Name: \qquad
Directions: Work only on this sheet (on both sides, if needed). MAKE SURE TO COPY YOUR ANSWERS TO A SEPARATE SHEET FOR SENDING ME AN ELECTRONIC COPY LATER.
Important note: Remember that in problems calling for R code or a numerical answer, you are allowed to use any built-in R function, e.g. choose(), pnorm(), etc.

1. Suppose X has the density $2(1-\mathrm{t})$ for t in $(0,1)$ and 0 elsewhere.
(a) (10) Find $P(X>0.5)$.
(b) (10) Find $E X$.
(c) (15) Find $F_{X}(0.2)$.
(d) (10) Could the density be $5(1-\mathrm{t})$ on $(0,1)$? Explain why or why not (in one line!).
2. Sam has a die that he wants to test for fairness, in this case defined to be $H_{0}: p=1 / 6$, where p is the probability of getting a 1 . He will roll the die until he gets the first 1; let N_{1} denote the number of rolls needed. He'll then do it again; let N_{2} denote the number of rolls needed this time. He'll do it n times in all. Then he will calculate

$$
\begin{equation*}
\bar{N}=\frac{N_{1}+\ldots+N_{n}}{n} \tag{1}
\end{equation*}
$$

Suppose, unknown to Sam, the actual value of p is 0.20 .
(a) (10) Find $P\left(N_{1}=5\right)$.
(b) (15) Find (exactly) $P(\bar{N}=1.5)$ for the case $\mathrm{n}=2$. (Remember to ask yourself, "How can it happen?")
(c) (10) Find (approximately) $P(\bar{N}<5.2)$ for the case $\mathrm{n}=100$.
(d) (10) What will be the approximate value of the quantity $\frac{1}{100} \sum_{i=1}^{100} N_{i}^{2}$?
(e) (10) Again assuming $\mathrm{n}=100$, suppose Sam finds that $\bar{N}=7.5$. Find the p-value.

Solutions:

1.a

$$
P(X>0.5)=\int_{0.5}^{1.0} 2(1-t) d t=1 / 4
$$

1.b

$$
E X=\int_{0.5}^{1.0} t \cdot 2(1-t) d t=1 / 3
$$

1.c

$$
P(X<0.2)=\int_{0}^{0.2} 2(1-t) d t=0.36
$$

1.d No, integral would be >1.
2.a

$$
0.8^{4} \cdot 0.2
$$

2.b

$$
P\left(N_{1}=1 \text { and } N_{2}=2 \text { or } N_{2}=1 \text { and } N_{1}=2\right)=2 \cdot 0.2 \cdot 0.8 \cdot 0.2
$$

2.c \bar{N} is approximately normally distributed with mean $1 / 0.2=5$ and variance $\left(0.8 /(0.2)^{2}\right) / 100$. Thus the probability is
$\operatorname{pnorm}\left(5.2\right.$, mean $\left.=5.0, \operatorname{sd}=\operatorname{sqrt}\left(0.8 /\left(0.2^{\wedge} 2\right) / 100\right)\right)$
2.d Use (9.21). The quantity is question is

$$
s^{2}+\bar{N}^{2}
$$

which for large n is approximately

$$
\operatorname{Var}(N)+(E N)^{2}=0.8 /\left(0.2^{2}\right)+5^{2}=45
$$

2.e Using similar reasoning as in 2.c:
$2 *\left(1-\operatorname{pnorm}\left(7.5, \operatorname{mean}=6.0, \operatorname{sd}=\operatorname{sqrt}\left(\left(0.83 /\left(0.17^{\wedge} 2\right) / 100\right)\right)\right)\right)$

