Name: \qquad
Directions: Do NOT turn in this sheet of paper (unless you lack a laptop or have a laptop failure during the Exam). You will submit electronic files to handin.

INSTRUCTIONS FOR SUBMISSION:

- Submit to the CSIF handin, under my account, using the alphabetically earliest UCD e-mail address among your group members.
- Submit ONLY the files Problem1.tex and Problem2.R.

1. (50) Suppose $f_{X, Y}(s, t)=2$ on $0<t<s<1$, 0 elsewhere. Find $f_{X+Y}(w)$ for the case $0<w<1$. Tip: Find F_{X+Y} first.
Submit your derivation in a LaTeX file Problem1.tex. My grading script will check it by running
\% pdflatex Problem1.tex
\% xpdf Problem1.pdf $\#$ or other PDF viewer
2. (50) Lifetimes of some electronic component formerly had an exponential distribution with mean 100.0. However, it's claimed that now the mean has increased. (Suppose we are somehow sure it has not decreased.) Someone has tested 50 of these new components, and has recorded their lifetimes, X_{1}, \ldots, X_{50}. Unfortunately, they only reported to us the range of the data, $R=$ $\max _{i} X_{i}-\min _{i} X_{i}$.
We will need to do a significance test with this limited data, at the 0.05 level. Note (p.222) that it will necessarily be a bit different from 0.05 . Take the one that is nearest but no larger than 0.05 . You may wish to use the R ceiling() function here.
Use simulation (because the problem is too difficult mathematically) to find a cutoff value v for our significance test, and state whether we reject H_{0} if $R<v$ or $R>v$.
Submit your full code in a file Problem2.R. My grading script will check it by running
```
> source(" Problem2.R")
```

and your code will print out something like "reject if R 202.8."

Solutions:

1. Since X and Y are not independent, we cannot use convolution.

$$
\begin{align*}
F_{X+Y}(w) & =P(X+Y) \leq w \tag{1}\\
& =\int_{0}^{w / 2} \int_{t}^{w-t} 2 d s d t \tag{2}\\
& =w^{2} / 2 \tag{3}
\end{align*}
$$

So $f_{X+Y}(w)=w$.
2.

```
# random sample of size 50, test H0: mu = 100.0,
```


random sample of size 50, test H0: mu = 100.0,

against HA: mu > 100.0, exponential distribution;

against HA: mu > 100.0, exponential distribution;

just have range R

just have range R

code to determine the cutoff point for significance

code to determine the cutoff point for significance

at 0.05 level

at 0.05 level

nreps <- 200000
nreps <- 200000
n<-50
n<-50
rvec <- vector(length=nreps)
rvec <- vector(length=nreps)
for (i in 1:nreps) {
for (i in 1:nreps) {
x<- rexp(n,0.01)
x<- rexp(n,0.01)
rng <- range(x)
rng <- range(x)
rvec[i] <- rng[2] - rng[1]
rvec[i] <- rng[2] - rng[1]
}
}
rvec <- sort(rvec)
rvec <- sort(rvec)
cutoff <- rvec[ceiling(0.95*nreps)]
cutoff <- rvec[ceiling(0.95*nreps)]
cat("reject H0 if R >",rvec[cutoff],"\n")
cat("reject H0 if R >",rvec[cutoff],"\n")

check (not requested):

check (not requested):

tvec <- vector(length=nreps)
tvec <- vector(length=nreps)
for (i in 1:nreps) {
for (i in 1:nreps) {
x <- rexp(n,0.01)
x <- rexp(n,0.01)
rng <- range(x)
rng <- range(x)
rej <- (rng[2] - rng[1]) > cutoff
rej <- (rng[2] - rng[1]) > cutoff
tvec[i] <- rej
tvec[i] <- rej
}
}
print(mean(tvec)) \# should be near 0.05

```
print(mean(tvec)) # should be near 0.05
```

