Name: \qquad
Directions: MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.

1. (20) Your chemistry professor announces the results of the midterm exam: Mean 18 and standard deviation 5. She says that since the scores were so low, she is going to multiply all scores by 2 and then add 10 . What will be the new mean and standard deviation? Answer using R's $\mathbf{c}()$ notation, e.g. $\mathbf{c}(\mathbf{8 8},-\mathbf{8})$ if you think the new mean and standard deviation will be 88 and -8 , respectively.
2. (25) Consider the ALOHA example, Sec. 2.5 (and $p=0.4, q=0.8)$. Let O_{k} denote the number of original messages that are still pending at the end of epoch k, $k=1,2, \ldots$ We are just concerned with $k=1$. Find $E\left(O_{1}\right)$.
3. (15) Suppose K and L are independent indicator random variables, with event probabilities p and q. Supply the reasons for each step in the following derivation, in which a and b are constants. The reasons should cite equations or properties, maybe algebra, say with Eqns. (2.10)-(2.13) as an example. You will have answers (a), (b) and (c), i.e. 6 lines in your electronic file.

$$
\begin{aligned}
\operatorname{Var}(a K+b L) & =\operatorname{Var}(a K)+\operatorname{Var}(b L) \quad(\text { reason }(\mathrm{a})) \\
& =a^{2} \operatorname{Var}(K)+b^{2} \operatorname{Var}(L) \quad(\text { reason }(\mathrm{b})) \\
& =a^{2} p(1-p)+b^{2} q(1-q) \quad(\text { reason }(\mathrm{c}))
\end{aligned}
$$

4. (20) Say we have a random variable X, of which we simulate many instances, resulting in an R vector \mathbf{w}. We make the R call

$$
\operatorname{mean}(\mathrm{w}>\operatorname{mean}(\mathrm{w}))
$$

State what quantity this is approximating. Your answer must use math symbols such as E()$, \mathrm{P}(), \operatorname{Var}(), \mathrm{X}$ and punctuation - no code and no English.
5. (20) In the context of p.65, find $\operatorname{Cov}\left(G_{1}, G_{2}\right)$.

Solutions:

1.

c $(46,10)$
2.

$$
\begin{equation*}
1 \times 2(0.4)(1-0.4)+2 \times\left(0.4^{2}+(1-0.4)^{2}\right) \tag{1}
\end{equation*}
$$

3.a Eqn. (3.75)
3.b Property G
3.c Eqn. (3.79)
4. $P(X>E X)$
5.

$$
\begin{align*}
\operatorname{Cov}\left(G_{1}, G_{2}\right) & =E\left(G_{1} G_{2}\right)-E\left(G_{1}\right) \cdot E\left(G_{2}\right) \tag{2}\\
& =r-\left(\frac{2}{3}\right)^{2} \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
r=P\left(G_{1} G_{2}=1\right)=\frac{2}{3} \cdot \frac{5}{8} \tag{4}
\end{equation*}
$$

Note that $G_{1} G_{2}$ is itself an indicator random variable.

