Name: _____

Directions: Work only on this sheet (on both sides, if needed). MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.

1. (20) The formal term used when two events cannot occur "in the same notebook line" is that they are

2. Consider the simple board game in Section 2.10. Let X denote your position after your first turn.

- (a) (20) Find P(X = 1).
- (b) (20) Find P(R = 1 | X = 1).

3. Consider the ALOHA example, same as in the book, except that both nodes start out inactive, i.e. $X_0 = 0$. Assume p = 0.6, q = 0.2.

- (a) (20) Find the probability that there is a collision in first epoch.
- (b) (20) Find $P(X_1 = 2)$.

Solutions:

1. disjoint

 $\mathbf{2.a}$

$$P(X = 1) = P(R = 1 \text{ or } R = 3 \text{ and } B = 5) = \frac{1}{6} + \frac{1}{6} \cdot \frac{1}{6}$$

 $\mathbf{2.b}$

$$P(R = 1|X = 1) = \frac{P(R = 1 \text{ and } X = 1)}{P(X = 1)}$$
 (1)

$$= \frac{P(R=1)}{P(X=1)} \tag{2}$$

$$= \frac{\frac{1}{6}}{\frac{1}{6} + \frac{1}{6} \cdot \frac{1}{6}}$$
(3)

3.a How can it happen? A collision will occur in the first epoch if and only both nodes develop messages and both try to send, which has probability

$$q^2 p^2 = (0.2)^2 (0.6)^2$$

3.b How can it happen? $X_1 = 2$ will occur if and only if both nodes go active and either both send or both refrain from sending. the probability of that is

$$q^{2}[p^{2} + (1-p)^{2}] = (0.2)^{2}[0.6^{2} + 0.4^{2}]$$