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Where Is Parallel R Today?

• Tons of packages: CRAN Task View: High-Performance
and Parallel Computing with R

• Base R now incorporates snow (cluster, multicore) and
multicore (multicore).

• Mainly useful on “embarrassingly parallel” (EP)
problems—those dividable into subproblems that need
little or no intercommunication.

• What about non-EP apps?
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Challenges

• Multiplatform desirable:

• multicore
• cluster
• GPU (and other coming accelerators?)
• foreach() multiplatform, but for R code, not C, and does

not work on GPU

• R not threaded

• Very hard, no plans to do it to my knowledge (?).
• Rdsm, bigmemory threads-like, but not good for parallel

computation.

• Copy-on-write: Writing to one vector element sometimes
causes copying entire vector.
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Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;

true in future?
• Intel Knight’s Ferry accelerator: out “next year”—every

year
• CUDA (extension of C) currently GPU dominant software;

same in future?
• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator:

out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”

—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;

same in future?
• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?

• OpenACC; for GPUs; might become more popular, due to
announced connection with OpenMP

• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC;

for GPUs; might become more popular, due to
announced connection with OpenMP

• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs;

might become more popular, due to
announced connection with OpenMP

• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP

• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds

—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Challenges, cont’d.

“When you come to a fork in the road, take it”—famous
baseball player and malapropist Yogi Berra

• Parallel technology in a state of flux:

• NVIDIA chips currently dominant in the general-purpose
GPU (GPGPU) world;true in future?

• Intel Knight’s Ferry accelerator: out “next year”—every
year

• CUDA (extension of C) currently GPU dominant software;
same in future?

• OpenCL (for GPU and multicore) growth currently stalled?
• OpenACC; for GPUs; might become more popular, due to

announced connection with OpenMP
• uncertainty abounds—so which way should R go?



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

Outline of This Talk

• An algorithmic approach:

• Software alchemy: Change non-embarrassingly parallel to
EP.

• Statistics-specific: Assumes i.i.d. data.

• My new package: Rth:

• Assuming parallel R will mainly consist of C/C++
interface.

• But need some multiplatform capability.
• Rth: R interface to Thrust.
• Thrust is C++ package for high-level operations, e.g. sort,

search, prefix scan.
• Thrust builds to multiple backends, including GPU and

multicore.
• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.
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multicore.
• So, Rth is a tool for easily parallelizing many R
operations, usable on both GPU and multicore.
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Software Alchemy: Non-EP to EP

• Call it NEP2EP.

• Old, old idea in parallel processing: Break data into
chunks, work on each chunk, then combine results.

• But this requires EP to be worthwhile.

• New approach: Exploit the statistical properties.

• Key point: Calculate a statistically equivalent quantity
that lends itself to EP computation.
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Advantages of NEP2EP

• Works on R level; no need to resort to C/C++.

• Fine on either multicore or cluster.

• Simple to use—e.g. from snow.

• Has a surprising benefit even on unicore.

• Bonus: Automatic generation of standard errors (that you
didn’t have before).
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How NEP2EP Works

• Suppose we wish to calculate an estimator θ̂, say
regression coefficients.

• Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

• Break into r chunks of n/r data points each.

• For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

• Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

How NEP2EP Works

• Suppose we wish to calculate an estimator θ̂, say
regression coefficients.

• Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

• Break into r chunks of n/r data points each.

• For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

• Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

How NEP2EP Works

• Suppose we wish to calculate an estimator θ̂, say
regression coefficients.

• Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

• Break into r chunks of n/r data points each.

• For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

• Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

How NEP2EP Works

• Suppose we wish to calculate an estimator θ̂, say
regression coefficients.

• Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

• Break into r chunks of n/r data points each.

• For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

• Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

How NEP2EP Works

• Suppose we wish to calculate an estimator θ̂, say
regression coefficients.

• Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

• Break into r chunks of n/r data points each.

• For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

• Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

How NEP2EP Works

• Suppose we wish to calculate an estimator θ̂, say
regression coefficients.

• Have n data points, r processes (e.g. r = 2 for dual core
on a single machine).

• Break into r chunks of n/r data points each.

• For i = 1,...,r calculate θ̂ on chunk i, yielding θ̃i .

• Average all those chunked values:

θ =
1

r

r∑
i=1

θ̃i



Parallel R,
Revisited

Norm Matloff
University of
California at

Davis

R Code (Snow)

wrapper <− f u n c t i o n ( c l s , z , p r o b p a r s , s f rndmz=F ) {
i f ( ! i s . m a t r i x ( z ) ) z <− m a t r i x ( z , n c o l =1)
n <− p r o b p a r s $ n
i f ( rndmz ) z <− z [ sample ( 1 : n , n , r e p l a c e=F ) , ]
nnodes <− l e n g t h ( c l s ) o b s l i s t <− l i s t ( )
c h u n k s i z e <− n / nnodes
f o r ( i i n 1 : nnodes ) {

f i r s t o b s <− 1 + ( i −1) ∗ c h u n k s i z e
l a s t o b s <− f i r s t o b s + c h u n k s i z e − 1
i f ( l a s t o b s == n ) l a s t o b s <− n
o b s l i s t [ [ i ] ] <− z [ f i r s t o b s : l a s t o b s , ]

}
t h t s <− c l u s t e r A p p l y ( c l s , o b s l i s t , s f )
t h t <− do . c a l l (”+” , t h t s )
t h t / nnodes

}
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What Does That Give You?

• The result, θ can be proven to have the same asymp.
statistical accuracy as the original θ̂.

• But the computation of θ is EP even if θ̂ is non-EP.

• Alchemy! Non-EP → EP.
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Rough Theoretical Speedup
Analysis

• Say n obs., r processes (e.g. r = 2 for dual core).

• Say basic alg. takes O(nc) time.

• So, NEP2EP speedup is (roughly) O(nc/r c), speedup of
r c .

• For algs. having c > 1, speedup is superlinear (par. proc.
term).Not the usual small stuff like cache effects!

• Uniprocessing case: Run time is rO(nc/r c), i.e.
O(nc/r c−1). So, if c > 1 NEP2EP gives a speedup with
no parallelism!
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NEP2EP Timing Experiments

• NEP2EP in Snow

• multicore machine, 32 threads (2 CPUs x 8 cores x
hyperthreading of 2)

• num. cores = 2,4,8,16,24,32; sometimes better beyond 32,
probably due to cache/VM effects

• procedures tried:

• Kendall’s τ
• quantile regression
• nonparametric hazard function est.
• log-concave density est.
• linear regression (random x)
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Kendall’s τ , cont’d.
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Quantile Regression
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Put in context: Seligman (2010) found GPU provides speedup
only if r > 1000.
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What About the Large-Sample
Nature?

• One can prove that NEP2EP works asymptotically, i.e.
gives the same statistical accuracy as the original
estimatator. Is that large-n requirement an issue?

• No, not an issue: Since we’re talking about settings where
parallel computing is needed, we’re working with large
samples by definition—the large n is the reason we need
parallel computing!

• NEP2EP gives essentially the same values as the original.
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Accuracy

Absolute differences, r = 16:

app. prob. size rel. diff.

Kendall n = 1000 0.005849463

quant. reg. n = 10000, p = 10 0.001274819

haz. ftn. n = 25000, p = 0.2 0.007422595

log conc. dens. n = 25000 0.0003593208

lin. reg. n = 50000, p = 100 0.0001207394
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Rth

Motivations:

• Parallelizing R will need to rely in part on C/C++ code.

• Nice to have the same parallel code work on multicore and
GPU systems. PGP—Pretty Good Parallelism.

• Nice to have code for high-level operations available (sort,
search, prefix scan, etc.).

• Hopefully make it (somewhat) easy for users to write their
own parallel code.
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Some Existing Possibilities

These work on both multicore and GPUs:

• OpenCL: Extension of C.

• Magma: Matrix routines.

• OpenACC: Like OpenMP for GPUs.

But OpenCL and OpenACC do not provide high-level ops, and
Magma is narrow.
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Goals

• Provide parallel Thrust code called from R,

• Thrust transparent to the ordinary user.

• Parallelize a number of R operations in Thrust.

• Facilitate sophisticated user writing own parallel code.

• Currently just at very early stage of project.

What is Thrust?

• C++ package, modeled on STL.

• Can compile to either GPU or multicore backend.

• Provides high-level operations, e.g. sort, search, prefix
scan, foreach, reduction, etc.
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Example: sorting

R interface code:

r t h s o r t <− f u n c t i o n ( x ) {
dyn . l o a d (” r t h s o r t . so ”)
n <− l e n g t h ( x )
tmp <− . C(” r t h s o r t ” , as . d o u b l e ( x ) ,

as . i n t e g e r ( n ) , tmpres=d o u b l e ( n ) )
r e t u r n ( tmp$tmpres )

}

Sorting 10000000 numbers: R 4.78 sec, Rth 1.52sec.
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sorting, cont’d.

Thrust code:

#i n c l u d e <t h r u s t / h o s t v e c t o r . h>
#i n c l u d e <t h r u s t / d e v i c e v e c t o r . h>
#i n c l u d e <t h r u s t / s o r t . h>

v o i d r t h s o r t ( d o u b l e ∗x , i n t ∗nx , d o u b l e ∗ xout )
{ i n t n = ∗nx ;

// s e t up d e v i c e v e c t o r and copy x to i t
t h r u s t : : d e v i c e v e c t o r <double> dx ( x , x+n ) ;
// s o r t , then copy back to x
t h r u s t : : s o r t ( dx . b e g i n ( ) , dx . end ( ) ) ;
t h r u s t : : copy ( dx . b e g i n ( ) , dx . end ( ) , xout ) ;

}
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General Pattern

Sort example was straight wrapper. What about other cases?

• Put together the appropriate Thrust ops.

• For most Thrust ops, write app-specific function to be
called.
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Example: convolution

Thrust code:

v o i d r t h c o n v ( d o u b l e ∗x , i n t ∗nx ,
d o u b l e ∗y , i n t ∗ny , d o u b l e ∗ z )

{ i n t nxx = ∗nx , nyy = ∗ny , nzz = nxx + nyy − 1 ;
t h r u s t : : d e v i c e v e c t o r <double> dx ( x , x+nxx ) ;
. . .
t h r u s t : : c o u n t i n g i t e r a t o r <i n t> seqb ( 0 ) ;
t h r u s t : : c o u n t i n g i t e r a t o r <i n t> s e q e = seqb + nxx ;
t h r u s t : : f o r e a c h ( seqb , seqe , d o 1 i ( dx . b e g i n ( ) ,

dy . b e g i n ( ) , dz . b e g i n ( ) , nxx , nyy ) ) ;
t h r u s t : : copy ( dz . b e g i n ( ) , dz . end ( ) , z ) ;

}

Key line:

t h r u s t : : f o r e a c h ( seqb , seqe , d o 1 i ( dx . b e g i n ( ) , . . .
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convolution, cont’d.

User supplies “foreach” function, in the form of a

s t r u c t d o 1 i { // ”do 1 i ”
. . .

d e v i c e
v o i d o p e r a t o r ( ) ( c o n s t i n t i )
{ i n t j ; // h a n d l e 1 i i n i , j l o o p

i n t r p i = rndperm [ i ] ;
d o u b l e x d i = xd [ r p i ] ;
f o r ( j = 0 ; j < ny ; j ++)

zd [ r p i+j ] += x d i ∗ yd [ ny−j −1] ;
}

} ;

A callable struct.
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Performance

• Rth’s rthconv() orders of magnitude faster than R’s
convolve().

• Not fair to R’s convolve(); latter written in C, but works
via FFTs, slow.

• Also: R’s convolve() runs out of space on problems than
rthconv() can handle (multcore).
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Kendall’s Tau

v o i d r t h k e n d a l l ( f l o a t ∗xy , i n t ∗nxy , f l o a t ∗ tau )
{ i n t i , n = ∗nxy , n2 = 2∗n , t o t c o u n t ;

t h r u s t : : c o u n t i n g i t e r a t o r <i n t> seqa ( 0 ) ;
t h r u s t : : c o u n t i n g i t e r a t o r <i n t>

seqb = seqa + n − 1 ;
doubvec dxy ( xy , xy+n2 ) ;
i n t v e c tmp ( n−1);
t h r u s t : : t r a n s f o r m ( seqa , seqb , tmp . b e g i n ( ) ,

c a l c g t i ( dxy , n ) ) ;
t o t c o u n t=t h r u s t : : r e d u c e ( tmp . b e g i n ( ) , tmp . end ( ) ) ;
∗ tau = t o t c o u n t / ( 0 . 5∗ n∗( n−1)) ;

}

Key calls: transform(), reduce(); can combine using
transform iterator
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Example: submatrix ops, select()

• Not implemented yet.

• Easy version: Specific numerical indices.

• More elaborate: Dynamic parse of user R expression, sent
off to Thrust code.
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Some Thrust Ops

• sort, search

• reduce, min/max

• permute (e.g. for matrix transpose)

• partition, prefix scan

• foreach, transform, copyif

• set ops

• more are being added
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• “Software alchemy” parallelizes i.i.d. stat apps, any
platform. Often get superlinear speedup.

• Rth provides a way to easily parallelize many other opps.
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Misc.

URLs:

• these slides:
http://heather.cs.ucdavis.edu/user2012.pdf

• my online book on parallel programming:
http://heather.cs.ucdavis.edu/~matloff/158/

PLN/ParProcBook.pdf

• Rth: http:

//heather.cs.ucdavis.edu/~matloff/rth.html

thanks to:

• Prof. Hao Chen (use of large multcore machine)

• Prof. Bill Hsu (use of fast GPUs)

• the audience :-)
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