Name: \qquad
Directions: MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.

1. (15) Suppose the random variable Y has density $c t^{3}$ on the interval $(1,3), 0$ elsewhere. What must be the value of the constant c ?
2. (15) Consider the light bulb example, p. 139 top. We keep sampling bulbs until we get one with lifetime less than 2.8. Let N denote the number of bulbs we sample. Find $\operatorname{Var}(N)$.
3. Consider the Markov analysis of the bus ridership problem, pp.125-126.
(a) (10) Find p_{21} (the probability of going from state 2 to state 1).
(b) (15) Find the long-run proportion of stops at which there will be exactly one disappointed customer, among those cases in which no one alights. Write your answer in terms of the π vector, using R notation, e.g. pi [12]^3.
4. (15) Recall that the skewness of a random variable X is defined to be

$$
\begin{equation*}
E\left[(X-\mu)^{3} / \sigma^{3}\right] \tag{1}
\end{equation*}
$$

Using R's integrate(), find the skewness of the random variable X in the bottom half of p. 138 .
5. (15) We found that the mean time between wins in the 3 -consecutive-heads game is about 14.1. Express this mean using notation P()$, \mathrm{E}(), \operatorname{Var}()$ and the $T_{i j}$ in Section 6.10. (In your electronic file, write the latter quantity as T_ij.)
6. (15) Suppose we have parametric family of densities called the nasty family, with support $(0, \infty)$. So we should have functions dnasty(), pnasty() and so on, but have only been given dnasty(). Say the latter has parameters \mathbf{x} (a scalar, not a vector) and nastyparm, the parameter indexing the family. The arguments for pnasty() will be \mathbf{x} and nastyparm. Show R code that constructs pnasty() from dnasty().

Solutions:

1. The density must integrate to 1.0 , so $c=1 / 20$.
2. N has a geometric distribution with $p=\left(2.8^{2}-1\right) / 15$.
3.a We have 2 on the bus, and want the probability of this count dropping to 1 . Either 2 alight and 1 boards, or 1 alights and 0 board. So the probability is $0.2^{2} \cdot 0.4+2(0.2)(0.8) \cdot 0.5$.
3.b $\pi_{20} 0.4+\pi_{19} 0.1$
3.

integrate (function(x) ((x-2.8)/sqrt(0.66))^3 * 2 * x/ 15,1,4)
5. $E\left(T_{00}\right)$
6.
function pnasty(x, nastyparm) integrate (dnasty, 0 , x, nastyparm) \$value

