Name: \qquad
Directions: MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.
When a problem says "Find," do NOT use simulation.

1. Consider the coin and die game, Sec. 4.15.3.
(a) (15) Find $P(M=2)$.
(b) (15) Find $\operatorname{Var}(M)$.
(c) (15) Find $p_{M, W}(1,1)$.
2. (15) Suppose some random variable X has a Poisson distribution with $\lambda=3.2$. Do NOT use loops in this problem.
(a) (15) Find $P(X \leq 8)$.
(b) (15) Find $E\left(X^{2}\right)$. (You'll need a mailing tube, but need not cite it.)
3. Consider the parking space example, Sec. 4.2.2.
(a) (15) Change line 7 in the code so that instead of returning the approximate value of $E D$, it returns the approximate value of $P(D \leq 12)$.
(b) (10) (Not a continuation of part (a).) We have a caravan of four cars, and thus need four parking spaces. Let D denote the distance of the furthest car from the destination. Find $P(D=12)$. Do NOT answer with a single R function call; instead, you must write an R expression that includes a call to choose().

Solutions:

1.a $(5 / 6)(1 / 6)$
1.b M is geometric, so its variance is $(1-p) / p^{2}$, where $p=1 / 6$.
1.c

$$
p_{M, W}(1,1)=P(M=1, W=1)=P(M=1) P(W=1 \mid M=1)=(1 / 6)(1 / 2)
$$

2.a
ppois (8,3.2)
2.b

$$
E\left(X^{2}\right)=\operatorname{Var}(X)+(E X)^{2}=3.2+3.2^{2}
$$

3.a
mean (dvals $<=12$)
3.b Number the spaces $1,2, \ldots, 10$ in the first block, $11,12, \ldots, 20$ in the second block and so on. $D=12$ means that the furthest car is in space 23 . That in turn means that the fourth empty space was space 23 . The probability of this is that of a negative binomial distribution with $r=4$ and $p=0.15$.

