Name: $\qquad$
Directions: Work only on this sheet (on both sides, if needed); do not turn in any supplementary sheets of paper. There is actually plenty of room for your answers, as long as you organize yourself BEFORE starting writing.

## Unless otherwise stated, give numerical answers as expressions, e.g. $\frac{2}{3} \times$ $6-1.8$. Do NOT use calculators.

1. A vending machine stocks Kit Kats, Butterfingers and Crunch bars. Among all customers, $\frac{1}{2}$ choose Kit Kats, $\frac{1}{3}$ select Butterfingers and $\frac{1}{6}$ purchase Crunches. Let K, B and C be the number of each item bought, among $n$ transactions.
(a) (10) Suppose $\mathrm{n}=5$. To what parametric family does the distribution of the vector ( $\mathrm{K}, \mathrm{B}, \mathrm{C}$ ) belong, and with what parameter values?
(b) (10) Same question as (a), but for K alone.
(c) (10) For $\mathrm{n}=6$, give the value of $\operatorname{Cov}(\mathrm{K}, \mathrm{C})$.
(d) (10) Suppose the stock on hand of Crunches is 3 . (We have ther two items.) Let N be the number of customers we must observe before the Crunches are gone. To what parametric family of oes $p_{N}$ belong, and with what parameter values??
2. (15) The R code below simulates the "museum demonstration" (pp.55-56). Fill in the blanks.
```
nrows <- 15
nballs <- 500
bins <- vector(length=2*nrows+1)
for (i in 1:_--------------------------------) {
    position <- nrows 
        if (runif(1) < 0.5) {
            position <-
            } else position <-
    }
    bins[position] <-
}
```

3. (10) Fill in the steps, including reasons at the bottom, in the following proof that $\operatorname{Cov}(W+R, W-R)=$ $\operatorname{Var}(X)-\operatorname{Var}(Y)$ :

$$
\begin{align*}
\operatorname{Cov}(W+R, W-R) & =-\operatorname{Cov}(W, W)-\operatorname{Cov}(R, R)  \tag{1}\\
& =\operatorname{Var}(W)-\operatorname{Var}(R) \tag{2}
\end{align*}
$$

Reasons (you must cite equation numbers whenever possible, English otherwise):
equation (1):
equation (2):
equation (3):
4. (15) Suppose $f_{X}(t)$ is equal to 2 t on $(0,1), 0$ elsewhere. Find $\mathrm{P}(\mathrm{X}>\mathrm{EX})$, expressing your answer as a fraction, reduced to lowest terms.
5. (10) On p.148, state the standard error of $\hat{c}$.
6. (10) Say $\operatorname{Cov}(X)=\Sigma$ for some random vector X . Let v be a nonrandom column vector of the same length as X . Explain clearly why the quantity $v^{\prime} \Sigma v \geq 0$.

## Solutions:

1a. Multinomial, $\mathrm{r}=3, \mathrm{n}=5, p_{1}=\frac{1}{2}, p_{2}=\frac{1}{3}, p_{3}=\frac{1}{6}$.
1b. Binomial, $\mathrm{n}=5, \mathrm{p}=1 / 2$.
1c. $-6 \cdot \frac{1}{2} \cdot \frac{1}{6}$

1d. Negative binomial, $\mathrm{r}=3, \mathrm{p}=1 / 6$.
2. nballs, nrows, position +1 , position -1 , bins[position] +1
3.
$\operatorname{Cov}(\mathrm{W}, \mathrm{W})-\operatorname{Cov}(\mathrm{W}, \mathrm{R})+\operatorname{Cov}(\mathrm{R}, \mathrm{W})-\operatorname{Cov}(\mathrm{R}, \mathrm{R})$
(3.21), algebra and symmetry of $\operatorname{Cov}(),(3.23)$
4.

$$
\begin{gather*}
E X=\int_{0}^{1} t \cdot 2 t d t=\frac{2}{3}  \tag{4}\\
P(X>E X)=P\left(X>\frac{2}{3}\right)=\int_{2 / 3}^{1} 2 t d t=\frac{5}{9} \tag{5}
\end{gather*}
$$

5. Just use the definitions!

$$
\begin{align*}
\text { s.e. }(\hat{c}) & =\text { estimated standard deviation of } \hat{c} \quad \text { (def. of s.e.) }  \tag{6}\\
& =\sqrt{\operatorname{Var}(\hat{c})} \text { (def. of std. dev.) }  \tag{7}\\
& =\sqrt{\operatorname{Var}(2 \bar{X}+1)}(\text { def. of } \hat{c})  \tag{8}\\
& =\sqrt{4 \operatorname{Var}(\bar{X})} \text { (properties. of } \operatorname{Var}())  \tag{9}\\
& =2 \sqrt{\frac{\sigma^{2}}{n}}((4.9))  \tag{10}\\
& =\frac{2}{\sqrt{n}} \cdot \widehat{\sigma}(\text { alg. })  \tag{11}\\
& =\frac{2 s}{\sqrt{n}}(\text { def. of } \mathrm{s}) \tag{12}
\end{align*}
$$

A more sophisticated (and possibly a bit more accurate) way to get an estimator of $\sigma^{2}$ would be the write

$$
\begin{equation*}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E X)^{2}=\frac{1}{c} \sum_{i=1}^{c} i^{2}-\left(\frac{c+1}{2}\right)^{2} \tag{13}
\end{equation*}
$$

One could then plug $\hat{c}$ into this last expression for c , and use the result as $\hat{\sigma}^{2}$.
6. Let $Y=v^{\prime} X$. Then

$$
\begin{align*}
v^{\prime} \Sigma v & =\operatorname{Var}\left(v^{\prime} X\right)((3.80))  \tag{14}\\
& =\operatorname{Cov}(Y)(\operatorname{sub})  \tag{15}\\
& =\operatorname{Var}(Y)(\operatorname{Cov}(\mathrm{Y}) \text { is a } 1 \mathrm{x} 1 \text { matrix consisting of } \operatorname{Var}(\mathrm{Y})  \tag{16}\\
& \geq 0 \quad \text { (variances are nonnegative) } \tag{17}
\end{align*}
$$

