Name: \qquad
Directions: Work only on this sheet (on both sides, if needed). MAKE SURE TO COPY YOUR answers To a separate sheet for sendING ME AN ELECTRONIC COPY LATER.
Important note: Remember that in problems calling for R code, you are allowed to use any built-in R function, e.g. choose().

1. Consider the random variable X on p. 92 .
(a) (15) Find the probability that X is between 0.1 and 0.2 . [Should have been 1.1 and 1.2 . Otherwise the probability is 0.]
(b) (15) Find $E(\sqrt{X})$.
2. Consider the ALOHA Markov chain example, beginning on p.68, but with 4 nodes in the network, not just 2.
(a) (10) How many rows will the P matrix now have?
(b) (15) Find p_{43}, for the case $\mathrm{q}=0.2, \mathrm{p}=0.6$.
3. Suppose light bulb lifetimes are exponentially distributed with mean 10.0 months. We try them one at a time, until we find the third one that lasts longer than 5.0. Let N denote the number of light bulbs we try.
(a) (15) What famous parametric family does the distribution of N belong to?
(b) (15) Find $\operatorname{Var}(\mathrm{N})$.
4. (15) In the network intrusion example, p.97, suppose Jill logs in twice. Let X and Y denote the number of disk sectors she reads in the two sessions, assumed to be independent. Find $P(X+Y>1088)$.

Solutions:

1.a See note in problem statement. Probability is 0 as stated. For 1.1, 1.2:

$$
\begin{equation*}
P(1.1<X<1.2)=\int_{1.1}^{1.2} 2 t / 15 d t \tag{1}
\end{equation*}
$$

1.b

$$
\begin{equation*}
E\left(\sqrt{X}=\int_{1}^{4} t^{0.5} 2 t / 15 d t=\frac{4}{75} \cdot 31\right. \tag{2}
\end{equation*}
$$

2.a 5
2.b

$$
\begin{equation*}
p_{43}=\binom{4}{1} p^{1}(1-p)^{3}=0.1536 \tag{3}
\end{equation*}
$$

3.a Negative binomial.
3.b From (3.114):

$$
\begin{equation*}
\operatorname{Var}(N)=r \cdot \frac{1-p}{p^{2}} \tag{4}
\end{equation*}
$$

Here $\mathrm{r}=3$ and

$$
\begin{equation*}
p=\int_{5.0}^{\infty} 0.1 e^{-0.1 t} d t \tag{5}
\end{equation*}
$$

The integral can be computed by hand, or as
$1-\operatorname{pexp}(5.0,0.1)$
4. $\mathrm{X}+\mathrm{Y}$ has a normal distribution with mean $2 \cdot 500$ and variance $2 \cdot 15^{2}$. The specified probability is then computed as
$1-\operatorname{pnorm}(1088,1000, \operatorname{sqrt}(450))$

