Name: \qquad
Directions: MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.

1. (20) Consider the bus ridership example, Sec. 2.12. Let M denote the number of the first stop at which 2 people board the bus. If for instance 1 person boards at the first stop, no one boards at the second stop and 2 people board at the third stop, then $M=3$. Find $\operatorname{Var}(M)$.
2. (15) Consider the fee structure in Sec. 4.11. Find $\operatorname{Var}(T)$.
3. (15) Fill in the blanks: Equation (6.13) (or its equivalent form $\pi=P^{\prime} \pi$) shows that π is a/an \qquad of P (or P^{\prime} in the equivalent form).
4. (15) In the example in Sec. 6.2, let's change the rules: Once you get a total of 10 or more, your score is reset to 0 , rather than to your total mod 10 . One line of code needs to be changed. State which line, and what the new contents of the line will be.
5. Consider some distribution family \mathcal{F}, indexed by a parameter r. The random variables having distributions in this family have as support the set of nonnegative integers i.e. they take on values $0,1,2, \ldots$
Suppose we have available "d" and "p" functions for this family, with call forms $\mathbf{d a}(\mathbf{k}, \mathbf{r})$ and $\mathbf{p a}(\mathbf{k}, \mathbf{r})$, where \mathbf{k} is an integer.
Say we have random variables X and Y, where the distribution of X is in the family \mathcal{F} with parameter $r=c$ and the distribution of Y is in the family \mathcal{F} with parameter $r=d$, with X and Y independent.
(a) (10) Give R code to calculate $P(X=i, Y=j)$.
(b) (10) Let $V=\max (X, Y)$. Give R code to compute $F_{V}(m)$, for a nonnegative integer m.
(c) (15) Let $W=X+Y$. Give R code to find $P(W=$ m) for a nonnegative integer m. You will need to use a loop, but make sure you have it on a single line, e.g.

$$
\text { tot }<-0 ; \text { for }(\text { i in } 1: 10)\{\text { tot }<- \text { tot }+i\}
$$

Solutions:

1. M has a geometric distribution with $p=0.1$. Use (4.12).
2. $\operatorname{Var}(T)=9 \operatorname{Var}\left(B_{1}\right)+4 \operatorname{Var}\left(B_{2}\right)$. Then use mailing tubes to find $\operatorname{Var}\left(B_{i}\right)$, or better, use (3.106), since $L_{1}=B_{1}$.
3. eigenvector
4. Change line 11 to
if $(\mathrm{k}>=10) \mathrm{k}<-0$
5.a
$\mathrm{da}(\mathrm{i}, \mathrm{c}) * \mathrm{da}(\mathrm{j}, \mathrm{d})$
5.b
$\mathrm{pa}(\mathrm{m}, \mathrm{c}) * \mathrm{pa}(\mathrm{m}, \mathrm{d})$
5.c
sum <-0; for (i in $0: m$) sum $<-$ sum $+\mathrm{da}(\mathrm{i}, \mathrm{c}) * \mathrm{da}(\mathrm{m}-\mathrm{i}, \mathrm{d})$
