Name: \qquad
Directions: MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.

1. (15) State why the following code doesn't work. (Do NOT state how to fix it.)

$$
\begin{aligned}
& \text { integrate (function } \left.(x) x^{\wedge} 2,1,4\right)+ \\
& \text { integrate (function (x) } x, 4,5)
\end{aligned}
$$

2. Consider the example in Sec. 12.2.1. Find the following:
(a) $(15) F_{\bar{X}}(70.1)$
(b) (15) $E X_{2}$
(c) (15) In this part only, suppose we sample without replacement. Find $\operatorname{Cov}\left(X_{1}, X_{2}\right)$.
3. Again consider Sec. 12.2.1 (sampling with replacement), in our "notebook" context, with $n=$ 100 We have columns for $X_{1}, X_{2}, \ldots, X_{100}, \bar{X}, s^{2}, \bar{X}-$ $1.5 s / \sqrt{100}, \bar{X}+1.5 s / \sqrt{100}$. (Here s is as in (12.23). Find the following:
(a) (10) The long-run average value in the \bar{X} column.
(b) (10) The long-run average value in the s^{2} column.
(c) (10) The long-run proportion of notebook lines for which the population mean is between the values in the last two columns.
4. (10) Consider the code on pp.227-228, but with $\boldsymbol{\operatorname { r e x p }}(\mathbf{1 , 0 , 1}$ in line 4 replaced by $\operatorname{runif}(\mathbf{1 , 0 , 1})$. Give the approximate value of the output in line 12 .

Solutions:

1. We are trying to add two objects of class 'integrate(), rather than add two numbers.
$2 . a$

$$
\frac{1}{9}+\frac{2}{9}+\frac{1}{9}=\frac{4}{9}
$$

2.b $E X_{i}=\mu=(69+70+72) / 3$
2.c

$$
\begin{gathered}
\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left(X_{1} X_{2}\right)-E X_{1} E X_{2}=E\left(X_{1} X_{2}\right)-\mu^{2} \\
E\left(X_{1} X_{2}\right)=(69 \cdot 70+69 \cdot 72+70 \cdot 72) / 3
\end{gathered}
$$

3.a μ
3.b

$$
\begin{gathered}
E\left(s^{2}\right)=\frac{99}{100} \sigma^{2} \\
\sigma^{2}=E\left(X^{2}\right)-(E X)^{2}=\left(69^{2}+70^{2}+72^{2}\right) / 3-\mu^{2}
\end{gathered}
$$

3.c This is a confidence interval, for which we are being asked to find the confidence level. This is $1-2$ * pnorm (-1.5)
(The original version had $\sqrt{2}$ rather than $\sqrt{100}$. The problem was not graded.
4. Use (9.42). Here $E X=0.5$ and $f_{X}(t)=1$. So, $f_{Y}(t)=2 t$. Then

$$
E Y=\int_{0}^{1} t \cdot 2 t d t=\frac{2}{3}
$$

So the mean length of the interval we arrive within is $2 / 3$, and the mean time to the next/last bus is $1 / 3$.

