Name: \qquad
Directions: MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.

1. (15) Consider the example in pp.163ff. Say we observe 8 of the logins to Jill's account. Assume they are independent and that they are really Jill. Let M denote the number of logins in which Jill accesses at least 535 disk sectors. Find $\operatorname{Var}(M)$.
2. (15) Suppose X has a $N(10,4)$ distribution. Give code that finds the number c for which $P(X<c)=$ 0.168 .
3. Suppose $f_{X}(t)=c t^{3}$ on $(0,4), 0$ elsewhere.
(a) (10) Find c.
(b) (10) Find $E X$.
(c) (10) Find $E[\max (X, 1)]$.
(d) (15) Give a function $\mathbf{r t 3}(\mathbf{n})$ that generates \mathbf{n} random numbers from this density.
4. (15) On p.172, it states, "One can also show that $\operatorname{Var}(\mathrm{Y})=2 \mathrm{k}$." Deduce from this the value of $E\left(X^{4}\right)$, where X has a $\mathrm{N}(0,1)$ distribution.
5. (10) Consider the museum example of the Central Limit Theorem in Sec. 8.15. We want to explain the CLT using a "notebook" view. Fill in the following blanks with terms or symbols from these sources: Theorem 14; Section 8.15; and "notebook-ology." (Example terms from the latter are row, column, long-run proportion, repetition, experiment and so on.) The number of rows of pins is \qquad , and the number of balls is \qquad

Solutions:

1. M is binomial, so $\operatorname{Var}(Y)=n p(1-p)=8(0.01)(1-0.01)$.
2.

qnorm ($0.168,10,2$)
3.a

$$
\begin{equation*}
1=\int_{0}^{4} c t^{3} d t \tag{1}
\end{equation*}
$$

so $c=1 / 64$
3.b

$$
\begin{equation*}
E X=\int_{0}^{4} t \cdot \frac{1}{64} t^{3} d t \tag{2}
\end{equation*}
$$

3.c

$$
\begin{equation*}
E[\max (X, 1)]=\int_{0}^{1} 1 \cdot \frac{1}{64} t^{3} d t+\int_{1}^{4} t \cdot \frac{1}{64} t^{3} d t \tag{3}
\end{equation*}
$$

3.d We need $F_{x}^{-1}(t)$.

$$
\begin{equation*}
t=F_{X}(s)=\left.\frac{1}{64} \cdot \frac{1}{4} v^{4}\right|_{0} ^{s}=\frac{1}{256} s^{4} \tag{4}
\end{equation*}
$$

Solve for s :

$$
\begin{equation*}
F_{x}^{-1(t)}=s=4 t^{0.25} \tag{5}
\end{equation*}
$$

So the function is

$$
\text { rt } 3<- \text { function }(\mathrm{n}) 4 *(\operatorname{runif}(\mathrm{n}))^{\wedge}\{0.25\}
$$

4. For convenience, let $W=X^{2}$. Then

$$
\begin{equation*}
E\left(X^{4}\right)=E\left[W^{2}\right]=\operatorname{Var}(W)+(E W)^{2} \tag{6}
\end{equation*}
$$

But we are told in the text that $\operatorname{Var}(Y)=2 k$. In (8.34), each Z_{i}^{2} is a W, and they are independent. Thus we must have

$$
\begin{equation*}
\operatorname{Var}(W)=2 \tag{7}
\end{equation*}
$$

Also, (8.36) shows that $E W=1$. So (??) shows that

$$
\begin{equation*}
E\left(X^{4}\right)=3 \tag{8}
\end{equation*}
$$

5. n, number of rows of the notebook.
