Name:
Directions: MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.
This entire quiz concerns the committee example in Sec. 3.9.2, pp.61ff. Except for Problem 3(c), all answers are numeric. As usual, numeric answers must be given as R expressions that evaluate to numbers. Note that there are 5 problems, 1-5.

1. (10) Find P (first pick is women, second is man).
2. (15) Find $P(D=0)$. For full credit, use an appropriate R function.
3. Consider the following simulation code:

We then run

```
> simout <- sim(100000)
\(>\) simout \(<-\operatorname{sim}(100000)\)
```

We then print out some quantities, as seen below.
(a) (15) What will be printed out from this?

```
> mean(simout [,5])
\(>\operatorname{mean}(\) simout \([, 5])\)
```

(b) (15) What will be printed out from this?

$$
>\operatorname{mean}(\operatorname{simout}[, 3])
$$

(c) (20) What will be printed out from this?

```
```

> rownums <- which(simout [, 1] = 1)

```
```

> rownums <- which(simout [, 1] = 1)
> sum(simout[rownums,2]) / length(rownums)

```
```

> sum(simout[rownums,2]) / length(rownums)

```
```

Your answer here in Part (c) must be in "P()" form, using only symbols in the book, e.g. $P(D=9)$.

```
sim <- function(nreps) {
```

sim <- function(nreps) {
reprecords <- matrix(nrow=nreps, ncol=5)
reprecords <- matrix(nrow=nreps, ncol=5)
for (rep in 1:nreps) {
for (rep in 1:nreps) {
comm <- pickcommittee()
comm <- pickcommittee()
reprecords[rep,1:4] <- comm
reprecords[rep,1:4] <- comm
tmp <- sum(comm)
tmp <- sum(comm)
\# find tmp-(4-tmp)
\# find tmp-(4-tmp)
reprecords[rep,5] <- 2*tmp-4
reprecords[rep,5] <- 2*tmp-4
}
}
reprecords
reprecords
}
}
pickcommittee <- function() {
pickcommittee <- function() {
\# choose the 4-person committee, recording
\# choose the 4-person committee, recording
\# each time whether a man is picked
\# each time whether a man is picked
npeopleleft <- 9
npeopleleft <- 9
nmenleft <- 6
nmenleft <- 6
pickedsofar <- NULL
pickedsofar <- NULL
for (i in 1:4) {
for (i in 1:4) {
propmen <- nmenleft / npeopleleft
propmen <- nmenleft / npeopleleft
manpicked <-
manpicked <-
sample (0:1,1, prob=c(1-propmen, propmen))
sample (0:1,1, prob=c(1-propmen, propmen))
nmenleft <- nmenleft - manpicked
nmenleft <- nmenleft - manpicked
npeopleleft <- npeopleleft - 1
npeopleleft <- npeopleleft - 1
pickedsofar <- c(pickedsofar,manpicked)
pickedsofar <- c(pickedsofar,manpicked)
}
}
pickedsofar
pickedsofar
}

```
}
```

4. (15) Find $\operatorname{Var}\left(G_{4}\right)$.
5. (10) Find $\operatorname{Cov}\left(G_{1}, G_{4}\right)$.

Solutions:

1. $(3 / 9)(6 / 8)$
2. We need $P(M=W=2)$. It is
choose $(6,2) *$ choose $(3,2) / \operatorname{choose}(9,4)$
3.a $E D=4 / 3$
3.b $P\left(G_{3}=1\right)=6 / 9$
3.c $P\left(G_{2}=1 \mid G_{1}=1\right)$
3. G_{4} is an indicator random variable, and thus its variance is $p(1-p)$, where $p=P\left(G_{4}=1\right)=2 / 3$.
4. We need to find

$$
\begin{equation*}
E\left(G_{1} G_{4}\right)-E G_{1} \cdot E G_{4} \tag{1}
\end{equation*}
$$

The latter term is $(6 / 9)^{2}$. To find $E\left(G_{1} G_{4}\right)$, use reasoning similar to that on the top of p. 63 to find that

$$
E\left(G_{1} G_{4}\right)=E\left(G_{1} G_{2}\right)=\binom{6}{2}\binom{3}{0} /\binom{9}{2}
$$

