Name: _____

Directions: MAKE SURE TO COPY YOUR AN-SWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.

1. (15) State why the following code doesn't work. (Do NOT state how to fix it.)

```
integrate (function (x) x^2, 1, 4) + integrate (function (x) x, 4, 5)
```

2. Consider the example in Sec. 12.2.1. Find the following:

- (a) (15) $F_{\overline{X}}(70.1)$
- (b) (15) EX_2
- (c) (15) In this part only, suppose we sample without replacement. Find $Cov(X_1, X_2)$.

3. Again consider Sec. 12.2.1 (sampling with replacement), in our "notebook" context, with n = 100 We have columns for $X_1, X_2, ..., X_{100}, \overline{X}, s^2, \overline{X} - 1.5s/\sqrt{100}, \overline{X} + 1.5s/\sqrt{100}$. (Here s is as in (12.23). Find the following:

- (a) (10) The long-run average value in the \overline{X} column.
- (b) (10) The long-run average value in the s^2 column.
- (c) (10) The long-run proportion of notebook lines for which the population mean is between the values in the last two columns.

4. (10) Consider the code on pp.227-228, but with rexp(1,0,1) in line 4 replaced by runif(1,0,1). Give the approximate value of the output in line 12.

Solutions:

We are trying to add two objects of class 'integrate(), rather than add two numbers.
2.a

$$\frac{1}{9} + \frac{2}{9} + \frac{1}{9} = \frac{4}{9}$$

2.b $EX_i = \mu = (69 + 70 + 72)/3$ **2.c**

$$Cov(X_1, X_2) = E(X_1X_2) - EX_1 EX_2 = E(X_1X_2) - \mu^2$$

$$E(X_1X_2) = (69 \cdot 70 + 69 \cdot 72 + 70 \cdot 72)/3$$

3.a μ

 $\mathbf{3.b}$

$$E(s^2) = \frac{99}{100}\sigma^2$$

$$\sigma^2 = E(X^2) - (EX)^2 = (69^2 + 70^2 + 72^2)/3 - \mu^2$$

3.c This is a confidence interval, for which we are being asked to find the confidence level. This is 1 - 2 * pnorm(-1.5)

(The original version had $\sqrt{2}$ rather than $\sqrt{100}$. The problem was not graded. 4. Use (9.42). Here EX = 0.5 and $f_X(t) = 1$. So, $f_Y(t) = 2t$. Then

$$EY = \int_0^1 t \cdot 2t \ dt = \frac{2}{3}$$

So the mean length of the interval we arrive within is 2/3, and the mean time to the next/last bus is 1/3.