent quantity
that lends itself to EP computation.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

• Old, old idea in parallel processing: Break data into
chunks, work on each chunk, then combine results.

• But this requires EP to be worthwhile.

• New approach: Exploit the statistical properties.

• Key point:

Calculate a statistically equivalent quantity
that lends itself to EP computation.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Software Alchemy: Non-EP to EP

• Call it NEP2EP.

• Old, old idea in parallel processing: Break data into
chunks, work on each chunk, then combine results.

• But this requires EP to be worthwhile.

• New approach: Exploit the statistical properties.

• Key point: Calculate a statistically equivalent quantity
that lends itself to EP computation.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Advantages of NEP2EP

• Works on R level; no need to resort to C/C++.

• Fine on either multicore or cluster.

• Simple to use—e.g. from snow.

• Has a surprising benefit even on unicore.

• Bonus: Automatic generation of standard errors (that you
didn’t have before).

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Advantages of NEP2EP

• Works on R level; no need to resort to C/C++.

• Fine on either multicore or cluster.

• Simple to use—e.g. from snow.

• Has a surprising benefit even on unicore.

• Bonus: Automatic generation of standard errors (that you
didn’t have before).

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Advantages of NEP2EP

• Works on R level; no need to resort to C/C++.

• Fine on either multicore or cluster.

• Simple to use—e.g. from snow.

• Has a surprising benefit even on unicore.

• Bonus: Automatic generation of standard errors (that you
didn’t have before).

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Advantages of NEP2EP

• Works on R level; no need to resort to C/C++.

• Fine on either multicore or cluster.

• Simple to use—e.g. from snow.

• Has a surprising benefit even on unicore.

• Bonus: Automatic generation of standard errors (that you
didn’t have before).

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Advantages of NEP2EP

• Works on R level; no need to resort to C/C++.

• Fine on either multicore or cluster.

• Simple to use—e.g. from snow.

• Has a surprising benefit even on unicore.

• Bonus: Automatic generation of standard errors (that you
didn’t have before).

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Advantages of NEP2EP

• Works on R level; no need to resort to C/C++.

• Fine on either multicore or cluster.

• Simple to use—e.g. from snow.

• Has a surprising benefit even on unicore.

• Bonus: Automatic generation of standard errors (that you
didn’t have before).

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

How NEP2EP Works

• Suppose we wish to calculate an estimator θ̂, say
regression coefficients.

• Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

• Break into r chunks of n/r data points each.

• For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

• Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

How NEP2EP Works

• Suppose we wish to calculate an estimator θ̂, say
regression coefficients.

• Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

• Break into r chunks of n/r data points each.

• For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

• Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

How NEP2EP Works

• Suppose we wish to calculate an estimator θ̂, say
regression coefficients.

• Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

• Break into r chunks of n/r data points each.

• For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

• Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

How NEP2EP Works

• Suppose we wish to calculate an estimator θ̂, say
regression coefficients.

• Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

• Break into r chunks of n/r data points each.

• For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

• Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

How NEP2EP Works

• Suppose we wish to calculate an estimator θ̂, say
regression coefficients.

• Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

• Break into r chunks of n/r data points each.

• For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

• Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

How NEP2EP Works

• Suppose we wish to calculate an estimator θ̂, say
regression coefficients.

• Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

• Break into r chunks of n/r data points each.

• For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

• Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

R Code (Snow)

wrapper <− f u n c t i o n (c l s , z , p r o b p a r s , s f rndmz=F) {
i f (! i s . m a t r i x (z)) z <− m a t r i x (z , n c o l =1)
n <− p r o b p a r s $ n
i f (rndmz) z <− z [sample (1 : n , n , r e p l a c e=F) ,]
nnodes <− l e n g t h (c l s) o b s l i s t <− l i s t ()
c h u n k s i z e <− n / nnodes
f o r (i i n 1 : nnodes) {

f i r s t o b s <− 1 + (i −1) ∗ c h u n k s i z e
l a s t o b s <− f i r s t o b s + c h u n k s i z e − 1
i f (l a s t o b s == n) l a s t o b s <− n
o b s l i s t [[i]] <− z [f i r s t o b s : l a s t o b s ,]

}
t h t s <− c l u s t e r A p p l y (c l s , o b s l i s t , s f)
t h t <− do . c a l l (”+” , t h t s)
t h t / nnodes

}

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

R Code (Snow)

wrapper <− f u n c t i o n (c l s , z , p r o b p a r s , s f rndmz=F) {
i f (! i s . m a t r i x (z)) z <− m a t r i x (z , n c o l =1)
n <− p r o b p a r s $ n
i f (rndmz) z <− z [sample (1 : n , n , r e p l a c e=F) ,]
nnodes <− l e n g t h (c l s) o b s l i s t <− l i s t ()
c h u n k s i z e <− n / nnodes
f o r (i i n 1 : nnodes) {

f i r s t o b s <− 1 + (i −1) ∗ c h u n k s i z e
l a s t o b s <− f i r s t o b s + c h u n k s i z e − 1
i f (l a s t o b s == n) l a s t o b s <− n
o b s l i s t [[i]] <− z [f i r s t o b s : l a s t o b s ,]

}
t h t s <− c l u s t e r A p p l y (c l s , o b s l i s t , s f)
t h t <− do . c a l l (”+” , t h t s)
t h t / nnodes

}

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

What Does That Give You?

• The result, θ can be proven to have the same asymp.
statistical accuracy as the original θ̂.

• But the computation of θ is EP even if θ̂ is non-EP.

• Alchemy! Non-EP → EP.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

What Does That Give You?

• The result, θ can be proven to have the same asymp.
statistical accuracy as the original θ̂.

• But the computation of θ is EP even if θ̂ is non-EP.

• Alchemy! Non-EP → EP.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

What Does That Give You?

• The result, θ can be proven to have the same asymp.
statistical accuracy as the original θ̂.

• But the computation of θ is EP even if θ̂ is non-EP.

• Alchemy! Non-EP → EP.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

What Does That Give You?

• The result, θ can be proven to have the same asymp.
statistical accuracy as the original θ̂.

• But the computation of θ is EP even if θ̂ is non-EP.

• Alchemy! Non-EP → EP.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rough Theoretical Speedup
Analysis

• Say n obs., r processes (e.g. r = 2 for dual core).

• Say basic alg. takes O(nc) time.

• So, NEP2EP speedup is (roughly) O(nc/r c), speedup of
r c .

• For algs. having c > 1, speedup is superlinear (par. proc.
term).Not the usual small stuff like cache effects!

• Uniprocessing case: Run time is rO(nc/r c), i.e.
O(nc/r c−1). So, if c > 1 NEP2EP gives a speedup with
no parallelism!

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rough Theoretical Speedup
Analysis

• Say n obs., r processes (e.g. r = 2 for dual core).

• Say basic alg. takes O(nc) time.

• So, NEP2EP speedup is (roughly) O(nc/r c), speedup of
r c .

• For algs. having c > 1, speedup is superlinear (par. proc.
term).Not the usual small stuff like cache effects!

• Uniprocessing case: Run time is rO(nc/r c), i.e.
O(nc/r c−1). So, if c > 1 NEP2EP gives a speedup with
no parallelism!

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rough Theoretical Speedup
Analysis

• Say n obs., r processes (e.g. r = 2 for dual core).

• Say basic alg. takes O(nc) time.

• So, NEP2EP speedup is (roughly) O(nc/r c), speedup of
r c .

• For algs. having c > 1, speedup is superlinear (par. proc.
term).Not the usual small stuff like cache effects!

• Uniprocessing case: Run time is rO(nc/r c), i.e.
O(nc/r c−1). So, if c > 1 NEP2EP gives a speedup with
no parallelism!

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rough Theoretical Speedup
Analysis

• Say n obs., r processes (e.g. r = 2 for dual core).

• Say basic alg. takes O(nc) time.

• So, NEP2EP speedup is (roughly) O(nc/r c),

speedup of
r c .

• For algs. having c > 1, speedup is superlinear (par. proc.
term).Not the usual small stuff like cache effects!

• Uniprocessing case: Run time is rO(nc/r c), i.e.
O(nc/r c−1). So, if c > 1 NEP2EP gives a speedup with
no parallelism!

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rough Theoretical Speedup
Analysis

• Say n obs., r processes (e.g. r = 2 for dual core).

• Say basic alg. takes O(nc) time.

• So, NEP2EP speedup is (roughly) O(nc/r c), speedup of
r c .

• For algs. having c > 1, speedup is superlinear (par. proc.
term).Not the usual small stuff like cache effects!

• Uniprocessing case: Run time is rO(nc/r c), i.e.
O(nc/r c−1). So, if c > 1 NEP2EP gives a speedup with
no parallelism!

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rough Theoretical Speedup
Analysis

• Say n obs., r processes (e.g. r = 2 for dual core).

• Say basic alg. takes O(nc) time.

• So, NEP2EP speedup is (roughly) O(nc/r c), speedup of
r c .

• For algs. having c > 1, speedup is superlinear (par. proc.
term).

Not the usual small stuff like cache effects!

• Uniprocessing case: Run time is rO(nc/r c), i.e.
O(nc/r c−1). So, if c > 1 NEP2EP gives a speedup with
no parallelism!

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rough Theoretical Speedup
Analysis

• Say n obs., r processes (e.g. r = 2 for dual core).

• Say basic alg. takes O(nc) time.

• So, NEP2EP speedup is (roughly) O(nc/r c), speedup of
r c .

• For algs. having c > 1, speedup is superlinear (par. proc.
term).Not the usual small stuff like cache effects!

• Uniprocessing case: Run time is rO(nc/r c), i.e.
O(nc/r c−1). So, if c > 1 NEP2EP gives a speedup with
no parallelism!

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rough Theoretical Speedup
Analysis

• Say n obs., r processes (e.g. r = 2 for dual core).

• Say basic alg. takes O(nc) time.

• So, NEP2EP speedup is (roughly) O(nc/r c), speedup of
r c .

• For algs. having c > 1, speedup is superlinear (par. proc.
term).Not the usual small stuff like cache effects!

• Uniprocessing case: Run time is rO(nc/r c), i.e.
O(nc/r c−1).

So, if c > 1 NEP2EP gives a speedup with
no parallelism!

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rough Theoretical Speedup
Analysis

• Say n obs., r processes (e.g. r = 2 for dual core).

• Say basic alg. takes O(nc) time.

• So, NEP2EP speedup is (roughly) O(nc/r c), speedup of
r c .

• For algs. having c > 1, speedup is superlinear (par. proc.
term).Not the usual small stuff like cache effects!

• Uniprocessing case: Run time is rO(nc/r c), i.e.
O(nc/r c−1). So, if c > 1 NEP2EP gives a speedup with
no parallelism!

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

NEP2EP Timing Experiments

• NEP2EP in Snow

• multicore machine, 32 threads (2 CPUs x 8 cores x
hyperthreading of 2)

• num. cores = 2,4,8,16,24,32; sometimes better beyond 32,
probably due to cache/VM effects

• procedures tried:

• Kendall’s τ
• quantile regression
• nonparametric hazard function est.
• log-concave density est.
• linear regression (random x)

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

NEP2EP Timing Experiments

• NEP2EP in Snow

• multicore machine, 32 threads (2 CPUs x 8 cores x
hyperthreading of 2)

• num. cores = 2,4,8,16,24,32; sometimes better beyond 32,
probably due to cache/VM effects

• procedures tried:

• Kendall’s τ
• quantile regression
• nonparametric hazard function est.
• log-concave density est.
• linear regression (random x)

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

NEP2EP Timing Experiments

• NEP2EP in Snow

• multicore machine, 32 threads (2 CPUs x 8 cores x
hyperthreading of 2)

• num. cores = 2,4,8,16,24,32; sometimes better beyond 32,
probably due to cache/VM effects

• procedures tried:

• Kendall’s τ
• quantile regression
• nonparametric hazard function est.
• log-concave density est.
• linear regression (random x)

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

NEP2EP Timing Experiments

• NEP2EP in Snow

• multicore machine, 32 threads (2 CPUs x 8 cores x
hyperthreading of 2)

• num. cores = 2,4,8,16,24,32;

sometimes better beyond 32,
probably due to cache/VM effects

• procedures tried:

• Kendall’s τ
• quantile regression
• nonparametric hazard function est.
• log-concave density est.
• linear regression (random x)

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

NEP2EP Timing Experiments

• NEP2EP in Snow

• multicore machine, 32 threads (2 CPUs x 8 cores x
hyperthreading of 2)

• num. cores = 2,4,8,16,24,32; sometimes better beyond 32,
probably due to cache/VM effects

• procedures tried:

• Kendall’s τ
• quantile regression
• nonparametric hazard function est.
• log-concave density est.
• linear regression (random x)

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

NEP2EP Timing Experiments

• NEP2EP in Snow

• multicore machine, 32 threads (2 CPUs x 8 cores x
hyperthreading of 2)

• num. cores = 2,4,8,16,24,32; sometimes better beyond 32,
probably due to cache/VM effects

• procedures tried:

• Kendall’s τ
• quantile regression
• nonparametric hazard function est.
• log-concave density est.
• linear regression (random x)

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Kendall’s τ

n = 10000

0

20

40

60

80

5 10 15 20 25 30
r

sp
ee

du
p

3.92X speedup
at 2 threads
93.97X speedup
at 24 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Kendall’s τ

n = 10000

0

20

40

60

80

5 10 15 20 25 30
r

sp
ee

du
p

3.92X speedup
at 2 threads
93.97X speedup
at 24 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Kendall’s τ , cont’d.

n = 25000

0

50

100

150

200

250

5 10 15 20 25 30
r

sp
ee

du
p

3.36X speedup
at 2 threads
255.67X
speedup at 32
threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Kendall’s τ , cont’d.

n = 25000

0

50

100

150

200

250

5 10 15 20 25 30
r

sp
ee

du
p

3.36X speedup
at 2 threads
255.67X
speedup at 32
threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Quantile Regression

n = 10000, p = 10

0

50

100

150

200

250

5 10 15 20 25 30
r

sp
ee

du
p

0.86X speedup
at 2 threads
1.16X speedup
at 8 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Quantile Regression

n = 10000, p = 10

0

50

100

150

200

250

5 10 15 20 25 30
r

sp
ee

du
p

0.86X speedup
at 2 threads
1.16X speedup
at 8 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Quantile Regression

n = 10000, p = 25

0

50

100

150

200

250

5 10 15 20 25 30
r

sp
ee

du
p

3.36X speedup
at 2 threads
255.67X
speedup at 32
threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Quantile Regression

n = 10000, p = 25

0

50

100

150

200

250

5 10 15 20 25 30
r

sp
ee

du
p

3.36X speedup
at 2 threads
255.67X
speedup at 32
threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Hazard Function Estimation

n = 25000, p = 0.2 (proportion missing); estimate quantiles
0.2, 0.4, 0.6, 0.8

2

4

6

8

5 10 15 20 25 30
r

sp
ee

du
p

1.87X speedup
at 2 threads
9.43X speedup
at 16 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Hazard Function Estimation

n = 25000, p = 0.2 (proportion missing); estimate quantiles
0.2, 0.4, 0.6, 0.8

2

4

6

8

5 10 15 20 25 30
r

sp
ee

du
p

1.87X speedup
at 2 threads
9.43X speedup
at 16 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Hazard Function Estimation

n = 50000, p = 0.02 (proportion missing)

2

4

6

8

10

12

5 10 15 20 25 30
r

sp
ee

du
p

1.87X speedup
at 2 threads
11.69X speedup
at 32 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Hazard Function Estimation

n = 50000, p = 0.02 (proportion missing)

2

4

6

8

10

12

5 10 15 20 25 30
r

sp
ee

du
p

1.87X speedup
at 2 threads
11.69X speedup
at 32 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Log Concave Density Estimation

n = 200000

2

4

6

8

10

12

5 10 15 20 25 30
r

sp
ee

du
p

2.17X speedup
at 2 threads
12.43X speedup
at 32 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Log Concave Density Estimation

n = 200000

2

4

6

8

10

12

5 10 15 20 25 30
r

sp
ee

du
p

2.17X speedup
at 2 threads
12.43X speedup
at 32 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Linear Regression

n = 50000, p = 50; should expect less here, O(n, p3)

1.5

2.0

2.5

5 10 15 20 25 30
r

sp
ee

du
p

0.90X speedup
at 2 threads
1.97X speedup
at 32 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Linear Regression

n = 50000, p = 50; should expect less here, O(n, p3)

1.5

2.0

2.5

5 10 15 20 25 30
r

sp
ee

du
p

0.90X speedup
at 2 threads
1.97X speedup
at 32 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Linear Regression

n = 50000, p = 50; should expect less here, O(n, p3)

1.5

2.0

2.5

5 10 15 20 25 30
r

sp
ee

du
p

0.90X speedup
at 2 threads
1.97X speedup
at 32 threads

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Linear Regression

n = 50000, p = 100

1.5

2.0

2.5

5 10 15 20 25 30
r

sp
ee

du
p

1.08X speedup
at 2 threads
2.50X speedup
at 24 threads

Put in context: Seligman (2010) found GPU provides speedup
only if r > 1000.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Linear Regression

n = 50000, p = 100

1.5

2.0

2.5

5 10 15 20 25 30
r

sp
ee

du
p

1.08X speedup
at 2 threads
2.50X speedup
at 24 threads

Put in context: Seligman (2010) found GPU provides speedup
only if r > 1000.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Linear Regression

n = 50000, p = 100

1.5

2.0

2.5

5 10 15 20 25 30
r

sp
ee

du
p

1.08X speedup
at 2 threads
2.50X speedup
at 24 threads

Put in context: Seligman (2010) found GPU provides speedup
only if r > 1000.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

What About the Large-Sample
Nature?

• One can prove that NEP2EP works asymptotically, i.e.
gives the same statistical accuracy as the original
estimatator. Is that large-n requirement an issue?

• No, not an issue: Since we’re talking about settings where
parallel computing is needed, we’re working with large
samples by definition—the large n is the reason we need
parallel computing!

• NEP2EP gives essentially the same values as the original.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

What About the Large-Sample
Nature?

• One can prove that NEP2EP works asymptotically, i.e.
gives the same statistical accuracy as the original
estimatator.

Is that large-n requirement an issue?

• No, not an issue: Since we’re talking about settings where
parallel computing is needed, we’re working with large
samples by definition—the large n is the reason we need
parallel computing!

• NEP2EP gives essentially the same values as the original.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

What About the Large-Sample
Nature?

• One can prove that NEP2EP works asymptotically, i.e.
gives the same statistical accuracy as the original
estimatator. Is that large-n requirement an issue?

• No, not an issue: Since we’re talking about settings where
parallel computing is needed, we’re working with large
samples by definition—the large n is the reason we need
parallel computing!

• NEP2EP gives essentially the same values as the original.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

What About the Large-Sample
Nature?

• One can prove that NEP2EP works asymptotically, i.e.
gives the same statistical accuracy as the original
estimatator. Is that large-n requirement an issue?

• No, not an issue:

Since we’re talking about settings where
parallel computing is needed, we’re working with large
samples by definition—the large n is the reason we need
parallel computing!

• NEP2EP gives essentially the same values as the original.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

What About the Large-Sample
Nature?

• One can prove that NEP2EP works asymptotically, i.e.
gives the same statistical accuracy as the original
estimatator. Is that large-n requirement an issue?

• No, not an issue: Since we’re talking about settings where
parallel computing is needed, we’re working with large
samples by definition

—the large n is the reason we need
parallel computing!

• NEP2EP gives essentially the same values as the original.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

What About the Large-Sample
Nature?

• One can prove that NEP2EP works asymptotically, i.e.
gives the same statistical accuracy as the original
estimatator. Is that large-n requirement an issue?

• No, not an issue: Since we’re talking about settings where
parallel computing is needed, we’re working with large
samples by definition—the large n is the reason we need
parallel computing!

• NEP2EP gives essentially the same values as the original.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

What About the Large-Sample
Nature?

• One can prove that NEP2EP works asymptotically, i.e.
gives the same statistical accuracy as the original
estimatator. Is that large-n requirement an issue?

• No, not an issue: Since we’re talking about settings where
parallel computing is needed, we’re working with large
samples by definition—the large n is the reason we need
parallel computing!

• NEP2EP gives essentially the same values as the original.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Accuracy

Absolute differences, r = 16:

app. prob. size rel. diff.

Kendall n = 1000 0.005849463

quant. reg. n = 10000, p = 10 0.001274819

haz. ftn. n = 25000, p = 0.2 0.007422595

log conc. dens. n = 25000 0.0003593208

lin. reg. n = 50000, p = 100 0.0001207394

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Accuracy

Absolute differences, r = 16:

app. prob. size rel. diff.

Kendall n = 1000 0.005849463

quant. reg. n = 10000, p = 10 0.001274819

haz. ftn. n = 25000, p = 0.2 0.007422595

log conc. dens. n = 25000 0.0003593208

lin. reg. n = 50000, p = 100 0.0001207394

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Accuracy

Absolute differences, r = 16:

app. prob. size rel. diff.

Kendall n = 1000 0.005849463

quant. reg. n = 10000, p = 10 0.001274819

haz. ftn. n = 25000, p = 0.2 0.007422595

log conc. dens. n = 25000 0.0003593208

lin. reg. n = 50000, p = 100 0.0001207394

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rth

Motivations:

• Parallelizing R will need to rely in part on C/C++ code.

• Nice to have the same parallel code work on multicore and
GPU systems. PGP—Pretty Good Parallelism.

• Nice to have code for high-level operations available (sort,
search, prefix scan, etc.).

• Hopefully make it (somewhat) easy for users to write their
own parallel code.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rth

Motivations:

• Parallelizing R will need to rely in part on C/C++ code.

• Nice to have the same parallel code work on multicore and
GPU systems. PGP—Pretty Good Parallelism.

• Nice to have code for high-level operations available (sort,
search, prefix scan, etc.).

• Hopefully make it (somewhat) easy for users to write their
own parallel code.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rth

Motivations:

• Parallelizing R will need to rely in part on C/C++ code.

• Nice to have the same parallel code work on multicore and
GPU systems.

PGP—Pretty Good Parallelism.

• Nice to have code for high-level operations available (sort,
search, prefix scan, etc.).

• Hopefully make it (somewhat) easy for users to write their
own parallel code.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rth

Motivations:

• Parallelizing R will need to rely in part on C/C++ code.

• Nice to have the same parallel code work on multicore and
GPU systems. PGP—Pretty Good Parallelism.

• Nice to have code for high-level operations available (sort,
search, prefix scan, etc.).

• Hopefully make it (somewhat) easy for users to write their
own parallel code.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rth

Motivations:

• Parallelizing R will need to rely in part on C/C++ code.

• Nice to have the same parallel code work on multicore and
GPU systems. PGP—Pretty Good Parallelism.

• Nice to have code for high-level operations available (sort,
search, prefix scan, etc.).

• Hopefully make it (somewhat) easy for users to write their
own parallel code.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rth

Motivations:

• Parallelizing R will need to rely in part on C/C++ code.

• Nice to have the same parallel code work on multicore and
GPU systems. PGP—Pretty Good Parallelism.

• Nice to have code for high-level operations available (sort,
search, prefix scan, etc.).

• Hopefully make it (somewhat) easy for users to write their
own parallel code.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Some Existing Possibilities

These work on both multicore and GPUs:

• OpenCL: Extension of C.

• Magma: Matrix routines.

• OpenACC: Like OpenMP for GPUs.

But OpenCL and OpenACC do not provide high-level ops, and
Magma is narrow.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Some Existing Possibilities

These work on both multicore and GPUs:

• OpenCL: Extension of C.

• Magma: Matrix routines.

• OpenACC: Like OpenMP for GPUs.

But OpenCL and OpenACC do not provide high-level ops, and
Magma is narrow.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rth

↓

↙ ↘

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Rth

↓

↙ ↘

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Goals

• Provide parallel Thrust code called from R,

• Thrust transparent to the ordinary user.

• Parallelize a number of R operations in Thrust.

• Facilitate sophisticated user writing own parallel code.

• Currently just at very early stage of project.

What is Thrust?

• C++ package, modeled on STL.

• Can compile to either GPU or multicore backend.

• Provides high-level operations, e.g. sort, search, prefix
scan, foreach, reduction, etc.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Goals

• Provide parallel Thrust code called from R,

• Thrust transparent to the ordinary user.

• Parallelize a number of R operations in Thrust.

• Facilitate sophisticated user writing own parallel code.

• Currently just at very early stage of project.

What is Thrust?

• C++ package, modeled on STL.

• Can compile to either GPU or multicore backend.

• Provides high-level operations, e.g. sort, search, prefix
scan, foreach, reduction, etc.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Goals

• Provide parallel Thrust code called from R,

• Thrust transparent to the ordinary user.

• Parallelize a number of R operations in Thrust.

• Facilitate sophisticated user writing own parallel code.

• Currently just at very early stage of project.

What is Thrust?

• C++ package, modeled on STL.

• Can compile to either GPU or multicore backend.

• Provides high-level operations, e.g. sort, search, prefix
scan, foreach, reduction, etc.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Goals

• Provide parallel Thrust code called from R,

• Thrust transparent to the ordinary user.

• Parallelize a number of R operations in Thrust.

• Facilitate sophisticated user writing own parallel code.

• Currently just at very early stage of project.

What is Thrust?

• C++ package, modeled on STL.

• Can compile to either GPU or multicore backend.

• Provides high-level operations, e.g. sort, search, prefix
scan, foreach, reduction, etc.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Goals

• Provide parallel Thrust code called from R,

• Thrust transparent to the ordinary user.

• Parallelize a number of R operations in Thrust.

• Facilitate sophisticated user writing own parallel code.

• Currently just at very early stage of project.

What is Thrust?

• C++ package, modeled on STL.

• Can compile to either GPU or multicore backend.

• Provides high-level operations, e.g. sort, search, prefix
scan, foreach, reduction, etc.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Goals

• Provide parallel Thrust code called from R,

• Thrust transparent to the ordinary user.

• Parallelize a number of R operations in Thrust.

• Facilitate sophisticated user writing own parallel code.

• Currently just at very early stage of project.

What is Thrust?

• C++ package, modeled on STL.

• Can compile to either GPU or multicore backend.

• Provides high-level operations, e.g. sort, search, prefix
scan, foreach, reduction, etc.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Goals

• Provide parallel Thrust code called from R,

• Thrust transparent to the ordinary user.

• Parallelize a number of R operations in Thrust.

• Facilitate sophisticated user writing own parallel code.

• Currently just at very early stage of project.

What is Thrust?

• C++ package, modeled on STL.

• Can compile to either GPU or multicore backend.

• Provides high-level operations, e.g. sort, search, prefix
scan, foreach, reduction, etc.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Goals

• Provide parallel Thrust code called from R,

• Thrust transparent to the ordinary user.

• Parallelize a number of R operations in Thrust.

• Facilitate sophisticated user writing own parallel code.

• Currently just at very early stage of project.

What is Thrust?

• C++ package, modeled on STL.

• Can compile to either GPU or multicore backend.

• Provides high-level operations, e.g. sort, search, prefix
scan, foreach, reduction, etc.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Goals

• Provide parallel Thrust code called from R,

• Thrust transparent to the ordinary user.

• Parallelize a number of R operations in Thrust.

• Facilitate sophisticated user writing own parallel code.

• Currently just at very early stage of project.

What is Thrust?

• C++ package, modeled on STL.

• Can compile to either GPU or multicore backend.

• Provides high-level operations, e.g. sort, search, prefix
scan, foreach, reduction, etc.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Example: sorting

R interface code:

r t h s o r t <− f u n c t i o n (x) {
dyn . l o a d (” r t h s o r t . so ”)
n <− l e n g t h (x)
tmp <− . C(” r t h s o r t ” , as . d o u b l e (x) ,

as . i n t e g e r (n) , tmpres=d o u b l e (n))
r e t u r n (tmp$tmpres)

}

Sorting 10000000 numbers: R 4.78 sec, Rth 1.52sec.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Example: sorting

R interface code:

r t h s o r t <− f u n c t i o n (x) {
dyn . l o a d (” r t h s o r t . so ”)
n <− l e n g t h (x)
tmp <− . C(” r t h s o r t ” , as . d o u b l e (x) ,

as . i n t e g e r (n) , tmpres=d o u b l e (n))
r e t u r n (tmp$tmpres)

}

Sorting 10000000 numbers: R 4.78 sec, Rth 1.52sec.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Example: sorting

R interface code:

r t h s o r t <− f u n c t i o n (x) {
dyn . l o a d (” r t h s o r t . so ”)
n <− l e n g t h (x)
tmp <− . C(” r t h s o r t ” , as . d o u b l e (x) ,

as . i n t e g e r (n) , tmpres=d o u b l e (n))
r e t u r n (tmp$tmpres)

}

Sorting 10000000 numbers: R 4.78 sec, Rth 1.52sec.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

sorting, cont’d.

Thrust code:

#i n c l u d e <t h r u s t / h o s t v e c t o r . h>
#i n c l u d e <t h r u s t / d e v i c e v e c t o r . h>
#i n c l u d e <t h r u s t / s o r t . h>

v o i d r t h s o r t (d o u b l e ∗x , i n t ∗nx , d o u b l e ∗ xout)
{ i n t n = ∗nx ;

// s e t up d e v i c e v e c t o r and copy x to i t
t h r u s t : : d e v i c e v e c t o r <double> dx (x , x+n) ;
// s o r t , then copy back to x
t h r u s t : : s o r t (dx . b e g i n () , dx . end ()) ;
t h r u s t : : copy (dx . b e g i n () , dx . end () , xout) ;

}

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

sorting, cont’d.

Thrust code:

#i n c l u d e <t h r u s t / h o s t v e c t o r . h>
#i n c l u d e <t h r u s t / d e v i c e v e c t o r . h>
#i n c l u d e <t h r u s t / s o r t . h>

v o i d r t h s o r t (d o u b l e ∗x , i n t ∗nx , d o u b l e ∗ xout)
{ i n t n = ∗nx ;

// s e t up d e v i c e v e c t o r and copy x to i t
t h r u s t : : d e v i c e v e c t o r <double> dx (x , x+n) ;
// s o r t , then copy back to x
t h r u s t : : s o r t (dx . b e g i n () , dx . end ()) ;
t h r u s t : : copy (dx . b e g i n () , dx . end () , xout) ;

}

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

General Pattern

Sort example was straight wrapper. What about other cases?

• Put together the appropriate Thrust ops.

• For most Thrust ops, write app-specific function to be
called.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

General Pattern

Sort example was straight wrapper. What about other cases?

• Put together the appropriate Thrust ops.

• For most Thrust ops, write app-specific function to be
called.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

General Pattern

Sort example was straight wrapper. What about other cases?

• Put together the appropriate Thrust ops.

• For most Thrust ops, write app-specific function to be
called.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

General Pattern

Sort example was straight wrapper. What about other cases?

• Put together the appropriate Thrust ops.

• For most Thrust ops, write app-specific function to be
called.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Example: convolution

Thrust code:

v o i d r t h c o n v (d o u b l e ∗x , i n t ∗nx ,
d o u b l e ∗y , i n t ∗ny , d o u b l e ∗ z)

{ i n t nxx = ∗nx , nyy = ∗ny , nzz = nxx + nyy − 1 ;
t h r u s t : : d e v i c e v e c t o r <double> dx (x , x+nxx) ;
. . .
t h r u s t : : c o u n t i n g i t e r a t o r <i n t> seqb (0) ;
t h r u s t : : c o u n t i n g i t e r a t o r <i n t> s e q e = seqb + nxx ;
t h r u s t : : f o r e a c h (seqb , seqe , d o 1 i (dx . b e g i n () ,

dy . b e g i n () , dz . b e g i n () , nxx , nyy)) ;
t h r u s t : : copy (dz . b e g i n () , dz . end () , z) ;

}

Key line:

t h r u s t : : f o r e a c h (seqb , seqe , d o 1 i (dx . b e g i n () , . . .

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Example: convolution

Thrust code:

v o i d r t h c o n v (d o u b l e ∗x , i n t ∗nx ,
d o u b l e ∗y , i n t ∗ny , d o u b l e ∗ z)

{ i n t nxx = ∗nx , nyy = ∗ny , nzz = nxx + nyy − 1 ;
t h r u s t : : d e v i c e v e c t o r <double> dx (x , x+nxx) ;
. . .
t h r u s t : : c o u n t i n g i t e r a t o r <i n t> seqb (0) ;
t h r u s t : : c o u n t i n g i t e r a t o r <i n t> s e q e = seqb + nxx ;
t h r u s t : : f o r e a c h (seqb , seqe , d o 1 i (dx . b e g i n () ,

dy . b e g i n () , dz . b e g i n () , nxx , nyy)) ;
t h r u s t : : copy (dz . b e g i n () , dz . end () , z) ;

}

Key line:

t h r u s t : : f o r e a c h (seqb , seqe , d o 1 i (dx . b e g i n () , . . .

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

convolution, cont’d.

User supplies “foreach” function, in the form of a

s t r u c t d o 1 i { // ”do 1 i ”
. . .

d e v i c e
v o i d o p e r a t o r () (c o n s t i n t i)
{ i n t j ; // h a n d l e 1 i i n i , j l o o p

i n t r p i = rndperm [i] ;
d o u b l e x d i = xd [r p i] ;
f o r (j = 0 ; j < ny ; j ++)

zd [r p i+j] += x d i ∗ yd [ny−j −1] ;
}

} ;

A callable struct.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

convolution, cont’d.

User supplies “foreach” function, in the form of a

s t r u c t d o 1 i { // ”do 1 i ”
. . .

d e v i c e
v o i d o p e r a t o r () (c o n s t i n t i)
{ i n t j ; // h a n d l e 1 i i n i , j l o o p

i n t r p i = rndperm [i] ;
d o u b l e x d i = xd [r p i] ;
f o r (j = 0 ; j < ny ; j ++)

zd [r p i+j] += x d i ∗ yd [ny−j −1] ;
}

} ;

A callable struct.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

convolution, cont’d.

User supplies “foreach” function, in the form of a

s t r u c t d o 1 i { // ”do 1 i ”
. . .

d e v i c e
v o i d o p e r a t o r () (c o n s t i n t i)
{ i n t j ; // h a n d l e 1 i i n i , j l o o p

i n t r p i = rndperm [i] ;
d o u b l e x d i = xd [r p i] ;
f o r (j = 0 ; j < ny ; j ++)

zd [r p i+j] += x d i ∗ yd [ny−j −1] ;
}

} ;

A callable struct.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Performance

• Rth’s rthconv() orders of magnitude faster than R’s
convolve().

• Not fair to R’s convolve(); latter written in C, but works
via FFTs, slow.

• Also: R’s convolve() runs out of space on problems than
rthconv() can handle (multcore).

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Performance

• Rth’s rthconv() orders of magnitude faster than R’s
convolve().

• Not fair to R’s convolve(); latter written in C, but works
via FFTs, slow.

• Also: R’s convolve() runs out of space on problems than
rthconv() can handle (multcore).

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Performance

• Rth’s rthconv() orders of magnitude faster than R’s
convolve().

• Not fair to R’s convolve(); latter written in C, but works
via FFTs, slow.

• Also: R’s convolve() runs out of space on problems than
rthconv() can handle (multcore).

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Performance

• Rth’s rthconv() orders of magnitude faster than R’s
convolve().

• Not fair to R’s convolve();

latter written in C, but works
via FFTs, slow.

• Also: R’s convolve() runs out of space on problems than
rthconv() can handle (multcore).

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Performance

• Rth’s rthconv() orders of magnitude faster than R’s
convolve().

• Not fair to R’s convolve(); latter written in C, but works
via FFTs, slow.

• Also: R’s convolve() runs out of space on problems than
rthconv() can handle (multcore).

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Performance

• Rth’s rthconv() orders of magnitude faster than R’s
convolve().

• Not fair to R’s convolve(); latter written in C, but works
via FFTs, slow.

• Also: R’s convolve() runs out of space on problems than
rthconv() can handle (multcore).

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Kendall’s Tau

v o i d r t h k e n d a l l (f l o a t ∗xy , i n t ∗nxy , f l o a t ∗ tau)
{ i n t i , n = ∗nxy , n2 = 2∗n , t o t c o u n t ;

t h r u s t : : c o u n t i n g i t e r a t o r <i n t> seqa (0) ;
t h r u s t : : c o u n t i n g i t e r a t o r <i n t>

seqb = seqa + n − 1 ;
doubvec dxy (xy , xy+n2) ;
i n t v e c tmp (n−1);
t h r u s t : : t r a n s f o r m (seqa , seqb , tmp . b e g i n () ,

c a l c g t i (dxy , n)) ;
t o t c o u n t=t h r u s t : : r e d u c e (tmp . b e g i n () , tmp . end ()) ;
∗ tau = t o t c o u n t / (0 . 5∗ n∗(n−1)) ;

}

Key calls: transform(), reduce(); can combine using
transform iterator

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Kendall’s Tau

v o i d r t h k e n d a l l (f l o a t ∗xy , i n t ∗nxy , f l o a t ∗ tau)
{ i n t i , n = ∗nxy , n2 = 2∗n , t o t c o u n t ;

t h r u s t : : c o u n t i n g i t e r a t o r <i n t> seqa (0) ;
t h r u s t : : c o u n t i n g i t e r a t o r <i n t>

seqb = seqa + n − 1 ;
doubvec dxy (xy , xy+n2) ;
i n t v e c tmp (n−1);
t h r u s t : : t r a n s f o r m (seqa , seqb , tmp . b e g i n () ,

c a l c g t i (dxy , n)) ;
t o t c o u n t=t h r u s t : : r e d u c e (tmp . b e g i n () , tmp . end ()) ;
∗ tau = t o t c o u n t / (0 . 5∗ n∗(n−1)) ;

}

Key calls: transform(), reduce(); can combine using
transform iterator

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Example: submatrix ops, select()

• Not implemented yet.

• Easy version: Specific numerical indices.

• More elaborate: Dynamic parse of user R expression, sent
off to Thrust code.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Example: submatrix ops, select()

• Not implemented yet.

• Easy version: Specific numerical indices.

• More elaborate: Dynamic parse of user R expression, sent
off to Thrust code.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Example: submatrix ops, select()

• Not implemented yet.

• Easy version: Specific numerical indices.

• More elaborate: Dynamic parse of user R expression, sent
off to Thrust code.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Example: submatrix ops, select()

• Not implemented yet.

• Easy version: Specific numerical indices.

• More elaborate: Dynamic parse of user R expression, sent
off to Thrust code.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Some Thrust Ops

• sort, search

• reduce, min/max

• permute (e.g. for matrix transpose)

• partition, prefix scan

• foreach, transform, copyif

• set ops

• more are being added

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Some Thrust Ops

• sort, search

• reduce, min/max

• permute (e.g. for matrix transpose)

• partition, prefix scan

• foreach, transform, copyif

• set ops

• more are being added

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Summary

• “Software alchemy” parallelizes i.i.d. stat apps, any
platform. Often get superlinear speedup.

• Rth provides a way to easily parallelize many other opps.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Summary

• “Software alchemy” parallelizes i.i.d. stat apps, any
platform.

Often get superlinear speedup.

• Rth provides a way to easily parallelize many other opps.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Summary

• “Software alchemy” parallelizes i.i.d. stat apps, any
platform. Often get superlinear speedup.

• Rth provides a way to easily parallelize many other opps.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Summary

• “Software alchemy” parallelizes i.i.d. stat apps, any
platform. Often get superlinear speedup.

• Rth provides a way to easily parallelize many other opps.

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Misc.

URLs:

• these slides:
http://heather.cs.ucdavis.edu/user2012.pdf

• my online book on parallel programming:
http://heather.cs.ucdavis.edu/~matloff/158/

PLN/ParProcBook.pdf

• Rth: http:

//heather.cs.ucdavis.edu/~matloff/rth.html

thanks to:

• Prof. Hao Chen (use of large multcore machine)

• Prof. Bill Hsu (use of fast GPUs)

• the audience :-)

http://heather.cs.ucdavis.edu/user2012.pdf
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
http://heather.cs.ucdavis.edu/~matloff/rth.html
http://heather.cs.ucdavis.edu/~matloff/rth.html

Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Misc.

URLs:

• these slides:
http://heather.cs.ucdavis.edu/user2012.pdf

• my online book on parallel programming:
http://heather.cs.ucdavis.edu/~matloff/158/

PLN/ParProcBook.pdf

• Rth: http:

//heather.cs.ucdavis.edu/~matloff/rth.html

thanks to:

• Prof. Hao Chen (use of large multcore machine)

• Prof. Bill Hsu (use of fast GPUs)

• the audience :-)

http://heather.cs.ucdavis.edu/user2012.pdf
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
http://heather.cs.ucdavis.edu/~matloff/rth.html
http://heather.cs.ucdavis.edu/~matloff/rth.html

