Name: \qquad
Directions: MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.

1. (15) Suppose X and Y are independent and have Poisson distributions, then it can be shown that $S=$ $X+Y$ also has a Poisson distribution. Fill the blank with a term from our course: We say that the Poisson family is \qquad under independent summation.
2. Consider the class enrollment example, p.153.
(a) (15) Give R code to evaluate Equation (7.24).
(b) (15) Give R code to find the upper 10% point for class size, i.e. a number above which only 10% of class exceed.
3. Consider the toy population example, Sec. 9.2.1. Suppose we take a simple random sample of size 2. Imagine a notebook description of this, with columns labeled X_{1}, X_{2} and \bar{X}, and infinitely many lines.
(a) (15) What is the number of distinct values in the \bar{X} column?
(b) (10) What is the long-run proportion of rows in which there is a 72 in the X_{1} column and a 69 in the X_{2} column?
(c) (15) What is the long-run proportion of the value 72 in the X_{2} column?
4. (15) A dart is thrown at the interval $(0,1)$. The position D that it hits is a random variable, with density $f_{D}(t)=2 t$ for $0<t<1$ and 0 elsewhere. Find the expected value of the distance from the dart to the point 0.5 .

Solutions:

1. closed
2.a

$$
(1-\operatorname{pnorm}(30,28.8,3.1)) /(1-\operatorname{pnorm}(25,28.8,3.1))
$$

2.b

```
qnorm(0.90,28.8,3.1)
```

3.a 3
3.b $1 / 6$
3.c $1 / 3$
4.

$$
\int_{0}^{1}|t-0.5| 2 t d t=\int_{0}^{0.5}(0.5-t) 2 t d t+\int_{0.5}^{1}(t-0.5) 2 t d t
$$

