Use of R's Data Frames:
an lllustration with Chinese Dialects Data

Norm Matloff
Department of Computer Science
University of California at Davis
Davis, CA 95616 USA
matloff@cs.ucdavis.edu

October 5, 2010

Aspects of R lllustrated Here

data frames
filtering
string manipulation

lapply(). sapply()
which(), split(), merge()

The Chinese Languages

e Standard Chinese is Mandarin/putonghua/guoyu, pretty much
lingua franca status.

The Chinese Languages

e Standard Chinese is Mandarin/putonghua/guoyu, pretty much
lingua franca status.

@ But dialects still going strong, e.g. Cantonese, Shanghainese.

The Chinese Languages

e Standard Chinese is Mandarin/putonghua/guoyu, pretty much
lingua franca status.

@ But dialects still going strong, e.g. Cantonese, Shanghainese.

@ Mandarin speaker from Beijing who wishes do business in
Hong Kong may get “closer” to clients by speaking Cantonese.

The Chinese Languages

Standard Chinese is Mandarin/putonghua/guoyu, pretty much
lingua franca status.

But dialects still going strong, e.g. Cantonese, Shanghainese.

Mandarin speaker from Beijing who wishes do business in
Hong Kong may get “closer” to clients by speaking Cantonese.

HKer with weak Mandarin may want to improve.

The Chinese Languages

Standard Chinese is Mandarin/putonghua/guoyu, pretty much
lingua franca status.

But dialects still going strong, e.g. Cantonese, Shanghainese.

Mandarin speaker from Beijing who wishes do business in
Hong Kong may get “closer” to clients by speaking Cantonese.

HKer with weak Mandarin may want to improve.

Thus some rules, “mappings,” that will show correspondences
between the dialects would be a useful learning aid.

The Chinese Languages

Standard Chinese is Mandarin/putonghua/guoyu, pretty much
lingua franca status.

But dialects still going strong, e.g. Cantonese, Shanghainese.

Mandarin speaker from Beijing who wishes do business in
Hong Kong may get “closer” to clients by speaking Cantonese.
HKer with weak Mandarin may want to improve.

Thus some rules, “mappings,” that will show correspondences

between the dialects would be a useful learning aid. Find
them with R!

How Different Are the Dialects from One Another?

@ Differences between pronunciations sometimes striking.

How Different Are the Dialects from One Another?

@ Differences between pronunciations sometimes striking.

e E.g. the character for “down,” T, is pronounced

How Different Are the Dialects from One Another?

@ Differences between pronunciations sometimes striking.
e E.g. the character for “down,” &, is pronounced

e xia in Mandarin,

How Different Are the Dialects from One Another?

@ Differences between pronunciations sometimes striking.
e E.g. the character for “down,” &, is pronounced

e xia in Mandarin,
e ha in Cantonese

How Different Are the Dialects from One Another?

@ Differences between pronunciations sometimes striking.
e E.g. the character for “down,” &, is pronounced

e xia in Mandarin,
e ha in Cantonese
e and wu in Shanghainese.

How Different Are the Dialects from One Another?

@ Differences between pronunciations sometimes striking.
e E.g. the character for “down,” &, is pronounced

e xia in Mandarin,
e ha in Cantonese
e and wu in Shanghainese.

@ Some differences in grammar too.

How Different Are the Dialects from One Another?

@ Differences between pronunciations sometimes striking.
e E.g. the character for “down,” &, is pronounced

e xia in Mandarin,
e ha in Cantonese
e and wu in Shanghainese.

@ Some differences in grammar too.

o (For simplicity, will not discuss tones.)

How Can R Help?

@ There ARE some patterns.

How Can R Help?

@ There ARE some patterns.

e E.g. in Mandarin xia and Cantonese ha above, the x — h
correspondence is common,

How Can R Help?

@ There ARE some patterns.

e E.g. in Mandarin xia and Cantonese ha above, the x — h
correspondence is common, e.g. 7 (“fragrant”), is
pronounced xiang in Mandarin and heung in Cantonese.

How Can R Help?

@ There ARE some patterns.

e E.g. in Mandarin xia and Cantonese ha above, the x — h
correspondence is common, e.g. 7 (“fragrant”), is
pronounced xiang in Mandarin and heung in Cantonese.

@ But the correspondence x — y is also common, e.g. K (“to
rest”) is xiu in Mandarin, yau in Cantonese.

How Can R Help?

@ There ARE some patterns.

e E.g. in Mandarin xia and Cantonese ha above, the x — h
correspondence is common, e.g. 7 (“fragrant”), is
pronounced xiang in Mandarin and heung in Cantonese.

@ But the correspondence x — y is also common, e.g. K (“to
rest”) is xiu in Mandarin, yau in Cantonese.

@ Also x — s, etc.

Our Goal

We wish to write R code to input dialect data frame, output a list
of correspondences like x — h.

Our Goal

We wish to write R code to input dialect data frame, output a list
of correspondences like x — h.
Example: Mandarin speaker wants to learn Cantonese.

Our Goal

We wish to write R code to input dialect data frame, output a list
of correspondences like x — h.

Example: Mandarin speaker wants to learn Cantonese.

She wonders, what does an initial Mandarin x map to?

Our Goal

We wish to write R code to input dialect data frame, output a list
of correspondences like x — h.

Example: Mandarin speaker wants to learn Cantonese.

She wonders, what does an initial Mandarin x map to?

The R code tells her that the rules x — h and x — s are the most
common ones for initial consonant x.

Our Goal

We wish to write R code to input dialect data frame, output a list
of correspondences like x — h.

Example: Mandarin speaker wants to learn Cantonese.

She wonders, what does an initial Mandarin x map to?

The R code tells her that the rules x — h and x — s are the most
common ones for initial consonant x.

It also lists all mappings for x, i.e. the Cantonese pronunciations
for all characters pronounced x- in Mandarin.

Our Goal

We wish to write R code to input dialect data frame, output a list
of correspondences like x — h.

Example: Mandarin speaker wants to learn Cantonese.

She wonders, what does an initial Mandarin x map to?

The R code tells her that the rules x — h and x — s are the most
common ones for initial consonant x.

It also lists all mappings for x, i.e. the Cantonese pronunciations
for all characters pronounced x- in Mandarin.

Example: Cantonese speaker wants to learn Mandarin. R tells him
that the Cantonese ending -im maps most often to a Mandarin
-ian or -an. Etc.

Example of Use

Our main function’s name is mapsound().
Example input data frame:

Example of Use

Our main function’s name is mapsound().
Example input data frame:

> head(canman8)

Ch char Can Man Can cons Can sound Can tone Man cons Man sound Man tone
1 — yatl yil y at 1 y i 1
2 T dingl dingl d ing 1 d ing 1
3 1+ chatt qil ch at 1 q i 1
4 X jeung6 zhang4 j eung 6 zh ang 4
5 I seung5 shang3 s eung 5 sh ang 3
6 T ha5 xiad h a 5 x ia 4

Example, cont'd.

Example call:

> m2cx <- mapsound(canman8,c("Man cons","Can cons"),"x")

Example, cont'd.

Example call:

> m2cx <- mapsound(canman8,c("Man cons","Can cons"),"x")

Here's one component of the output:

Example, cont'd.

Example call:

> m2cx <- mapsound(canman8,c("Man cons","Can cons"),"x")

Here's one component of the output:

> m2cx$counts
ch £f g h j kkvw n s y
15 2 187 12 4 2 181 21

Example, cont'd.

Example call:

> m2cx <- mapsound(canman8,c("Man cons","Can cons"),"x")

Here's one component of the output:

> m2cx$counts

ch £f g h j kkvw n s y

15 2 18712 4 2 18121

So, if we see a Mandarin x, it probably maps to h or s in
Cantonese. Not a perfect rule, but helps a lot.

Example, cont'd.

Example call:

> m2cx <- mapsound(canman8,c("Man cons","Can cons"),"x")

Here's one component of the output:

> m2cx$counts

ch £f g h j kkvw n s y

15 2 18712 4 2 18121

So, if we see a Mandarin x, it probably maps to h or s in
Cantonese. Not a perfect rule, but helps a lot.

Let's see some of the images of the mappings, say the one for ch:

Example, cont'd.

Example call:

> m2cx <- mapsound(canman8,c("Man cons","Can cons"),"x")

Here's one component of the output:

> m2cx$counts

ch £f g h j kkvw n s y

15 2 18712 4 2 18121

So, if we see a Mandarin x, it probably maps to h or s in
Cantonese. Not a perfect rule, but helps a lot.

Let's see some of the images of the mappings, say the one for ch:

> head(m2cx$images[["ch"]])
Ch char Can Man Can cons Can sound Can tone Man cons Man sound Man tone

613 B chau3 xiud ch au 3 x iu 4
982 = cham4 xin2 ch am 4 X in 2
1050 # chun3 xun2 ch un 3 x un 2
1173 & chui4 xu2 ch ui 4 X u 2
1184 f)ﬁ chun3 xun2 ch un 3 X un 2
1566 # ched xie2 ch e 4 X ie 2

Overview of the R code:

Overview of the R code:

e mapsound(): Finds the actual mappings, as seen above.

Overview of the R code:

e mapsound(): Finds the actual mappings, as seen above.

e merge2fy(): Combines two 1-dialect data frames to produce
a 2-dialect frame, which is input to mapsound().

Overview of the R code:

e mapsound(): Finds the actual mappings, as seen above.

e merge2fy(): Combines two 1-dialect data frames to produce
a 2-dialect frame, which is input to mapsound().

e sepsoundtone(): Takes a character’s pronunciation, e.g.

tianl, and breaks it into 3 sound components, e.g. t, ian and
1. Called by merge2fy().

Code for mapsound()

1 mapsound <- function(df,cols,sourceval) {

2 fromcol <- cols[1]

3 tocol <- cols[2]

4 # find row numbers correspond value to be mapped

5 base <- which(df[[fromcol]] == sourceval)

6 # extract data frame for those rows

7 basedf <- df[base,]

8 # determine which rows of basedf correspond to the various mapped
9

values
10 sp <- split(l:nrow(basedf),basedf [[tocoll])
11 retval <- list()
12 # call R’s length() function on each of the mapped vectors, thereby
13 # counts of each mapping
14 retval$counts <- sapply(sp,length)
15 # get the characters for each mapping
16 retval$images <- lapply(sp,function(mappedvec) basedf [mappedvec,])
17 return(retval)

Code to Merge Data of Two Dialects

But there is prep work that must be done:

Code to Merge Data of Two Dialects

But there is prep work that must be done:
Recall the example input data frame:

Ch char Can Man Can cons Can sound Can tone Man cons Man sound Man tone
1 — yatl yil y at 1 y i1l
2 T dingl dingl d ing 1 d ing 1

Code to Merge Data of Two Dialects

But there is prep work that must be done:
Recall the example input data frame:

Ch char Can Man Can cons Can sound Can tone Man cons Man sound Man tone
1 — yatl yil y at 1 y i1l
2 T dingl dingl d ing 1 d ing 1

This came from merging two dfs, Cantonese and Mandarin. Here's
part of the Cantonese df (Mandarin one is similar):

Code to Merge Data of Two Dialects

But there is prep work that must be done:
Recall the example input data frame:

Ch char Can Man Can cons Can sound Can tone Man cons Man sound Man tone
1 — yatl yil y at 1 y i1l
2 T dingl dingl d ing 1 d ing 1

This came from merging two dfs, Cantonese and Mandarin. Here's
part of the Cantonese df (Mandarin one is similar):

> head(can8)

Ch char Can
1 — yatl
2 4 yuet3
3 T dingl

Code to Merge Data of Two Dialects

But there is prep work that must be done:
Recall the example input data frame:

Ch char Can Man Can cons Can sound Can tone Man cons Man sound Man tone
1 — yatl yil y at 1 y i1l
2 T dingl dingl d ing 1 d ing 1

This came from merging two dfs, Cantonese and Mandarin. Here's
part of the Cantonese df (Mandarin one is similar):

> head(can8)
Ch char Can

1 — yatl
2 4 yuet3
3 T dingl

| wrote the function merge2fy() to merge the two dfs—and split
the pronunciations into 3 sound components.

Code for merge2fy()

merge2fy <- function(fyl,fy2) {

outdf <- merge(fyl,fy2)

separate tone from sound, and create new columns

for (fy in list(fyl,fy2)) {
saplout will be a matrix, init consonants in row 1, remaining
sounds in row 2, and tones in row 3
saplout <- sapply((£y[[2]]),sepsoundtone)
convert it to a data frame
tmpdf <- data.frame(fy[,1],t(saplout),row.names=NULL,

stringsAsFactors=F)

add names to the columns
consname <- paste(names(fy)[[2]]," cons",sep="")
restname <- paste(names(fy)[[2]]," sound",sep="")
tonename <- paste(names(fy)[[2]]," tone",sep="")
names (tmpdf) <- c("Ch char",consname,restname,tonename)
need to use merge(), not cbind(), due to possibly different
ordering of fy, outdf
outdf <- merge(outdf,tmpdf)

}

return(outdf)

Code for sepsoundtone()

1 sepsoundtone <- function(pronun) {

2 nchr <- nchar(pronun)

3 vowels <- c("a","e","i","o","u")

4 # how many initial consonants?

5 numcons <- 0

6 for (i in 1:nchr) {

7 ltr <- substr(pronun,i,i)

8 if ('ltr %in% vowels) numcons <- numcons + 1 else break
9

}
10 cons <- if (numcons > 0) substr(pronun,l,numcons) else NA
11 tone <- substr(pronun,nchr,nchr)
12 # final character will be the tone, if any
13 numtones <- if (tone %in’ letters)) O else 1
14 if (numtones == 0) tone <- NA
15 therest <- substr(pronun,numcons+1,nchr-numtones)
16 return(c(cons,therest,tone))

More Work to Be Done

@ Find mappings if initial letter is a vowel.

More Work to Be Done

@ Find mappings if initial letter is a vowel.

@ Some characters have multiple readings.

More Work to Be Done

@ Find mappings if initial letter is a vowel.
@ Some characters have multiple readings.

@ Try to map the tones.

