Name:
Directions: MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.

1. (15) On Section 6.4, find $E\left(X^{3}\right)$.
2. (15) On p.119, suppose Z is the number of heads obtained from three tosses of a coin, rather than two. Find $F_{Z}(1.88)$. Write your answer only as a numerical expression, NO calls to R functions.
3. (15) Suppose $f_{X}(t)=c t^{2}$ for $0<t<2,0$ elsewhere, for some constant c. Find c.
4. (15) Consider the coin-and-die game, Section 4.15.3. You don't observe the game personally, but you hear that the player took at most 2 turns to roll a 5. Find the probability that the player wins exactly $\$ 1$.
5. (15) The following simulation finds and returns the long-run average seek distance in the disk drive model, pp.126ff. Fill in the blanks:
```
sim <- function(nreps) {
    # start at the middle track,
    # but doesn't matter
    oldtracknum <- 0.5
    seeks <- vector(length=nreps)
    for (i in 1:nreps) {
        tracknum <- blank (a)
        seeks[i] <- blank (b)
        oldtracknum <- tracknum
    }
    blank (c)
```

6. Consider the Markov inventory model, p.112, and the following run of the code:
$>$ inventory $(0.8,0.2,5)$
[1] $0.1936083 \quad 0.1932367 \quad 0.1950948$
$0.1858045 \quad 0.2322557$
(a) (15) Find the proportion of days in which a customer leaves emptyhanded.
(b) (10) Find the proportion of customers who leave emptyhanded.

Solutions:

1.

$$
\int_{1}^{4} t^{3} \cdot 2 t / 15 d t
$$

2.

pbinom ($1,3,0.5$)
3. The density must integrate to 1 . Solving for c yields the value $3 / 8$.
4.

$$
P(W=1 \mid M \leq 2)=\frac{P(W=1 \text { and } M \leq 2)}{P(M \leq 2)}
$$

The denominator is

$$
\frac{1}{6}+\frac{5}{6} \cdot \frac{1}{6}
$$

and the numerator is

$$
P(W=1 \text { and } M=1)+P(W=1 \text { and } M=2)=\frac{1}{6} \cdot \frac{1}{2}+\frac{5}{6} \cdot \frac{1}{6} \cdot 2\left(1-\frac{1}{2}\right) \frac{1}{2}
$$

5.
```
sim <- function(nreps) {
    oldtracknum <- 0.5
    seeks <- vector(length=nreps)
    for (i in 1:nreps) {
            tracknum <- runif(1)
            seeks[i] <- abs(tracknum - oldtracknum)
            oldtracknum <- tracknum
        }
        mean(seeks)
}
```

6.a

$$
0.1936083 \cdot 0.2
$$

6.b Think of what will happen over the course of 10000 days. We will have approximately 12000 customers, among whom

$$
0.1936083 \cdot 0.2 \cdot 10000
$$

will leave emptyhanded. Then divide.

