Name: \qquad
Directions: MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.

1. (10) Suppose X is the length of a random rod, in inches, and $\operatorname{Var}(X)=2.6$. Let Y denote the length in feet. Find $\operatorname{Var}(Y)$.
2. (10) In the board game, Sec. 2.11, suppose we start at square 3 (no bonus, since we start there rather than landing there). Let X denote the square we land on after one turn. Find $E X$.
3. This problem concerns the Monty Hall example, pp.40ff.
(a) (15) Give the numbers of the "mailing tubes" in (3.1) and (3.2), respectively. Use a comma and/or spaces to separate the two equation numbers, e.g. "(2.1) (2.3)".
(b) (15) Consider (3.1). Say we change the left-hand side to $P(A=2 \mid C=2, H=1)$. What would be the new numerical value of the numerator on the right-hand side?
4. (20) Look at the simulation code on p.26. Say we wish to find the expected value of S^{2}, where S is the sum of the \mathbf{d} dice. Give a line of code, to replace line 11.
5. Consider the Preferential Attachment Graph model, Sec. 2.13.1..
(a) (10) Give the number of the "mailing tube" justifying (2.69).
(b) (10) Find $P\left(N_{3}=1 \mid N_{4}=1\right)$.
(c) (10) Find $P\left(N_{4}=3\right)$.

Solutions:

1.

$$
\left(\frac{1}{12}\right)^{2} \cdot 2.6
$$

2.

$$
4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}+7 \cdot \frac{1}{6}+0 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}
$$

3.a (2.8), (2.7)
3.b

$$
\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)\left(\frac{1}{2}\right)
$$

4. mean (sums $\left.{ }^{\wedge} 2\right)$
5.a (2.2)
5.b

$$
(1 / 2)(2 / 4) /((1 / 2)(2 / 4)+(1 / 2)(1 / 4))
$$

5.c

$$
(1 / 2)(1 / 4)+(1 / 2)(1 / 4)
$$

