Name: \qquad
Directions: Work only on this sheet (on both sides, if needed). MAKE SURE TO COPY YOUR answers To a separate sheet for sendING ME AN ELECTRONIC COPY LATER.
Important note: Remember that in problems calling for R code, you are allowed to use any built-in R function, e.g. choose(), pnorm(), etc.
Note too the R function integrate(), e.g.

```
> integrate(function(x) x^2, 0, 1)
0.3333333 with absolute error < 3.7e-15
```

The limits of integration must be numbers or Inf or Inf, not symbols. Thus one cannot use it for the inner integral in a double integral.

1. Consider the computer worm example in Sec. 8.3. Say $\mathrm{g}=5$.
(a) (25) Find the probability that the time spent at state 2 (before going to state 3) is greater than 0.10 .
(b) (15) Let T_{35} denote the time needed to go from state 3 to state 5 . Find $f_{T_{35}}(0.3)$.
2. In each of the following, state - using mathematical symbols, e.g. E()$, \mathrm{P}(), \mathrm{F}, \mathrm{f},>$, names of the variables used in the example (don't make up your own names), etc.-what the integral is calculating. Use an underscore for subscripts in your Answers file, e.g. write U_1 for U_{1}.
(a) $(0) \int_{0.2}^{0.8} 2(1-v) d v$ in Section 8.3.4.
(b) $(25) \int_{0}^{1} \int_{0}^{1} s t(2-s-t) d t d s$ in Section 8.2.4.
(c) (20) $\int_{1}^{8} \frac{1}{(8-s)^{2}} \frac{1}{s^{2}} d s$, where we have independent random variables X and Y with density $1 / w^{2}$ on $(1, \infty)$.
3. (15) Suppose X and Y be independent and each have a uniform distribution on the interval $(0,1)$. Let Z $=\min (\mathrm{X}, \mathrm{Y})$. Find $f_{Z}(0.8)$.

Solutions:

1.a The text says that the time spent at state 2 is exponentially distributed with parameter $2 \mathrm{x} 3=6$. So, the probability is

1 -pexpon ($0.10,6\}$
1.b Have sum of two independent exponentials, but with different λ values-just like the backup battery example. So, $f_{T_{35}}(0.3)$ is equal to $\exp (-0.3 / 6)+\exp (-0.3 / 4$ (where $6=3 \cdot 2$ and $4=4 \cdot 1$).
2.a $P(0.2<S<0.8)$ (error in original problem statement)
2.b E(XY)
2.c $f_{X+Y}(8)$
3. Using the same derivation as on p.168,

$$
\begin{align*}
F_{Z}(t) & =P(Z \leq t) \tag{1}\\
& =1-P(Z>t) \tag{2}\\
& =1-P(X>t \text { and } Y>t) \tag{3}\\
& =1-(1-t)^{2} \tag{4}
\end{align*}
$$

So, $f_{Z}(t)=2(1-t)$ and $f_{Z}(0.8)=0.4$.
4. This is the density of $\mathrm{X}+\mathrm{Y}$, where X and Y are independent with the given density.

